
 1

Mesh simplification with respect to a model appearance
Martin Franc

†
 Václav Skala

‡

{marty,skala}@kiv.zcu.cz

Department of Computer Science

University of West Bohemia, Plzeň, Czech Republic

1 Introduction
Due to the wide technological advancement in the field of computer graphics during the last few years, there has been

an expansion of applications dealing with models of real world objects. For the representation of such models

polygonal (triangular) meshes are commonly used. With growing demands on quality, the complexity of computations

we have to handle models having hundreds thousands or even millions of triangles. The source of such models are

usually 3D scanners, computer vision and medical visualization systems, which can produce models of real world

objects. CAD systems commonly produce complex and high detailed models. Also there are surface reconstruction or

iso-surface extraction methods, that produce models with a very high density of polygonal meshes displaying almost

regular arrangement of vertices.

 In all areas which employ complex models there is a trade off between the accuracy with which the surface is

modeled and the time needed to process it. In attempt to reduce time requirements, we often substitute the original

model with an approximation. Therefore, techniques for simplification of large and highly detailed polygonal meshes

have been developed. The aim of such techniques is to reduce the complexity of the model whilst preserving its

important details.

 We shall present an original algorithm for mesh simplification with respect to similarity of appereance of the

original model and resulting approximation. In this approach we search for important features of the model which must

be preserved during simplification process. Since vertices defines these features, we combine techniques of vertex and

edge decimation. We introduce original method for new vertex position estimation as a part of edge collapse.

 This paper is structured as follows: In section 2 we define a polygonal model, introduce error metric Eavg and discuss

our previous work in the context of vertex decimation. In section 3 we present four proposed methods how to evaluate

vertex properties defining model features. Section 4 discusses reached results and shows some figures. At last, section

5 provides a conclusion with respect to future work.

2 Motivation
As already mentioned, 3D models are often represented by a polygonal surface. We use Garland’s definition [3]. A

polygonal model M is composed of a fixed set of vertices V = (v1, v2, ….., vk) and a fixed set of faces F = (f1, f2, ….., fn).

It provides a single fixed resolution representation of an object. Without loss of generality, we can assume that the

model consists entirely of triangular faces, since any non-triangular polygons may be triangulated in a pre-processing

phase. To streamline the discussion, we will assume that the models do not contain isolated vertices and edges.

 The goal of simplification is to get a surface approximation M2, which is as close as possible to the original surface

M1. Therefore we need some means of qualifying the notion of similarity. The usual way is to evaluate the

approximation error E(M1,M2). Probably the most popular approach is to compute a geometric error using Eavg metric

(1,2) derived from Hausdorff distance:

,min

,
1

,
21

1

2

2

2

21

21

wvMd

MdMd
kk

MME

MPw
v

Xv

v

Xv

vavg (1,2)

where M1 and M2 are original and reduced model and k1 and k2 are numbers of vertices on each model.

 If Eavg(M1,M2) < then we know that every point of the approximation is within of the original surface and that

every point of the original is within of the approximation.

 Since vertex decimation methods [7] produce good quality results and preserve a mesh topology, we used this

approach in our previous work too. In vertex decimation algorithm all vertices V in a mesh M are at first classified

†
 Supported by the project 6FP EU NoE 3DTV No.511568

‡
 Supported by the project MSMT CR, Project LC06008

Proceedings Spring Conference on Computer Graphics SCCG2006. Bratislava : Univerzita Komenského, 2006. s. 136-143. ISBN 80-223-2175-3.

 2

according to their topology into five sets. Simple, border, complex, corner and vertices on sharp edges. Except of

complex vertices their importance is evaluated. The common technique is to compute the distance of the vertex from

the average plane given by its neighborhood (see Fig. 2). Vertices are then sorted according to their importance and

less evaluated vertices are removed. The resulting hole is re-triangulized afterwards.

 Given the main task to find a fast and robust solution, we used a combination of vertex decimation [1] and a kind of

half-edge collapse method [2] to make the re-triangulation easier and more safety (we can easily detect and avoid when

triangle folds over itself). Thanks to parallel implementation and some improvements we reached quite good times, and

good quality of the resulting approximation, by mean of geometric error Eavg.

 However, there are many problems connected with vertex decimation in general. The first thing is that it is

necessary to explicitly define the sharp edges. Sharp edge is the edge, where the angle between the two adjacent

triangles is less than the specific threshold. To set the threshold some experience of the user is necessary and such a

threshold is different for each model. The main disadvantage of vertex decimation methods is that they are not able to

preserve a volume, since they produce shrinkage of the reduced model (assuming closed surfaces with a majority of

convex vertices). Figure 1 illustrates the situation in 2D. The more the model is reduced, then the smaller is its volume,

or area respectively. Unfortunately there is no way how to avoid this effect. Therefore methods based on edge collapse

seem to be more promising from this point of view.

Fig. 1: A shrinkage caused by the removal of vertices v1, v2, v3 and v4.

 Moreover, edge contraction methods offer intuitive techniques for eliminating approximation error by optimal

positioning of a new vertex after performing an edge collapse. These algorithms [10,8,5,6] have become very popular

in recent years. In [4] the edges are generalized to vertex pairs. Each pair is evaluated according to a quadric error

caused by further collapse of this pair into one vertex. Such edges are put into a priority queue and iteratively collapsed

until required amount of simplification or given error value is reached.

Our new approach looks at the simplification problem from a slightly different point of view. Although a geometrical

distance can tell a lot about model similarity in space, for a similar visual appearance we would rather follow some

other criteria. In general, the proosed approach is based on detection of the main features of original model and

applying few heuristic rules tries to keep these features over whole simplification process.

3 Vertex estimation – feature detection

As a feature we consider either an extreme vertex (a peak) or a sharp edge (two or more extreme vertices) – in other

words, what a human eye is sensitive to. Thus features detection is naturally based on vertex evaluation. We do not

study any properties of edges or triangles as they are defined in the model. We suppose that these elements (edges and

triangles) are derived from original set of points anyway. Although we detect feature vertices, we of course mainly

search for non-important vertices – vertices to be easily removed with a minimal harm on model’s appearance. The

best candidates for removal are the least important vertices being part of planar regions of the mesh.

We have studied 4 approaches how to evaluate vertex importance.

3.1 Average plane distance
First method was based on evaluating vertex property according to previously used distance from an average plane.

The plane is given by vertices adjacent to evaluated vertex v. This is the same technique which is used for vertex

importance computation in vertex decimation methods [1,7], see Fig. 2.

Proceedings Spring Conference on Computer Graphics SCCG2006. Bratislava : Univerzita Komenského, 2006. s. 136-143. ISBN 80-223-2175-3.

 3

Fig. 2: Distance to the average plane

An average plane is constructed using the triangle normals ni, midpoints xi and areas Ai.

iA

Ax

x
N

N
n

A

An

N
m

i

m

i

ii

m

i

i

m

i

ii

1

1

1

1 ,,










 (3,4,5)

where the summation is over all triangles in the vertex neighborhood.

The distance d of the vertex v from the plane is then

xvnd


 (6)

and its value is taken as a vertex property. The higher the distance is the more important is the vertex in a model.

Vertices with high values are good candidates to be marked as feature vertices. Vertices with near-to-zero distance can

be removed

3.2 Gaussian curvature
Since we mostly search for planar regions, we also did several experiments using Gaussian and mean curvature

estimation of the surface [11]. Because of our focus on flat areas and search for vertex pair with the same evaluation,

the Gaussian curvature only was sufficient.

m

i

i

m

i

i

A

K

1

1

3

1

2

 (7)

 The curvature K is given by the equation 7, where i goes over all neighbors of evaluated vertex, is the vertex angle

in each of neighboring triangle and A means the area of neighboring triangles.

Note that we are searching for single vertex property only, thus we don’t need to classify the mesh geometry exactly.

3.3 Volume estimation
Another widely used criterion in mesh simplification [8] is based on underlying condition to keep the volume of the

original model. In this approach a vertex importance is related to the volume of the mesh below the vertex (part of the

mesh given by adjacent triangles). For each vertex and its neighbourhood we introduce a new vertex vv, given as an

average point of all vertices adjacent to the vertex in question v0.

Proceedings Spring Conference on Computer Graphics SCCG2006. Bratislava : Univerzita Komenského, 2006. s. 136-143. ISBN 80-223-2175-3.

 4

m

v

v

m

i

i

v
1




 (8)

 Having this “virtual” vertex vv we compute the a of volumes of tetrahedral v0,vv,vi,vj, where vv is the virtual vertex

and v0,vi,vj are vertices of triangles in our triangulation. See Fig. 3.

Fig. 3: Vertex related volume estimation

 The resulting value is weighted by the longest edge going out from vertex v0 to somehow normalize the values over

the whole mesh. The volume has been evaluated according to following formula [9].

,
6

1
,

1

m

k

k

jjj

iii

vvv

k DV

zyx

zyx

zyx

D (9,10)

where Dk is the volume of one tetrahedron and k goes over all tetrahedrons related to vertex v0 which is supposed to lay

in the origin.

3.4 Average normal vector
The last and in some way straight forward method evaluates vertices by estimating a normal vector in vertex v0. The

normal vector n is computed as an average normal of all triangles adjacent to the vertex v0, see Fig. 4.

Fig. 4: Average normal vector

We used the easiest way of computation, which is not-weighted average, see equation (11).

.1

m

n

N

m

i

i




 (11)

Proceedings Spring Conference on Computer Graphics SCCG2006. Bratislava : Univerzita Komenského, 2006. s. 136-143. ISBN 80-223-2175-3.

 5

Note that the normals of triangles have unit length. The importance value is the inverse of the length of the normal. The

more the normal length is closer to 1 the more flat area is around the vertex in question. Naturally, if all the

neighbouring triangles have their normals in the same direction, the area of the triangle fan is flat and the length of

resulting normal will be equal to 1. The more the vertex represents a peak in a mesh the less will be the resulting

normal length, since each of partial normals point to different direction.

4 Final algorithm

Evaluation results

Studying the results of presented evaluation, we have decided to use the average normal for vertex importance

estimation (feature detection). On figure 5 you can see the example of cow model with 50% most important vertices

highlighted according to all methods presented. Since all the pictures show exactly 50% most important vertices, it is

obvious, that the average normal estimation (top left) gives the best results showing the main features of the model. As

you can see, it is a kind of caricature, where the most important contours are highlighted (horns, ears, eyes, neck, and

legs). The Gaussian curvature estimation (top right) also gives good results which could be even better with

combination of mean curvature to detect sharp edges too instead of peak points only. However, the computation would

be too time-consuming. Average distance evaluation (bottom left) tends to involve the sharp edges too. On the other

hand it misses the details kept by small triangles in areas such as eyes and also highlights which could be supposed not

to be very important such as a belly. Probably the worst result gives the estimation of tetrahedrons volume, which was

anyway more or less experimental.

Fig. 5: 50% important vertices of cow model according to 4 different evaluation used – average normal (top left),

Gaussian curvature (top right), average plane distance (bottom left), tetrahedral volume (bottom right).

Proceedings Spring Conference on Computer Graphics SCCG2006. Bratislava : Univerzita Komenského, 2006. s. 136-143. ISBN 80-223-2175-3.

 6

The graph on Fig. 6 shows the rate of vertices and their importance. The picture says that from all the number of

vertices (approx. 3000) there are about 2000 vertices with importance lower then 0.5. It’s obvious, that all the

importance evaluation methods act the similar way and the majority of vertices has a low importance (tests has been

performed on several models naturally). Again, the average normal vector evaluation gives the most wanted results -

declaring the majority of vertices as non-important (the lowest line).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

Number of vertices (rate)

V
e

rt
e

x
 i
m

p
o

rt
a

n
c

e

Normal vector

Gaussian curvature

Avg. plane distance

Volume

Fig. 6: Vertex evaluation according to the method used in a model of a cow.

After several experiments with the average normal computation (not weighted, weighted by triangle area), we

concluded to the evaluation, where each normal is weighted by the apical angle of given triangle. The precise formula

can be seen on equation (12).

,

1

1

m

i

i

m

i

iin

N




 (12)

where m is the number of neighboring triangles and i is the apical angle of i-th triangle at the vertex (see Fig. 7). Note

that the normal vector is not normalized.

Fig. 7: Normal vector weighted by apical angle for each of adjacent triangle.

Proceedings Spring Conference on Computer Graphics SCCG2006. Bratislava : Univerzita Komenského, 2006. s. 136-143. ISBN 80-223-2175-3.

 7

This approach produces best quality evaluation which is independent on tessellation at the vertex (see Figure 8). In case

of non-weighted normal, the resulting normal vector will be different in example on the left (the other two will be the

same and the normal will have a direction more to the front). If the normal vector would be weighted by triangle area,

the first two examples will have the same normal, but the third one will be different (since the area is smaller). Only the

apical angle weight will give us the same results for all three cases.

Fig. 8: Three examples of vertex neighbourhood.

Having evaluated all the vertices we can sort them in priority queue according to their importance. The least important

vertices are the best candidates for removal. Since vertex removal following by re-triangulation is neither trivial in 3D

nor natural when ignoring original edges, we perform and edge contraction instead. For a given vertex the adjacent

edges are investigated and the best-fitting one is replaced by a new vertex. By this step we get a correct triangulation

and are able to follow some other criteria on a quality of resulting mesh.

Best-fitting edge estimation

As already said, once we have a vertex candidate for the removal, we need to search for the best edge to perform the

contraction. The chosen edge will be replaced by a new vertex of specific position. Before we describe the edge

estimation, we must first introduce an evaluation of new vertex position.

Since the aim of the method is to find a simplified approximation of the model with respect to the similarity of

appearance, we don’t subordinate the vertex position to any error estimation. We try to find such a vertex which would

approximate the suppositional surface in between the two end-points of the edge, seen Fig. 9.

Fig. 9: The new vertex should lie somewhere on the dashed line (in 2D).

Let’s consider 2D case for clearer explanation. To determine a new vertex position we use a curve which approximates

surface the way we show on the picture 9. At the beginning we have only two endpoints and non-normalized normals

which determine vertices importance. We used a quadric curve with near least square acceleration, introduced

originally to smooth the model contour by [12]. The nice thing about this curve is its invariance to tangent lengths. The

tangents corresponding to a pair of normals at the vertices can be obtained by using the so-called Gram-Schmidt

orthogonalization algorithm.

T1 =N2−N1 (N1 ·N2), (13)

T2 =−N1+N2(N1 ·N2). (14)

Note, that the normals are assumed to be normalized. It should also be pointed out that when the angle

between the normals, is zero or very close to zero, then we can not compute the tangent in this way. We use a

linear interpolation on the edge instead. Let’s have

P = P2 – P1 (15)

Proceedings Spring Conference on Computer Graphics SCCG2006. Bratislava : Univerzita Komenského, 2006. s. 136-143. ISBN 80-223-2175-3.

 8

and coefficients ,,, , where

21

2

22

21

21

1

11

21

,

,

TT

TP

TT

TT

TT

TP

TT

TT

 (16,17,18,19)

we get a function

1
21212

22
)(Pt

TT
Pt

TT
tf (20)

Thus the only question is how to choose the parameter t, which means, to where to put a new vertex on the curve. Since

the curve itself is given by normals as well as the vertex importance, the natural way is to do linear interpolation on the

importance (length of the normal vectors). Thus, if the importance of vertices will be equal, the parameter t will be set

to 0.5 (the new vertex will be placed in the middle of the curve).

Switching to 2.5D, we have a tool now how to place a new vertex somewhere “above” the contracted edge, instead of

just somewhere in between the endpoints of the edge. In full 3D space we can also influence the vertex position by the

properties of triangles adjacent to the edge, or their opposite corners respectively. We can use the quadric curve again

and the only condition is that the area is not arrow-shaped, see Fig. 10. In case of arrow-shaped quads we use only one

curve constructed over the edge.

Fig. 10: The arrow-shaped quad (left), the non-problematic case (right).

The parameter t’ of the second curve (between opposite corners of two triangles adjacent to the edge) is again given by

the importance of opposite corner vertices, but this time it is weighted by the inverse value of the distance of each

vertex to the point estimated on the first curve. So, if the distance is equal, then only the importance matters. If the

distance of one vertex is higher the less of its importance is considered. This condition forces to place the vertex in the

position given by the importance of surrounding vertices and not the exact topology of the mesh. The final vertex rv is

placed just in the middle of the two vertices on both curves, see Fig. 11.

Fig. 11: The construction of new vertex position.

Proceedings Spring Conference on Computer Graphics SCCG2006. Bratislava : Univerzita Komenského, 2006. s. 136-143. ISBN 80-223-2175-3.

 9

Having described the new vertex position evaluation, we can get back to the procedure of choosing the best-fitting edge

for the contraction. In our algorithm we take all the edges adjacent to given vertex (candidate for removal), and

compute new vertex position for each edge. For every new vertex we examine affected mesh property like the

difference between area of original and resulting triangles, or inconsistencies such as mesh folding or triangle

degeneration caused. Since we primarily remove vertices on flat regions, we force the resulting mesh to be as flat as

possible, thus minimal area of resulting triangles is prioritized. The edge with such a best evaluation is contracted for

real. If there is no suitable edge to process, the removal is forbidden.

Upon a framework described above, we can present the proposed algorithm as follows

Init:

 go over all the vertices and compute their importance

 sort vertices according to the importance

Main loop:

 take the least important vertex

 for every adjacent edge

o compute new vertex position for case of contraction

o simulate the contraction and evaluate the quality of resulting mesh

 perform the contraction of best-fitting edge

 re-evaluate affected area

o compute vertex importance

o insert into a priority queue

 continue the main loop

The real implementation uses three “magic” parameters which are important for the resulting mesh and can be changed

by user. The first parameter is an importance threshold. If vertex importance exceeds the value of the threshold, it is

marked as extremely important one. These (feature) vertices are processed a bit different way than described above.

The main difference is in estimation of parameter t, which is set either to 0 or 1 depending on which endpoint of an

edge is extreme. If both of them are extreme, the more important vertex wins and its position is kept. This strategy

leads to simplification which keeps the most important features represented by extreme vertices without any change

from the original mesh. Such extreme vertices can be seen on Fig. 12 for example at the neck. The lower is the

threshold value the more features of the model will be kept and less simplification will be performed.

Figure 12: Model feature detection for (a) 50%, (b) 75% and (c) 90% simplification.

The second parameter is the maximal allowed angle between normals of triangles before and after edge contraction.

This value helps to detect triangle folding and also controls the smoothness of the resulting mesh. The smaller is the

angle the smoother is the resulting mesh – contractions producing not-wavy surfaces are preferred.

Third parameter is an angle between two adjacent triangles and helps to define so called flat edge. In general if the

vertex selected for removal is extreme and one of its neighbourhood vertices is extreme as well, only the edge between

these two vertices can be considered for removal. Applying this rule we can preserve sharp
§
 edges. In this case a sharp

edge is every edge that has extreme endpoints and is not a flat edge. In other words, we do not detect sharp edges

studying the sharp angle between adjacent triangles. The algorithm marks the edge as sharp if both of its endpoints are

§
 An edge, where the angle between its two adjacent triangles is lower than some specific value.

Proceedings Spring Conference on Computer Graphics SCCG2006. Bratislava : Univerzita Komenského, 2006. s. 136-143. ISBN 80-223-2175-3.

 10

extreme and the angle between adjacent triangles is less than the value given by our third magic parameter. If such

angle is bigger (at most 180 degrees) the edge is marked as a flat edge and is prohibited from contraction, since it could

dramatically change the shape represented by the mesh, see Fig. 13.

Fig. 13: An example of sharp edge (E1-E5) and flat edge (E6).

In general two strategies can be for simplification process - with or without memory of reduced vertex and affected

area. The approach with memory initializes a counter of affected vertex during reduction and every time the vertex is

marked as a candidate for removal the counter is decreased. Only vertices with a counter equal to zero can be

considered for reduction. This memory helps to distribute reduction over whole mesh and the resulting mesh has nicely

shaped triangles. If the simplification runs without memory it can easily produce rapid-flat models, where flat regions

are simplified in prior, see Fig. 14.

Fig. 14: Points distribution during simplification of dense terrain model (left) with (middle) and without (right) vertex

memory. The middle and left picture shows model after 80% simplification (20% of original data).

5 Results

The method has been tested on many models, mostly from GaTech, Cyberware and Avalon depositories. Table 1 shows

some fundamental information about models on which we will present our results. All the experiments were done on

Intergraph TDZ2000 400MHz Pentium II with 512MB RAM, running on WindowsXP.

Proceedings Spring Conference on Computer Graphics SCCG2006. Bratislava : Univerzita Komenského, 2006. s. 136-143. ISBN 80-223-2175-3.

 11

Name cow fandisk teeth bunny horse bone terrain dragon

vertices 2.905 6.475 29.166 35.947 48.485 60.537 65.829 437.645

triangles 5.804 12.946 58.328 69.451 96.966 137.072 130.630 871.414

Picture

Table 1: Models used for presented results.

Table 2 shows the running times of 80% reduction. It is obvious that rapid-flat method (approach without vertex

memory) is faster but the resulting mesh contains long and thin triangles. On the other hand the approach with vertex

memory produces nicely shaped triangles but the running times are slightly worse.

Name cow fandisk teeth bunny horse bone terrain dragon

Mem 1.244 4.604 11.700 13.304 21.032 26.116 31.728 141.980

No mem 1.160 4.116 10.120 12.320 19.848 24.008 28.872 131.804

Table 2: Reached times [sec] for 80% reduction. Thresholds have been set to mark 15% vertices as extreme.

On Fig. 15 you can see the resulting meshes of both methods for fandisk model. However, at most drastical reduction

(99% and more) the resulting meshes are similar for both, with and without memory, approaches.

Fig. 15: Example of reduced model. The original mesh (left), 90% reduction with and without vertex memory (two in

the middle) and drastical 99% reduction (right).

On Fig. 15 you can see graph of error estimation for several models during simplification process. The models has been

simplified from 0% up to 90%. The results are taken from METRO ver. 4.05 [13], using default values (vertex, edge

and face sampling enabled, montecarlo sampling, 10times more samples than triangles in a mesh). To have all the

values comparable, the METRO results were taken with respect to Dragon model, thus re-computed using following

formula (21):

maxV

V
EE c

Mr , (21)

where EM is the value evaluated by METRO, Vc is the number of vertices of current model in certain level of detail and

Vmax is the number of vertices of Dragon model, which is the maximum number of vertices for certain LOD.

Proceedings Spring Conference on Computer Graphics SCCG2006. Bratislava : Univerzita Komenského, 2006. s. 136-143. ISBN 80-223-2175-3.

 12

METRO error estimation

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0 20 40 60 80 100

Amount of reduction [%]

H
a
u

s
d

o
rf

f
d

is
ta

n
c
e
 (

w
rt

 v
e
rt

e
x

ra
ti

o
)

cow

fandisk

teeth

bunny

horse

bone

terrain

dragon

METRO error estimation

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0 20 40 60 80 100

Amount of reduction [%]

H
a
u

s
d

o
rf

f
d

is
ta

n
c
e
 (

w
rt

 v
e
rt

e
x

ra
ti

o
)

cow

fandisk

teeth

bunny

horse

bone

terrain

dragon

Fig. 16: Aproximation error for certain LOD for approaches with (upper) and without (lower) memory.

It’s obvious that memoryless approach gives worse result in meaning of the Hausdorff distance. However, vertices

distribution follows ones assumption that flat regions needs to be built from much less number of vertices than rugged

surface. Here is noticeable difference between geometrical and perceptive evaluation of the approximation quality.

Also the oversampled models such as dragon, bunny and bone have error values higher than other datasets. Although,

the values are higher than other simplification methods, it must be pointed out that METRO computes the error based

on Hausdorff distance which is not considered during a simplification in this case. The main goal of presented

algorithm is to keep the similarity of appearance. However, the geometrical error is also important in mesh

simplification to be able to compare the results with other methods. In Table 3 there are outputs of METRO in detail

for cow, bunny and dragon models.

name reduction vertices faces area bbox diag. H-dist

dragon 0% 437645 871414 0.1452 0.266905
0.005964

90% 41603 81808 0.1446 0.266801

bunny 0% 35947 69451 0.1143 0.250246
0.022444

90% 3824 5368 0.1125 0.249250

cow 0% 2905 5804 2.1802 1.271114
0.032040

90% 391 776 2.0851 1.267350

Table 3: METRO details for chosen models.

Proceedings Spring Conference on Computer Graphics SCCG2006. Bratislava : Univerzita Komenského, 2006. s. 136-143. ISBN 80-223-2175-3.

 13

6 Conclusion

A new approach for triangular mesh simplification with respect to similarity of appearance was presented. This original

method is based on vertex importance evaluation to select the least important vertex to be removed from the mesh. This

evaluation uses vertex average normal vector which lowest values concern specific model features to be kept in

approximations. Simplification itself is performed as an edge collapse where new vertex position is evaluated with

respect to supposed surface of the original object given by the endpoints of the edge, the normal vector at these points

and opposite corners of adjacent triangles.

We showed that geometrical error doesn’t have to be the only criterion of approximation quality and that a visual

appearance can lead to opposite observation. This could be quite important in application such as computer games,

3DTV and other multimedia where mathematical precision is not a principal value. Conversely, preserving main visual

features is more relevant.

References:

[1] Ciampalini A., Cignoni P., Montani C., Scopigno R., Multiresolution decimation based on global error. Technical

Report CNUCE: C96021, Istituto per l'Elaborazione dell'Informazione - Condsiglio Nazionale delle Richere, Pisa,

ITALY, July 1996.

[2] Franc M., Skala V., Triangular Mesh Decimation In Parallel Environment. EUROGRAPHICS Workshop on

Computer Graphics and Visualization 2001, Girona, Spain, pp.39-52, ISBN 84-8458-025-3.

[3] Garland M., Multiresolution Modeling: Survey & Future Opportunities. Eurographics '99, State of the Art Report.

1999.

[4] Garland M., Heckbert P.S., Surface Simplification Using Quadratic Error Metrics. Computer Graphics

(SIGGRAPH '97 Proceedings), pages 209-216, 1997.

[5] Hoppe H., New quadric metric for simplifying meshes with appearance attributes. In David Ebert, Markus Gross,

and Bernd Hamann, editors, IEEE Visualization '99, pages 59--66. IEEE, October 1999. ISBN 0-7803-5897-X.

Held in San Francisco, California.

[6] Hoppe H., Progressive meshes. In Computer Graphics Proceedings, Annual Conference Series, 1996 (ACM

SIGGRAPH '96 Proceedings) , pages 99-108, 1996.

[7] Pawasauskas J., Generalized Unstructured Decimation. Advanced Topics in Computer Graphics - CS563, March

18, 1997.

[8] Lindstrom P., Turk G., Fast and memory efficient polygonal simplification. IEEE Visualization 98 Conference

Proceedings, 1998.

[9] Rektorys K. and at al., Přehled užité matematiky. Nakladatelství Prometheus, Praha, ISBN 80 85849 72

0, 1995.
[10] Shaffer E., Garland M., Efficient Adaptive Simplification of Massive Meshes. IEEE Visualization, 2001.

[11] Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E., A comparison of Gaussian and mean

curvatures estimation methods on triangular meshes. IEEE International Conference on Robotics &

Automation, 2003.
[12] Barrera T., Hast A., Bengtsson E., Surface Construction with Near Least Square Acceleration based on Vertex

 Normals on Triangular Meshes, Sigrad 2002, pp. 43-48.

[13] Cignoni P., Rocchini C., Scopigno R., Metro: measuring error on simplified surfaces. Computer Graphics Forum,

 Blackwell Publishers, vol. 17(2), June 1998, pp 167-174

Proceedings Spring Conference on Computer Graphics SCCG2006. Bratislava : Univerzita Komenského, 2006. s. 136-143. ISBN 80-223-2175-3.

