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ABSTRACT 
A brief introduction to spatial-domain Super-Resolution 
methods, i.e. spatial resolution enhancement methods that 
create one high-resolution image from a series of low-
resolution images shifted by a sub-pixel distance, is given. 
An improvement applicable to some of existing Super-
Resolution methods is presented. Principles of digital 
photography processing techniques are exploited in order to 
reduce error in the Super-Resolution process. Enhanced 
registration method applicable to full color images is 
proposed and results of its hardware implementation are 
presented. 

1. INTRODUCTION 

Digital still cameras (DSC) have reached strong position on 
the field of photographic industry over the past decade. 
Although parameters of digital equipment constantly 
improve, there are still areas where analog equipment offers 
better performance. One of such areas is resolution of gained 
images. 
Using better hardware may provide partial solution to the 
problem, but there are also several efforts to achieve such 
goal by software processing of multiple input images shifted 
by a sub-pixel distance. Such processing is addressed as 
Super-Resolution (SR). 
We will show that SR techniques are capable of improving 
resolution of images taken by commercially available DSCs. 
We will show that applying the techniques directly may 
impair quality of the result due to preprocessing that takes 
place within the DSCs. We will show how to exploit 
knowledge about used sensor to improve the results. 
We will also show that it is possible to utilize programmable 
hardware, i.e. GPU, for improving the performance, because 
SR methods perform image processing operations. As it is 
common in this area, operations performed on per image 
element basis are usually simple. However, the fact that these 
operations are performed on each of the image element 
means that the whole step utilizing such operation is time 
extensive. 
On the other hand, the GPU is capable to perform simple 
operation on large amount of data in pipeline manner to 
perform rendering. It is clearly visible that image processing 
and GPU computation has a thing in common: they perform 
rather simple per element operations in large numbers. 
Therefore it is possible to utilize the GPU for selected parts 

of our approach that are time extensive in order to improve 
overall performance of our algorithm. 
Most research in this area only considered grayscale images 
and stated that super-resolving a RGB image is simply a 
matter of applying some method to each color channel. We 
will show that our improved method requires a special 
registration method when color images are reconstructed. 
The rest of the paper is organized as follows: necessary 
introduction to image preprocessing in DSCs is given in 
section 2, quick introduction to existing spatial-domain SR is 
given in section 3, our improvement is proposed in section 4 
along with its hardware acceleration in section 5. Accuracy 
and performance experiments are described in section 6, 
sections 7 gives conclusions and section 8 ideas for future 
work. 

2. IMAGE PREPROCESSING 

There is a complicated image processing applied to data 
measured by commonly used image acquisition devices 
(CCD or CMOS elements) when a computer format image 
is being created. Most DSCs are using a standard Bayer 
array of color filters which implies a need for interpolation 
of measured data to gain a full color image. This step is 
addressed as demosaicking. 
Demosaicking is basically an interpolation process applied to 
color values measured by Bayer array (see Figure 1) in order 
to get a RGB triplet in each pixel location. There are many 
methods to achieve this goal presented in the literature 
([2,6,7,10,11,12,14]), because intuitive approaches like linear 
interpolation produce visible artifacts. Additional 
preprocessing usually includes white balancing and scaling 
of values to fit the usual exponential scale used computer 
image formats. 
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Figure 1: Bayer array layout 

3. SPATIAL DOMAIN SUPERRESOLUTION 

First attempts in the field of super-resolution were 
performed in frequency domain ([9]) assuming that values 
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in input images are point samples of the original scene. This 
assumption fails in case of current DSCs, because the 
sampling process character is integral. This feature is 
addressed by spatial domain methods, where the relation 
between original image and the sampled images is expressed 
by Equation 1 ([3]). 

 kk EXY += kkk FCD  (1) 
Where  X is a column vector of lexicographically ordered 

hi-res image 
Yk is a column vector of lexicographically ordered 
k-th input image 
Ek is a column vector of lexicographically ordered 
additional noise 
Fk is a matrix that represents spatial warp between 
images (shift) 
Ck is a matrix that represents degradation by camera 
optics (blur) 
Dk is a matrix that represents integral sampling of 
the image 
 

Simplest method for spatial domain SR is denoted as 
Iterative Back-Projection (IBP)[13] and can be described as a 
search for an image that well predicts given inputs. This is 
expressed by Equation 2. 
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Steepest descent solution of such equation yields ([3,1]) 
iterative algorithm described by Equation 3, where the β 
parameter represents a step size of iterative improvement of 
some initial approximation of the high resolution image. 
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This algorithm is very susceptible to any kind of noise 
present in input data, which has inspired research on 
improving robustness of the method. We have implemented 
two such improved methods, one using pixelwise median 
instead of averaging the backprojected differences ([15]), and 
the other using average of the sign function of the differences 
([5]). 

4. IMPROVED ALGORITHM 

Although robustness improving methods do provide good 
enhancement of the algorithm is the method still very 
sensitive to any kind of errors in input data. 
We have considered a scenario when the user of a DSC 
wants to improve resolution of the images beyond the limits 
of the hardware, i.e. the input consists of images gained from 
the camera with minimal or no preprocessing and we were 
looking for a way to remove errors from these images. 
Demosaicking as necessary part of preprocessing may be 
source of such error even though today’s DSCs utilize 
advanced techniques. Our idea is to find an algorithm that 
will not use interpolated data. 
Our approach can be viewed as improvement of the basic 
IBP algorithm by including a binary mask that describes 
which pixels were measured and which were computed by 
demosaicking. This is described by Equation 4. 
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Where Q is a vector containing number of measurements 
for each pixel location 

 M is a vector determining whether a value at 
corresponding position was measured (value 1) or 
computed (value 0) 

 ⊗ represents per-element multiplication of vectors 
Robustness-enhanced methods may be altered in the same 
manner, in the case of Zomet method there will appear a 
median of lower number of values, case of Farsiu algorithm 
is equal to IBP (average over lower number of pixels). 
Although this basically means reducing the input data to one 
third of its original amount, our testing shows that due to 
better accuracy of the reduced input are the results better than 
from the non-reduced set. 
The other question that arises is how to perform registration 
of such images. For testing purposes we have implemented a 
simplified registration algorithm used in [8,4] that tries to 
estimate shifts in the X and Y axes by comparing images 
shifted by various amounts in given interval and choosing the 
pair of registration parameters (x and y shift) that produces 
the least difference. 
We have tried to exclude interpolated data even from 
registration. Out first approach was to use the same binary 
mask as for the SR itself, but this has lead to problems with 
images of slightly different exposition. For example when 
registration of a green channel was performed, the slightly 
lighter images were registered to white squares of a 
chessboard pattern wrapped over the image, while darker 
images were registered to positions of black chessboard 
squares, or other way round. Subsequently, these images only 
influenced these positions, making lighter pixels even lighter 
and darker pixels even darker, which in next registration 
refinement step has lead again to the same effect, only even 
more visible. In the end a visible chessboard pattern has 
appeared in the resulting images, and the registration 
reflected exposition of images more than their exact position. 
Situation with the red and blue was similar. 
Therefore we have decided to implement a simultaneous 
registration of all RGB channels, where at each position a 
measured value (R, G or B) is compared to corresponding 
channel of current hi-res image approximation, and the 
difference is added to cumulative error measurement. 
Subsequently, one SR step is performed with the best 
registration parameters for each color channel separately. 

5. HARDWARE REGISTRATION 

In order to speedup the whole computation we have utilized 
GPU for the step of image registration. This step consists 
basically of comparison of two images in order to gain some 
statistical information about them. It is clearly visible that 
this operation of basically a per image element operation. 
Therefore this step is ideal candidate for GPU 
implementation. 
In order to perform requested operation we chose a 
programmable element of pixel pipeline, i.e. pixel shader. 
The selection was based on a fact that pixel shader is 
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adjusted to be able to process large amount of elements in 
rather short time. It also allows us to influence every image 
element simply by rendering a quad over requested area. 
There are several versions of pixel shader, differencing in 
their capabilities. We decided to use version 2.0 because it is 
a version that is most available today and provides 
reasonable functionality at the same time. It also usually 
supports floating-point operations in hardware and data 
sources even though on some hardware 32 bit IEEE floats are 
operated with lower accuracy 24 bit arithmetic. However, our 
experiments show that this lack of accuracy has almost no 
influence to results when compared to CPU computed 
values. 
In order to be able to perform operations on image we have 
to transfer data from CPU memory to GPU, i.e. to video 
memory. For storing of data in video memory, floating-point 
textures are used. Later during a computation data are 
sampled by nearest-neighbor sampling and addressed in 
texture by texture coordinates that are shifted by one half of 
pixel in order to prevent coordinate rounding issues. All 
coordinates are linearly interpolated over whole quad 
implicitly by hardware itself based on coordinates in corners 
that are computed by CPU. 
The operations performed on GPU can be expressed as a 
simple flow chart shown in Figure 2. The most time 
consuming part is a reduction step that involves a loop, 
which cannot be implemented directly in pixel shader 
program due to flow control limitations of selected pixel 
shader version. 
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Figure 2: Operations performed on GPU. 

 
In order to bypass this limitation multiple passes have to be 
performed. In each pass results of previous pass are divided 
into four quads and these quads are summed into a single 
one. This is repeated until the area is reduced to a single 1×1 
matrix that is read back to CPU and divided by number of 
processed elements. The reason why the reduction operation 
is most time consuming is the fact that each step involves 
switching of render target that causes a pipeline to be 
flushed. 

6. EXPERIMENTAL RESULTS 

We have performed series of experiments to test proposed 
improvement of accuracy and to test performance gain by 
hardware implementation of registration. 
Our first aim was to support the decision to exclude 
interpolated data from the input set. In our first experiment, 
we have simulated image acquisition process that takes place 
in a DSC. We have performed a simulation of integral 
sampling (basically averaging of certain areas of original 
image). Values that would not have been measured by Bayer 

array were removed from resulting image and demosaicking 
was performed (we have used Cok’s constant hue algorithm 
described in [2], which is aimed to reduce color artifacts on 
intensity edges). 
Subsequently, we have performed series of experiments with 
Zomet’s SR method (which has shown best robustness 
against errors in input images), showing dependency of the 
MSE (Mean Squared Error) of the original and reconstructed 
image according to changing β parameter. Two series of 
experiments were performed, first utilizing all input data, i.e. 
original Zomet algorithm, other utilizing only data not 
influenced by demosaicking, i.e. using proposed 
improvement. The resulting images are shown in Figure 3 
a—f, measured MSE is shown in Figure 4. 
 

a) original image b) degraded image

c) result of Zomet method d) result of enhanced
Zomet method

e) large result of Zomet method f) large result of enhanced
Zomet method  

Figure 3: Experimental results 
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Figure 4: Accuracy results of improved method 

 
One can see that MSE was reduced by 40-50%, similar 
results were obtained for other input images we have used. 

EUSIPCO 2005 conference proceedings, ISBN 975-00188-0-X, Turkey, 2005



This shows that using measured data only justifies reducing 
the input data set to one third of its original size. 
In order to prove whether we have achieved a speedup of 
computation by utilizing GPU we compared pure software 
solution with GPU aided one. We used GPU close to current 
hi-end available on market. We didn't use the top of current 
GPU because we expected our solution to be used on 
hardware close to current average rather then top-end. Just to 
illustrate the power of GPU aided computation we compared 
times achieved on very slow machine equipped with fast 
GPU to fast machine equipped with slightly weaker GPU. 
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2.8GHz/ATI FireGL T2-64 SW

450MHz/ATI FireGL X1-128 SW

2.8GHz/ATI FireGL T2-64 HW

450MHz/ATI FireGL X1-128 HW

 
Figure 5: Speedup of registration. 
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Figure 6: Speedup of whole SR process. 

 
As it is clearly visible from Figures 5 and 6, times achieved 
by GPU aided solution are more than 8 times faster in 
comparison with non-GPU solution on the same hardware 
configuration. It is clear from our experiment that even a 
machine with a slower CPU may provide reasonable 
performance when aided by GPU. 

7. CONCLUSIONS 

We have implemented and tested SR algorithms suitable for 
enhancing resolution of images gained by usual DSC. We 
have explored preprocessing that is performed on the 
measured data and implemented a simulation of such 
preprocessing. 
We have proposed an enhancement of spatial SR methods 
that is applicable on all three implemented SR algorithms, 
which exploits the knowledge about preprocessing that is 
performed within the camera. We have tested this 
enhancement and presented results showing that it may 
reduce MSE by almost 50%. 
We have utilized GPU in order to improve computation 
times. As we have shown above we have achieved this goal 
by decreasing the computation time to 1/8 of pure software 
solution. We are sure that this decrease will be higher for 
larger processed images. Due to the fact that we utilize .NET 
as runtime environment for both pure software and GPU 
aided solution, the real speedup would be a little bit lower. 
However, even in such case the gained speedup and the fact 
that similar GPU as the one we have used are available in a 
majority of home PCs today surely increases the range of 
possible use of our GPU aided solution. 

8. FUTURE WORK 

We would like to consider an advanced registration 
algorithms including rotation estimation of input images. We 
hope that such improvement will help to bring SR methods 
closer to practice and enable an easy SR processing of 
images taken by digital camera held in hand. 
Using advanced demosaicking techniques (such as [10]) for 
the initial approximation may also improve accuracy of our 
results. Later on we want to increase the actual speedup by 
utilizing advanced hardware features. 
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