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Abstract.  The Radial Basis Function method (RBF) can be used not only for 
reconstruction of surface from scattered data but for reconstruction of damaged images, 
filling gaps and for restoring missing data in images, too. The basic idea of reconstruction 
algorithm with RBF and very interesting results from reconstruction of images damaged 
by noise are presented. Feasibility of the RBF method for image processing is 
demonstrated. 
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1. Introduction. One of the most interesting problems is how to reconstruct damaged or 

incomplete images as well as possible. This problem is referred to in many papers [6, 1]. The 
main question is: “What value was in a corrupted position and how can I restore it ?”. One of 
the conditions for solving this is to have as much information as possible from the original 
image. Then methods exist that use this and tray to reconstruct information in gaps [1]. The 
amount of retained information from the original picture is very important and the quality of 
the result depends on it.  

The Radial Basis Function method (RBF) is based on the variational implicit functions 
principle and can be used for interpolation of scattered data, see section 3 for details. The 
possibility of missing data restoration (image inpainting) by the RBF method was mentioned 
in Kojekine & Savchenko [7]. They used this method for surface retouching and marginally 
for image inpainting as well. They used compactly supported radial basis functions 
(CSRBF)[3] for reconstruction and octree data structure for representation of the parts for 
reconstruction. The advantage of this method is that the linear system is sparse and can be 
solved easily [9]. The drawback of this approach is in errors which can be obtained with an 
improper selection of the radius of support of the CSRBF functions see Fig. 11 and Table 2.  

In our work we address a global basis function for image reconstruction and 
reconstruction with constant “window” size. A description of the method can be found below 
in section 4. 
 

2. Problem definition. Let us assume that we have an image Ω with resolution M x N 
with 256 grey levels of pixel p.  

 

(1)  ck Ω+Ω=Ω , 0=Ω∩Ω ck ,  
(2)  ],[ yx ppp = , Ω∈p  ,  
  Mx ,...,0= , Ny ,...,0= ,  
A pixel has value 255,0∈h  (intensity).  
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Some pixels of the image Ω have incorrect values (missing or overwritten), see Fig. 1c. Thus 
the image Ω has two parts, one with correct pixel values kΩ  and the second with incorrect 
pixels values cΩ , Eq. 1. We would like to restore the original image. Let us assume that we 
can detect “missing pixels” and pixels with corrupted values, too. We used “Lena” picture 
[13] to explain our approach (Fig. 1a) and the noise mask (Fig. 1b) was used to corrupt them.  
 

 
a   b   c 

FIG. 1. Original image, mask with corrupted pixels and the final image prepared for 
reconstruction. 

 
Note that restoration of the original image is related to scattered data interpolation problem, 
where many points are not defined and we want to find a value for them. 
 

3. Radial Basis Function. Let us describe the RBF method now. The RBF method may 
be used to interpolate a smooth function given by n points. The resulting interpolating 
function thus becomes [5]: 
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where ci = [ci
x, ci

y]T are given locations of a set of n input points (pixels), λj are unknown 
weights, x is a particular point, φ(||x-ci||) is a radial basis function, ||x-ci||=ri is the Euclidean 
distance (of pixels in our case), f(ci)=hi, for i=1,…,n, and P(x) is a polynomial of degree m 
depending on the choice of φ. There are some popular choices for the basis function, e.g. the 
thin-plate spline φ(r) =r2*log(r), the Gaussian φ(r) = exp(-ξr2), the multiquadric 
φ(r) = v(r2+ξ2), biharmonic φ(r) = |r| and triharmonic φ(r) = |r|3 splines, where ξ is 
a parameter. 

Now we have a linear system of equations Eq. 3. with unknowns λj,ax,ay,az. Natural 
additional constraints for the coefficients λj must be included, Eq. 4., to ensure orthogonality 
of a solution. These equations and constraints determine the linear system: 
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The polynomial P(x) in Eq. 3. ensures positive-definiteness of the solution, of matrix B, see 
[8]. Afterwards, the linear equation system Eq. 5. is solved and the solution vector with λ and 
a is known, the function f(x) can be evaluated for an arbitrary point x (a pixel position in our 
case), see [8, 10, 4, 11]. 
 

4. Image reconstruction. We have the image Ω described in Eq. 1 and we would like to 
restore part Ωc of the image Ω. The algorithm for reconstruction of corrupted pixels is based 
on the construction and the linear equation system solving for part of the image. The part of 
the image “window” is selected in “scan-line” algorithm. It is working with k-neighborhood of 
current pixel p.  Note that in our case k is equal to 24, see Fig. 2.  

 

 
 

FIG. 2. Definition of the processing window for current pixel. 
 

The correct pixels were selected from the window. These pixels were used as an input for the 
RBF method. The RBF function was computed and used iteratively to compute the “missing” 
pixel values. The RBF function differs from case to case as in the window several pixels 
might be missing. Now we can specify the proposed approach, see Algorithm 1. 

 
   LoadImage(Ω); 
   DefineNeighborhood(5,5); 
   Repeat 
   For (i,j=1;i<=M,j<=N;i++,j++)  
   { 
     if(Hole(i,j)){ /* pixel [i,j] is not defined */ 
       K = SelectNeighborhoodOfPixel(i,j); 
       DeleteHoles(K);  /* remove all undefined pixels */ 
       CreateSystemAndSolve(K); 
       Pixel[i,j] = ComputeValueFromSystem(i,j);} 
   } 
   Until (all pixels reconstructed)  

 
ALGORITHM 1. 

 
 
If there are too many undefined pixel values in the specified window of the size 5 x 5 pixels, 
then the undefined pixel is not restored and algorithm continues and the missing pixels are 
restored in the next iteration. It was the first modification of the algorithm mentioned above 
and the second was in detection of corrupted pixels in a way of the scan-line algorithm and the 
direction of movement changing, see Fig. 4 and Fig. 6. 
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5. Results. The LU factorization method was used for solving the linear system and 
φ(r) =r2*log(r) was used as the RBF function in our experiments. The LU factorization is very 
useful but different methods can be used, too.  
 

5.1. Evaluation methods. For evaluation of the proposed method we used two methods. 
The first one was a following criterion:  
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where: Ω1 is the original image (without corruption), Ω2 is the reconstructed image, k = 1 
(linear) or k =2 (quadratic differences) and T could be the number of all image pixels or the 
number of corrupted pixels. Then S has two meanings. If the number of all image pixels is 
used as T value then S is error refers to the one image pixel. If T is used as the number of all 
corrupted pixels then S is error refers to the one corrupted image pixel. Full image was not 
used for the S evaluation because the image could be expanded error from outside of image 
where part of processing window is outside the image. The second method for comparison 
was visual. It is about the quadratic difference visualization (differential image), see Fig. 3b 
and Fig. 3c. The maximal simple error is S = 255 and quadratic error is S2 = 65 025 per pixel. 
 

 
a   b   c 

FIG. 3. The example of the selected area for S evaluation (a) and the example of black and white 
differential image (b,c). 

 
5.2. Scan-line algorithm. We used several images that were corrupted by noise and the 

“Lena image”[13] and “Mars”[14] examples are presented here. For results of the one side 
scan-line algorithm reconstruction of the corrupted image, see Fig. 4 and Fig. 6.  
 

 
a   b   c 

FIG. 4. The Lena image with 60% of corrupted pixels (a), intermediate step of 
 the algorithm (b) and the result (c). 
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a   b   c 

FIG. 5. The Lena image with 60% of corrupted pixels (a), intermediate step of 
 the algorithm (b) and the result of two side scan-line algorithm(c). 

 
For the evaluation of corrupted image with two side scan-line method is not necessary to have 
so many iterations. Results are better not only for images corrupted with the noise but also for 
images corrupted with any thickness scratches, see Fig. 5., Fig. 7. and Table 1. 
 

 
a     b 

FIG. 6. The Mars image with 60% of corrupted pixels (a) and the result after reconstruction (b). 
 

 
a     b 

FIG. 7. The Mars image with 60% of corrupted pixels (a)  and the result of 
 two side scan-line algorithm (b). 

 
The Table 1. presents results obtained for the case when only  60 % of pixels are left from the 
original image. In this table you can see the difference between one and the two side scan-line 
algorithm. 
 

  all pixels corrupted pixels 
Method Image S S2 S S2 

Mars 6.72 169.28 11.14 280.30 One-side 
Lena 4.28 92.63 6.99 151.43 
Mars 6.72 169.14 11.13 280.07 Two-side 
Lena 4.26 91.15 6.96 149.00 

 
TABLE 1. Results for 60% of corrupted pixels. 
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With increasing number of corrupted pixels the value of S and S2 increase too. The problem is 
with the case of the highest percentage of corrupted pixels in the window. The window is 
small and it could happen that there are just few original pixels in the window. Therefore, the 
value in corrupted pixels is computed from ill-conditioned linear system. The graphs in Fig. 8. 
and Fig. 9. shows how S and S2 errors increase for different percentage of corrupted pixels.  
 

 
FIG. 8. The Lena and the Mars image S error comparison. 

 
 

 
FIG. 9. Comparison of S2 error on the Lena and the Mars image. 

 
 
You can see that for more than 90% of corrupted pixels S and S2 have an acceptable value and 
the result after the reconstruction is still good. The object at the image is still identifiable, see 
Fig. 10.  
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FIG. 10. The result of 90% corrupted images reconstruction. 

 
5.3. Different basis functions and the window size. Finally we would like to compare 

different basis functions in order to check the quality of the reconstruction. Results for 
different basis functions are summarized in Table 2. and Fig. 11. 

 
 Functions rr log2  3r  )14()1( 4 +− rr  

all pixels      S 3.19 3.21 4.11 
      S2 62.23 63.69 94.13 
corrupted pixels      S 6.24 6.27 8.05 
      S2 121.72 124.56 184.10 
Figure  11a 11b 11c 

 
TABLE 2. Results obtained for different basis functions. 

 

 
a   b   c 

FIG. 11. Results from reconstruction with different basis function. 
 

6. Conclusion and future work. It can be seen, that the results obtained by RBF 
application are very good. We also compared our results with the result of Bertalmio et. al [1], 
see Appendix A. His method was very good for the reconstruction of image inpainting. Our 
method could be used for this kind of reconstruction, too [12].  

It can be seen that the proposed method has a good property, see the Fig. 12. where the 
problem is of our scan-line reconstruction method. The problem is in edges. On the sharp 
edges arise higher errors then in the image with slow changes. We would like to solve this 
problem in a future work. Next we would like to improve our method for obtaining better 
results with smaller S and S2 error. 
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     a                                b                                  c                                d  

FIG. 12. Sharp edges reconstruction: a) the original image, b) the corrupted image,  
c) the reconstructed image and d) is the differential image of a) and c). 
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FIG. 13. Image inpainted and its reconstruction by Bertalmio method, 
taken from [1]. 

 
 

 
 

FIG. 14. The image reconstructed by our method. 
 
 

 
     a                                b                                  c                                d  

FIG. 15. Selected parts of images: a) the original image, b) the image reconstructed by Bertalmio, 
c) the image reconstructed by our method and d) the differential image of b) and c). 

Proceedings of Algoritmy Int.Conf., Slovakia, pp.270-279, ISBN 80-227-2192-1, 2005


