
IMPROVED SUPER-RESOLUTION METHOD AND ITS ACCELERATION

Libor Váša, Ivo Hanák, and Václav Skala

Department of Computer Science and Engineering, University of West Bohemia
Univerzitní 22, 306 14, Pilsen, Czech Republic

phone: + (420) 377 632 401, fax: + (420) 377 632 402, email: {lvasa|hanak|skala}@kiv.zcu.cz
web: http://herakles.zcu.cz

ABSTRACT
A brief introduction to spatial-domain Super-Resolution
methods, i.e. spatial resolution enhancement methods that
create one high-resolution image from a series of low-
resolution images shifted by a sub-pixel distance, is given.
An improvement applicable to some of existing Super-
Resolution methods is presented. Principles of digital
photography processing techniques are exploited in order to
reduce error in the Super-Resolution process. Enhanced
registration method applicable to full color images is
proposed and results of its hardware implementation are
presented.

1. INTRODUCTION

Digital still cameras (DSC) have reached strong position on
the field of photographic industry over the past decade.
Although parameters of digital equipment constantly
improve, there are still areas where analog equipment offers
better performance. One of such areas is resolution of gained
images.
Using better hardware may provide partial solution to the
problem, but there are also several efforts to achieve such
goal by software processing of multiple input images shifted
by a sub-pixel distance. Such processing is addressed as
Super-Resolution (SR).
We will show that SR techniques are capable of improving
resolution of images taken by commercially available DSCs.
We will show that applying the techniques directly may
impair quality of the result due to preprocessing that takes
place within the DSCs. We will show how to exploit
knowledge about used sensor to improve the results.
We will also show that it is possible to utilize programmable
hardware, i.e. GPU, for improving the performance, because
SR methods perform image processing operations. As it is
common in this area, operations performed on per image
element basis are usually simple. However, the fact that these
operations are performed on each of the image element
means that the whole step utilizing such operation is time
extensive.
On the other hand, the GPU is capable to perform simple
operation on large amount of data in pipeline manner to
perform rendering. It is clearly visible that image processing
and GPU computation has a thing in common: they perform
rather simple per element operations in large numbers.
Therefore it is possible to utilize the GPU for selected parts

of our approach that are time extensive in order to improve
overall performance of our algorithm.
Most research in this area only considered grayscale images
and stated that super-resolving a RGB image is simply a
matter of applying some method to each color channel. We
will show that our improved method requires a special
registration method when color images are reconstructed.
The rest of the paper is organized as follows: necessary
introduction to image preprocessing in DSCs is given in
section 2, quick introduction to existing spatial-domain SR is
given in section 3, our improvement is proposed in section 4
along with its hardware acceleration in section 5. Accuracy
and performance experiments are described in section 6,
sections 7 gives conclusions and section 8 ideas for future
work.

2. IMAGE PREPROCESSING

There is a complicated image processing applied to data
measured by commonly used image acquisition devices
(CCD or CMOS elements) when a computer format image
is being created. Most DSCs are using a standard Bayer
array of color filters which implies a need for interpolation
of measured data to gain a full color image. This step is
addressed as demosaicking.
Demosaicking is basically an interpolation process applied to
color values measured by Bayer array (see Figure 1) in order
to get a RGB triplet in each pixel location. There are many
methods to achieve this goal presented in the literature
([2,6,7,10,11,12,14]), because intuitive approaches like linear
interpolation produce visible artifacts. Additional
preprocessing usually includes white balancing and scaling
of values to fit the usual exponential scale used computer
image formats.

R G R G R G
G B G B G B
R G R G R G
G B G B G B
R G R G R G

Figure 1: Bayer array layout

3. SPATIAL DOMAIN SUPERRESOLUTION

First attempts in the field of super-resolution were
performed in frequency domain ([9]) assuming that values

EUSIPCO 2005 conference proceedings, ISBN 975-00188-0-X, Turkey, 2005

in input images are point samples of the original scene. This
assumption fails in case of current DSCs, because the
sampling process character is integral. This feature is
addressed by spatial domain methods, where the relation
between original image and the sampled images is expressed
by Equation 1 ([3]).

 kk EXY += kkk FCD (1)
Where X is a column vector of lexicographically ordered

hi-res image
Yk is a column vector of lexicographically ordered
k-th input image
Ek is a column vector of lexicographically ordered
additional noise
Fk is a matrix that represents spatial warp between
images (shift)
Ck is a matrix that represents degradation by camera
optics (blur)
Dk is a matrix that represents integral sampling of
the image

Simplest method for spatial domain SR is denoted as
Iterative Back-Projection (IBP)[13] and can be described as a
search for an image that well predicts given inputs. This is
expressed by Equation 2.

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

=

N

k
k

X
YXArgMinX

1

*
kkk FCD (2)

Steepest descent solution of such equation yields ([3,1])
iterative algorithm described by Equation 3, where the β
parameter represents a step size of iterative improvement of
some initial approximation of the high resolution image.
 ()()⎥

⎦

⎤
⎢
⎣

⎡
−−= ∑

=
+

N

k
knnn YX

N
XX

1
1

1
kkk

T
k

T
k

T
k FCDDCFβ (3)

This algorithm is very susceptible to any kind of noise
present in input data, which has inspired research on
improving robustness of the method. We have implemented
two such improved methods, one using pixelwise median
instead of averaging the backprojected differences ([15]), and
the other using average of the sign function of the differences
([5]).

4. IMPROVED ALGORITHM

Although robustness improving methods do provide good
enhancement of the algorithm is the method still very
sensitive to any kind of errors in input data.
We have considered a scenario when the user of a DSC
wants to improve resolution of the images beyond the limits
of the hardware, i.e. the input consists of images gained from
the camera with minimal or no preprocessing and we were
looking for a way to remove errors from these images.
Demosaicking as necessary part of preprocessing may be
source of such error even though today’s DSCs utilize
advanced techniques. Our idea is to find an algorithm that
will not use interpolated data.
Our approach can be viewed as improvement of the basic
IBP algorithm by including a binary mask that describes
which pixels were measured and which were computed by
demosaicking. This is described by Equation 4.

()()()⎥
⎦

⎤
⎢
⎣

⎡
−⊗⊗−= ∑

=
+

N

k
knnn YXMQXX

1
1 kkk

T
k

T
k

T
k FCDDCFβ (4)

Where Q is a vector containing number of measurements
for each pixel location

 M is a vector determining whether a value at
corresponding position was measured (value 1) or
computed (value 0)

 ⊗ represents per-element multiplication of vectors
Robustness-enhanced methods may be altered in the same
manner, in the case of Zomet method there will appear a
median of lower number of values, case of Farsiu algorithm
is equal to IBP (average over lower number of pixels).
Although this basically means reducing the input data to one
third of its original amount, our testing shows that due to
better accuracy of the reduced input are the results better than
from the non-reduced set.
The other question that arises is how to perform registration
of such images. For testing purposes we have implemented a
simplified registration algorithm used in [8,4] that tries to
estimate shifts in the X and Y axes by comparing images
shifted by various amounts in given interval and choosing the
pair of registration parameters (x and y shift) that produces
the least difference.
We have tried to exclude interpolated data even from
registration. Out first approach was to use the same binary
mask as for the SR itself, but this has lead to problems with
images of slightly different exposition. For example when
registration of a green channel was performed, the slightly
lighter images were registered to white squares of a
chessboard pattern wrapped over the image, while darker
images were registered to positions of black chessboard
squares, or other way round. Subsequently, these images only
influenced these positions, making lighter pixels even lighter
and darker pixels even darker, which in next registration
refinement step has lead again to the same effect, only even
more visible. In the end a visible chessboard pattern has
appeared in the resulting images, and the registration
reflected exposition of images more than their exact position.
Situation with the red and blue was similar.
Therefore we have decided to implement a simultaneous
registration of all RGB channels, where at each position a
measured value (R, G or B) is compared to corresponding
channel of current hi-res image approximation, and the
difference is added to cumulative error measurement.
Subsequently, one SR step is performed with the best
registration parameters for each color channel separately.

5. HARDWARE REGISTRATION

In order to speedup the whole computation we have utilized
GPU for the step of image registration. This step consists
basically of comparison of two images in order to gain some
statistical information about them. It is clearly visible that
this operation of basically a per image element operation.
Therefore this step is ideal candidate for GPU
implementation.
In order to perform requested operation we chose a
programmable element of pixel pipeline, i.e. pixel shader.
The selection was based on a fact that pixel shader is

EUSIPCO 2005 conference proceedings, ISBN 975-00188-0-X, Turkey, 2005

adjusted to be able to process large amount of elements in
rather short time. It also allows us to influence every image
element simply by rendering a quad over requested area.
There are several versions of pixel shader, differencing in
their capabilities. We decided to use version 2.0 because it is
a version that is most available today and provides
reasonable functionality at the same time. It also usually
supports floating-point operations in hardware and data
sources even though on some hardware 32 bit IEEE floats are
operated with lower accuracy 24 bit arithmetic. However, our
experiments show that this lack of accuracy has almost no
influence to results when compared to CPU computed
values.
In order to be able to perform operations on image we have
to transfer data from CPU memory to GPU, i.e. to video
memory. For storing of data in video memory, floating-point
textures are used. Later during a computation data are
sampled by nearest-neighbor sampling and addressed in
texture by texture coordinates that are shifted by one half of
pixel in order to prevent coordinate rounding issues. All
coordinates are linearly interpolated over whole quad
implicitly by hardware itself based on coordinates in corners
that are computed by CPU.
The operations performed on GPU can be expressed as a
simple flow chart shown in Figure 2. The most time
consuming part is a reduction step that involves a loop,
which cannot be implemented directly in pixel shader
program due to flow control limitations of selected pixel
shader version.

I
B
I' B to I to select channel
M
R M and I'
store R to output

reduction step: compute sum of output

fo
r e

ac
h

pi
xe

l

Figure 2: Operations performed on GPU.

In order to bypass this limitation multiple passes have to be
performed. In each pass results of previous pass are divided
into four quads and these quads are summed into a single
one. This is repeated until the area is reduced to a single 1×1
matrix that is read back to CPU and divided by number of
processed elements. The reason why the reduction operation
is most time consuming is the fact that each step involves
switching of render target that causes a pipeline to be
flushed.

6. EXPERIMENTAL RESULTS

We have performed series of experiments to test proposed
improvement of accuracy and to test performance gain by
hardware implementation of registration.
Our first aim was to support the decision to exclude
interpolated data from the input set. In our first experiment,
we have simulated image acquisition process that takes place
in a DSC. We have performed a simulation of integral
sampling (basically averaging of certain areas of original
image). Values that would not have been measured by Bayer

array were removed from resulting image and demosaicking
was performed (we have used Cok’s constant hue algorithm
described in [2], which is aimed to reduce color artifacts on
intensity edges).
Subsequently, we have performed series of experiments with
Zomet’s SR method (which has shown best robustness
against errors in input images), showing dependency of the
MSE (Mean Squared Error) of the original and reconstructed
image according to changing β parameter. Two series of
experiments were performed, first utilizing all input data, i.e.
original Zomet algorithm, other utilizing only data not
influenced by demosaicking, i.e. using proposed
improvement. The resulting images are shown in Figure 3
a—f, measured MSE is shown in Figure 4.

a) original image b) degraded image

c) result of Zomet method d) result of enhanced
Zomet method

e) large result of Zomet method f) large result of enhanced
Zomet method

Figure 3: Experimental results

0

0,001

0,002

0,003

0,004

0,005

0,006

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2
Step size

M
SE

Original Zomet algorithm

Enhanced Zomet algorithm

Figure 4: Accuracy results of improved method

One can see that MSE was reduced by 40-50%, similar
results were obtained for other input images we have used.

EUSIPCO 2005 conference proceedings, ISBN 975-00188-0-X, Turkey, 2005

This shows that using measured data only justifies reducing
the input data set to one third of its original size.
In order to prove whether we have achieved a speedup of
computation by utilizing GPU we compared pure software
solution with GPU aided one. We used GPU close to current
hi-end available on market. We didn't use the top of current
GPU because we expected our solution to be used on
hardware close to current average rather then top-end. Just to
illustrate the power of GPU aided computation we compared
times achieved on very slow machine equipped with fast
GPU to fast machine equipped with slightly weaker GPU.

0 1 2 3 4 5 6 7 8 9

2.8GHz/ATI FireGL T2-64 SW

450MHz/ATI FireGL X1-128 SW

2.8GHz/ATI FireGL T2-64 HW

450MHz/ATI FireGL X1-128 HW

Figure 5: Speedup of registration.

0 1 2 3 4 5 6 7 8 9

2.8GHz/ATI FireGL T2-64 SW

450MHz/ATI FireGL X1-128 SW

2.8GHz/ATI FireGL T2-64 HW

450MHz/ATI FireGL X1-128 HW

Figure 6: Speedup of whole SR process.

As it is clearly visible from Figures 5 and 6, times achieved
by GPU aided solution are more than 8 times faster in
comparison with non-GPU solution on the same hardware
configuration. It is clear from our experiment that even a
machine with a slower CPU may provide reasonable
performance when aided by GPU.

7. CONCLUSIONS

We have implemented and tested SR algorithms suitable for
enhancing resolution of images gained by usual DSC. We
have explored preprocessing that is performed on the
measured data and implemented a simulation of such
preprocessing.
We have proposed an enhancement of spatial SR methods
that is applicable on all three implemented SR algorithms,
which exploits the knowledge about preprocessing that is
performed within the camera. We have tested this
enhancement and presented results showing that it may
reduce MSE by almost 50%.
We have utilized GPU in order to improve computation
times. As we have shown above we have achieved this goal
by decreasing the computation time to 1/8 of pure software
solution. We are sure that this decrease will be higher for
larger processed images. Due to the fact that we utilize .NET
as runtime environment for both pure software and GPU
aided solution, the real speedup would be a little bit lower.
However, even in such case the gained speedup and the fact
that similar GPU as the one we have used are available in a
majority of home PCs today surely increases the range of
possible use of our GPU aided solution.

8. FUTURE WORK

We would like to consider an advanced registration
algorithms including rotation estimation of input images. We
hope that such improvement will help to bring SR methods
closer to practice and enable an easy SR processing of
images taken by digital camera held in hand.
Using advanced demosaicking techniques (such as [10]) for
the initial approximation may also improve accuracy of our
results. Later on we want to increase the actual speedup by
utilizing advanced hardware features.

9. ACKNOWLEDGEMENTS

This work was supported by Ministry of Education, Czech
Republic: project MSMT 235200005. The authors would
like to thank Microsoft and ATI for providing hardware for
testing purposes.

REFERENCES
[1] S. Baker, T. Kanade, Limits on Super-Resolution and How to
Break Them. Proc.CVPR00, 2000
[2] D. R. Cok, Signal Processing method and apparatus for
producing interpolated chrominance values in a sampled color
image signal. U.S. Patent No. 4,642,678 (1987)
[3] M. Elad, A. Feuer, Restoration of a Single Superresolution
Image from Several Blurred, Noisy, and Undersampled Measured
Images. IEEE Transactions on Image Processing, Vol. 6, No. 12,
December 1997
[4] M. Elad, Y. Hel-Or, A Fast Super-Resolution Reconstruction
Algorithm for Pure Translation Motion and Common Space-
Invariant Blur. IEEE Transactions on Image Processing, Vol. 10,
No. 8, pp. 1187-1193, August 2001.
[5] S. Farsiu, D. Robinson, M. Elad, P. Milanfar, Fast and Robust
Super-Resolution. Proceedings of ICIP 2003
[6] W. T. Freeman, Median filter for reconstructing missing color
samples. U.S. Patent No. 4,724,395 (1988)
[7] J. F. Hamilton, J. E. Adams, Adaptive color plane interpolation
in single sensor color electronic camera. U.S. Patent No.
5,629,734 (1997)
[8] R. C. Hardie, K. J. Barnard, E. E. Armstrong, Joint MAP
Registration and High-Resolution Image Estimation Using a
Sequence of Undersampled Images. IEEE Transactions on Image
Processing, Vol. 6, No. 12, December 1997
[9] T. Huang, R. Tsai, Multi-frame image restoration and
registration, Advances in Computer Vision and Image Processing.
volume 1, pages 317-339. JAI Press Inc., 1984
[10] R. Kimmel, Demosaicking: image reconstruction from CCD
samples. Proc. Trans. Image Processing, vol. 8, pp. 1221-1228,
1999
[11] C. A. Laroche, M. A. Prescott, Apparatus and method for
adaptively interpolating a full color image utilizing chrominance
gradients. U.S. Patent No. 5,373,322 (1994)
[12] A. Lukin, D. Kubasov, An Improved Demosaicking Algorithm.
to appear in proceedings of Graphicon 2004
[13] S. Peleg, D. Keren, L. Schweitzer, Improving image resolution
using subpixel motion. Pattern Recognition Letter, vol. 5, pp. 223-
226, March 1987
[14] R. Ramanath, W.E. Snyder, G.L. Bilbro, and W.A. Sander,
Demosaicking methods for Bayer color arrays. Journal of
Electronic Imaging, vol. 11, no. 3, pp. 306-315, Jul. 2002.
[15] A. Zomet, A. Rav-Acha, S. Peleg, Robust Super-Resolution,
Proceedings of the Int. Conf. on Computer Vision and Pattern
Recognition (CVPR), vol. 1, pp. 645-650, Dec. 2001

EUSIPCO 2005 conference proceedings, ISBN 975-00188-0-X, Turkey, 2005

