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Abstract This paper presents an
adaptive approach for polygonization
of implicit surfaces. The algorithm
generates a well-shaped triangu-
lar mesh with respect to a given
approximation error. The error
is proportional to a local surface
curvature estimation. Polygonization
of surfaces of high curvature, as well
as surfaces with sharp features, is
possible using a simple technique
combined with a particle system
approach. The algorithm is based
on a surface tracking scheme, and it
is compared with other algorithms

based on a similar principle, such as
the marching cube and the marching
triangle algorithms.
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polygonization · curvature · sharp
features

1 Introduction

Implicit surfaces seem to be one of the most appealing
concepts used in building complex shapes and surfaces.
They have become widely used in several applications in
computer graphics and visualization.

An implicit surface is mathematically defined as a set
of points x in space that satisfy the equation f(x) = 0.
Thus, implicit surface visualization typically consists of
finding the zero set of f , which may be performed either
by polygonizing the surface or by direct ray-tracing.

There are two different definitions of implicit sur-
faces. The first one [5, 6] defines an implicit object as
f(x) < 0 and the second one, F-rep [17, 22, 24], defines
it as f(x) ≥ 0. These inequalities describe a half-space in
E3, and an object defined by these inequalities is usually
called a solid (or volume).

1 Supported by the Ministry of Education of the Czech Republic – project
MSM 235200005

If f is an arbitrary procedural method (i.e., a “black
box” function that evaluates x), then the geometric proper-
ties of the surface can be deduced only through numerical
evaluation of the function. The value of f is often a meas-
ure of distance between x and the surface. The measure is
Euclidean if it is an ordinary (physical) distance. For an
algebraic surface, f measures the algebraic distance.

Existing polygonization techniques may be classified
into several categories. Spatial sampling techniques (ex-
haustive enumeration of a given region) regularly or adap-
tively sample the space to find the cells that straddle the
implicit surface [2, 5, 7, 8, 18, 26]CE

b .
Surface tracking approaches (also known as continua-

tion methods) iteratively create a triangulation from a seed
element by marching along the surface [1, 5, 9, 10, 15, 16,
18, 29].

Surface-fitting techniques progressively adapt and de-
form an initial mesh to converge to the implicit sur-
face [22, 32].

Particle systems (physically based techniques) start
from initial positions in space and seek their equilib-
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rium positions – i.e., positions where a potential func-
tion | f | is minimal – on an implicit surface [13, 14].
The desired polygonal approximation is then obtained by
computing the Delaunay triangulation associated with the
points.

2 Motivation

Many polygonization algorithms adaptively or non-adap-
tively create polygonal meshes without a proper defin-
ition of an approximation error that is required in the
result; for example, in Akkouche and Galin, Čermák
and Skala, and Hartmann [1, 11, 15]CE

b . Usually, the al-
gorithms allow the user to set a level of detail (mini-
mum/maximum size of triangles, number of divisions in
the axes, etc.), which is only somewhat related to the
resulting approximation quality. The quality strongly de-
pends on the ratio between the size of the implicit objects
and the size of triangles, the size of computational area,
etc.

Our algorithm defines the approximation error that is
proportional to the surface curvature estimation (see vari-
able αerr in Sect. 4). The desired error is given at the
beginning of the computation, and it is preserved for all
triangles during the whole polygonization. The resulting
polygonal mesh consists of well-shaped and adaptively
sized triangles, and moreover, it preserves the given ap-
proximation quality as well.

The presented algorithm is based on a surface tracking
scheme, and it is able to polygonize implicit objects with
sharp features as well. The paper introduces a simple tech-
nique on how to solve the problem with sharp edges. The
technique uses an implicit function property that depends
on F-Rep modeling [17], i.e., its principle is independent
of the given polygonization method. It can be used under
the same circumstances as all of the others surface track-
ing approaches, which is a significant advantage of our
solutionCE

b .

3 Data structures

A triangular mesh generated by an edge-spinning algo-
rithm is kept in a winged-edge data structure [4], and
therefore, the resulting mesh is complete with neighbor-
hood among triangles. During polygonization, edges lying
on a triangulation border are contained in the active edge
list (AEL) and they are called “active edges”. Each point
of an active edge has two pointers to its left and right ac-
tive edge (active edges are oriented, and so left and right
directions define the active edges’ orientationsCE

b ).
For faster evaluation of the detection of global overlap,

the space subdivision acceleration technique, introduced
in Čermák and Skala [11], is used. Therefore, each point in

AEL also contains an index of a subarea, and each subarea
has its own dynamically allocated list of points located in-
side. The subareas are implemented as an array, and each
of them has a unique index.

4 Polygonization process

The algorithm is based on a surface-tracking scheme, and
therefore, there are several limitations. A starting point
must be determined, and only one separated implicit sur-
face can by polygonized for such a point. Several disjoint
surfaces can be polygonized from a starting point for each
surface. The whole algorithm consists of the following
steps:

Algorithm 1: The main polygonization loop.
1. Initialization of polygonization:

a) Locate a starting point p0 on a surface, and create
the first triangle T0 (see Algorithm 2)CE

c .
b) Insert edges (e0, e1, e2) of the first triangle T0 into

the active edge list, see Fig. 1.
2. Use the first active edge e from the active edge list for

next polygonization.
3. Update the AEL; remove the currently polygonized ac-

tive edge(s) and insert the new generated active edge(s)
at the end of the list.

4. If the AEL is not empty, return to step 2.
Note that at the beginning of polygonization, there are

two variables important to computation:

– LODmax – the maximal length of the triangles’ edges,
i.e., the maximal level of detail;

– αerr – the desired accuracy of approximation, i.e.,
the desired maximal angle between normal vectors at
points lying on the same edge of a triangle; this vari-
able represents a measure of the dependenceCE

d on sur-
face curvature.

The whole polygonization is controlled using these crite-
ria, and new triangles generated are created adaptively to
preserve the accuracy.

All steps of Algorithm 1 are described in detail below.

5 Initialization

The following steps of the Algorithm 1 are not critical as
far as time is concerned; they are executed just onceCE

b .

5.1 Starting point location

There are several methods for finding a starting point on
an implicit surface. These algorithms can be based on
some random search methods as in Bloomenthal [5] or

CE
c Where is Algorithm 2?
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on more sophisticated approaches. In Triquet et al. [29],
searching in a constant direction from the interior of an
implicit object is used.

In our approach, we use a simple algorithm to find
a starting point. The starting point is sought in the de-
fined area by following a gradient vector ∇ f of an implicit
function f . The algorithm looks for a point p0 that satis-
fies the equation f(p0) = 0.

5.2 First triangle

The first triangle in polygonization is assumed to lie near
a tangent plane of the starting point p0 that is on the im-
plicit surface. Let such point p0 exist. Then the algorithm
proceeds as follows.CE

e

1. Compute the normal vector n = (nx, ny, nz) at the
point p0 (see Fig. 1). Note that the normal vector is de-
termined as a unit-length gradient of f ; n = ∇ f/|∇ f |.

2. Determine the tangent vector t as in Hartmann [15].
If (nx > 0.5) or (ny > 0.5), then t = (ny, −nx, 0). Oth-
erwise, t = (−nz, 0, nx).

3. Use the tangent vector t as a virtual active edge, and
use the edge-spinning algorithm (described below) to
compute the coordinates of the second point p1. The
points (p0, p1) form the first edge e0.

Fig. 1. The first triangle

4. Polygonize the first edge e0 using the edge-spinning al-
gorithm to get the third point p2. Points (p0,p1,p2) and
edges (e0,e1,e2) form the first triangle T0.

6 Edge-spinning

The main goal of this work is to achieve a numerically
stable computation of surface point coordinates for ob-
jects defined by implicit functions. Differential properties
for each implicit function are different and depend on the
modeling technique used [17, 18, 22, 24, 26, 28]; an accu-
rate determination of a surface vertex position depends
on them as well. In general, a surface vertex position is

searched in the direction of the gradient vector ∇ f of an
implicit function f , as in Hartmann [15]. In many cases,
the computation of the gradient of the function f is in-
fluenced by an error. The well-known marching cubes al-
gorithm uses a stable approach to locate expected surface
vertices along the edges of intersecting cellsCE

b .
Because of these reasons, we have defined some re-

strictions for finding a new surface point pnew as follows:
• The new point pnew is sought at a constant distance

from a given edge, i.e., on a circle. The circle radius
is proportional to the estimated surface curvature, and
therefore, each new generated triangle preserves the
desired accuracy of polygonization.

• The circle lies in the plane that is defined by the normal
vector of triangle Told and axis o of the current edge
e (see Fig. 4); this guarantees that the newly generated
triangle is well-shaped (isosceles).

6.1 Determination of the circle radius

The radius of the circle is proportional to the estimated
surface curvatureCE

b . The surface curvature radius rc be-
tween points p1 and p2, with normal vectors n1 and n2,
respectively (see Fig. 2), is estimated by the formula

rc = d

α
, (1)

where d is the distance between the points p1 and p2, and
α is the angle between the surface normals n1 and n2.

Fig. 2. The circle of surface curvature c with radius rc between
points p1 and p2, and estimation of radius r2 of the finding circle
according to desired approximation error αerr

The radius of surface curvature rc is evaluated three
times among pairs of points (p1, pinit), (p2, pinit), and
(ps, pinit), where p1 and p2 are points of the current ac-
tive edge e, ps is the midpoint, and pinit is the point of
intersection of the circle c1 with the plane defined by the
triangle Told (see Fig. 3). The final rc is taken as the mini-
mum of these three.

The new circle radius r2 is computed as follows:

r2 = k ·rc ·√2 · (1− cos αerr) (2)

CE
e Is this Algorithm 2?
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Fig. 3. The finding circle radius estimation

where k is a constant, rc is the estimated radius of sur-
face curvature, and αerr is the required approximation error
given at the beginning of the polygonization process.

Note that this formula has been derived from the sec-
ond cosine theorem c2 = a2 +b2 −2 ·a ·b · cos α with the
presumption a = b = rc (see Fig. 2). The initial radius r1
of the circle c1 is proportional to the length of the current
active edge e to a new equilateral triangle Tnew CE

b . We ex-
perimentally set the k = 0.8 just to be sure that the new
triangle will satisfy the desired accuracy.

Limitations of the final radius:

if (r2 < rmin) then r2 = rmin;
if (r2 > rmax) then r2 = rmax;

where rmin = 1
10rmax and rmax is given at the beginning

of the polygonization process as the maximal required
level of detail. Note that the constant 0.1 has been em-
pirically set just to preserve the well-shapedness of the
trianglesCE

b .

6.2 Root-finding

If the algorithm is given the radius of the circle, the pro-
cess continues as followsCE

b .
1. Set the point pnew to its initial position; the initial pos-

ition is in the plane of triangle Told on the other side of
edge e (see Fig. 4). Let the angle of the initial position
be α = 0◦.

1. ComputeCE
f the function values f(pnew) = f(α),

f(p′
new) = f(α+∆α) – initial position rotated by the

angle +∆α,
f(p′′

new) = f(α−∆α) – initial position rotated by the
angle −∆α;
Note that the edge e is the rotation axis.

Fig. 4. The principle of the root-finding algorithm

2. Determine the right direction of rotation:
if | f(α+∆α)| < | f(α)|, then +∆α. Otherwise, −∆α.

3. Let the function values f1 = f(α) and f2 = f(α±∆α);
update the angle α = α±∆α.

4. Check which of following cases is satisfied:
a) If ( f1 · f2) < 0 then compute the accurate coordi-

nates of the new point pnew by via binary subdivi-
sion between the last two points corresponding to
the function values f1 and f2;

b) If the angle |α| is less than αsafe (see “safe angle
area” in Fig. 3), return to step 4.

c) If the angle |α| is greater than αsafe, then there is
a possibility that both triangles Told and Tnew could
cross each other; the point pnew is rejected, and it is
marked as “not found”.

Note that in our implementation, we use the limit angle
αsafe = 80◦, which has been determined experimentally.

6.3 Root-finding on a sharp edge

Let us assume that the standard edge-spinning root-finding
algorithm presented above has found the point pnew. The
algorithm then determines the surface normal vector nnew
at this point and computes the angle α between normal
vectors nnew and ns. The vector ns is measured at mid-
point s of the active edge e (see Fig. 5). If the angle α is
greater than a user-specified threshold αlim_edge (limit edge
angle), then the algorithm will look for a new edge point as
follows:

Algorithm 4: Root-finding on a sharp edge.CE
g

1. Compute coordinates of the point pinit as an intersec-
tion of the three planes, tangent planes t1 and t2, and
the plane in which circle c lies (see Fig. 5).

2. Apply the straight root-finding algorithm and find the
new point p′

new.
Note that the algorithm needs an accurate deter-

mination of surface normal vectors, i.e. accurate com-

CE
f Is this Algorithm 3?

CE
g There is no Algorithm 2 or Algorithm 3 labeled

CE
h Do you mean “continuously differentiable”? “Good differen-

tiable” is not a proper term
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Fig. 5. The principle of the root-finding algorithm for sharp edges

Fig. 6. A square modeled as intersection of four half-spaces, taken
from [22]. Left: by min/max operations. Right: by the F-Rep oper-
ations. Arrows represent the direction of a function gradient

putation of a function gradient. Therefore, implicit ob-
jects should be modeled by F-Rep [25], because ob-
jects defined by the “pure” min/max operations are not
good differentiableCE

h [22, 26]. Figure 6 shows that the
min/max operations create objects with poor differential
properties.

6.4 Straight root-finding algorithm

The algorithm starts from an initial point pinit (see Fig. 7)
and supposes that the implicit surface is C0 continuous.
The algorithm continues as follows:

Fig. 7. Principle of root-finding in a
straight direction

Algorithm 5: Straight root-finding
1. At point pinit, compute the surface normal vector ninit

that defines the seeking axis o.
2. Compute coordinates of point p′

init with distance δ
from point pinit in direction ninit * sign( f(pinit)), where
δ is the length of the step and the function sign returns
“1” if ( f > 0) or “−1” if ( f < 0).

3. Determine the values of functions f and f ′ at points
pinit and p′

init.
4. Check which of the next two cases is satisfied.

a) If these points lie on opposite sides of the implicit
surface, i.e., ( f * f ′) < 0, compute the exact coordi-
nates of the point pnew by binary subdivision be-
tween these points.

b) If the points pinit and p′
init lie on the same side of the

surface, then let pinit = p′
init and return to step 2.

7 Polygonization of an active edge

Polygonization of an active edge e consists of several
steps:

Algorithm 6: Active edge polygonization.
1. Use the edge-spinning algorithm to find a new point

pnew in front of the edge e.
2. Determine angles α1 and α2 in front of points p1 and

p2 of the current edge e (see Fig. 8).
3. Perform a neighborhood test.
4. Perform a distance test.

7.1 Neighborhood test

If the point pnew has been found, there are two cases il-
lustrated in Fig. 8. Deciding between cases (a) and (b)
depends on the relation among angles α1, α2 and αn (see
Fig. 8). Let the angle α be min(α1, α2). If (α < αshape),
then we have case (a); otherwise, we have case (b) (see
Fig. 8)CE

i . The limit shape angle is determined as αshape =
αn +π/6, so the space for the adjacent triangles should be
at least π/6; this constant just affects the shape of the next
generated triangles and has been set experimentallyCE

b .
If the point pnew is not found, angle αn is not defined,

and the limit angle αshape should be less than π; we have
experimentally chosen αshape = 2/3∗π CE

b .
1. In this case, a new triangle tnew is created by connect-

ing the edge e with one of its neighbors (see step 2(a)).
2. The new triangle tnew is created by joining the active

edge e and the new point pnew (see step 2(b)).
In both cases, a bounding sphere is determined for the

new triangle tnew. The bounding sphere is the minimal
sphere that contains all three points of the triangle, i.e., the
centre of the sphere lies in the plane defined by these three
points.

CE
i Or do you mean “ If (α < αshape), then invoke case (a); other-

wise, invoke case (b)”?
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Fig. 8. Polygonization of the active edge e

Note that if there is no new triangle (the point pnew
does not exist and case (a) has not been satisfied) the
bounding sphere of the active edge e is used. The next pro-
cedure is analogous for all cases.

7.2 Distance test

To preserve the correct topology, it is necessary to check
each newly generated triangle to see if it does not cross
a surface already generated. The distance test should be
performed between the new triangle and a border of an al-
ready triangulated area (i.e., the active edges in the AEL).

The algorithm will generate a “nearest active edge list”
(NAEL) for the new triangle tnew. Each active edge that
is not adjacent to the current active edge e and crosses
the bounding sphere of the new triangle (or edge e), is in-
cluded on the list (see Fig. 9, step 2). The extended bound-
ing sphere is used for the new triangle created by the new
point pnew (case (b)) because the algorithm should de-
tect a collision in order to preserve well-shaped triangles.
The new radius of the bounding sphere is computed as
r2 = c ∗ r1 and we have experimentally chosen the con-
stant c = 1.3.

If the NAEL is empty, then the new triangle tnew is fi-
nally created, and the active edge list is updated.

In case (a) in Fig. 8, step 2, the current active edge e
and its neighbor edge er are deleted from the list, and one
new edge enew is added at the end of the list. The new edge
should be tested if it satisfies the condition of the surface
curvature. If it does not, then the new triangle will be split
along the edge enew; see the section below.

In case (b) in Fig. 8, step 2, the current active edge e is
deleted from the list and the new edges, enew1 and enew2,
are added at the end of the list.

Note that if there is no new triangle to be created (the
point pnew does not exist and case (a) in Fig. 8 has not
been satisfied) the current active edge e is moved to the
end of the AEL, and the entire Algorithm 1 returns to
step 2.

If the NAEL is not empty, then the situation has to be
solved. The point pmin with the minimal distance from
the current edge e is chosen from the NAEL (see Fig. 9,
step 3).

This point has to satisfy a condition of thin objects as
well. The current active edge e and the point pmin should
not lie on opposite sides of the implicit surface. Figure 10
illustrates this unfeasible situation.

If the correct point pmin is found, the new triangle tnew
has to be changed and will be formed by the edge e and
the point pmin, i.e., by points (pe1, pmin and pe2); the situ-
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Fig. 9. Solving of the distance test



8

Fig. 10. A problem of thin implicit objects

ation is described in Fig. 9, step 3. The point pmin belongs
to four active edges – enew1, enew2, emin1 and emin2 – and
the border of the already triangulated area intersects it-
self at that pointCE

b . This is not correct because each point
that lies on the triangulation border should have only two
neighborhood edges (left and right).

The solution of this problem is to triangulate two of
the four edges first. Let the four active edges be divided
into pairs; the left pair is (emin1, enew2) and the right pair is
(enew1, emin2). One of these pairs will be polygonized ,and
the second one will be cached in memory for later use.
The solution depends on angles αm1 and αm2 (see Fig. 9,
step 3). If (αm1 < αm2), then the left pair is polygonized;
otherwise, the right pair is polygonized.

In both cases, the recently polygonized pair is auto-
matically removed from the list, and the previously cached
pair of edges is returned into the list. The point pmin is
contained only in one pair of active edges, and the border
of the triangulated area is correct (see Fig. 9, step 4).

Note that the polygonization of one pair of edges sim-
ply consists of joining its endpoints by the edge. This
second new triangle has to fulfill the empty NAEL as well;
otherwise, the current active edge e is moved to the end of
the AEL.

7.3 Splitting the new triangle

This process is evaluated only in cases when the new tri-
angle has been created by connecting two adjacent edges,
i.e., the situation illustrated in Fig. 8, step 2(a). If the new

Fig. 11. Splitting of the new triangle

edge does not comply with the condition of a surface cur-
vature, the new triangle should be split into two new tri-
angles (see Fig. 11, step 2). This occurs when the angle α
between surface normal vectors n1 and n2 at points pe1
and per2 is greater than the given limit αerr (see Fig. 11
step 1)CE

b . The triangle will also be split in the case when
the connecting edge is longer than the limit value LODmax
given at the beginning.

The point pnew is a midpoint of edge enew, and it does
not lie on the implicit surface. Its correct coordinates are
computed by the straight root-finding algorithm.

8 Polygonization of sharp objects

Our previously developed method [9, 10] has been used
only to polygonize implicit surfaces which comply with
C1 continuity or have only simple sharp edges; i.e. it can-
not be used with corners or more complicated shapesCE

b .
In order to solve this problem, we used a simple method
that supposes that an object is modeled by the F-Rep [17].
It allows us to assume that an implicit function has sharp
edges only in its zero-set, i.e., points xi that satisfy equa-
tion f(xi) = 0. If the algorithm will look for some isovalue
ε, the equation will change to f(xi) = ε, and the implicit
surface is then C1 continuous (see Fig. 12).

The discussed implicit surface property allows us to
construct an initial mesh that satisfies a desired accuracy
in relation to surface curvature and consists of well-shaped
triangles as well.

When the initial mesh is created, the algorithm has to
find new positions of surface vertices xi on the original
implicit surface, i.e., ε = 0, f(xi) = 0. There are various
algorithms that work with an initial mesh and iteratively
adapt it to get more precise approximations [20, 22, 23]. In
order to verify our approach, we propose a simple algo-
rithm. The points xi follow their gradient ∇ f (xi) to find
the new positions. This method is similar to particle sys-
tem approaches [14], but it follows an opposite order of
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Fig. 12. A cube modeled by F-Rep as the intersection of six half-
spaces and polygonized with (a) ε = 0 – classical approach, func-
tion is C0 continuous, and (b) ε = 0.1, function is C1 continuous

steps; the triangulation is created first, and then the points
are projected to the implicit surface.

The algorithm is similar to the straight root-finding al-
gorithm (see Algorithm 5) with the difference being that
the surface normal vector is computed in each step.

Let the initial mesh be created. Then the next proced-
ure continues as follows:
1. Set ε = 0.
2. For each point xi , compute its new normal vector ni .
3. Move the point to its new position x′

i in the normal vec-
tor direction,
x′

i = xi + δ * sign( fi) ni ,
where δ is a step and sign( fi) is the signum function of
the function value fi at the point xi . Note that in our
approach, we set the step size δ = 1/3∗ ≤min, where
≤min is the minimal length of a triangle edge such that
the value is proportional to the variable rmin described
in Sect. 6.1. This value influences the speed of conver-
gence.

4. Determine the values of functions fi and f ′
i at points xi

and x′
i .

5. Check which of the next two cases is satisfied .
a) If these points lie on opposite sides of an implicit

surface, i.e., ( fi ∗ f ′
i ) < 0; compute the exact co-

ordinates of the point xi by binary subdivision
between these points.

b) If the points xi and x′
i lie on the same side of the

surface, then let xi = x′
i and return to step 2.

9 Experimental results

The adaptive edge-spinning algorithm (AES) is based on
the surface-tracking scheme (also known as the continua-
tion scheme). Therefore, we have compared it with other
methods based on the same principle – the marching tri-
angles algorithm (MTR), introduced in Hartmann [15] and
the marching cubes method (MC), Bloomenthal’s polygo-
nizer (see [5]).

As the first testing function, the implicit object Genus 3
has been chosen; it is defined as follows, taken from Hart-
mann [15].

f(x) = r4
z · z2 −

[
1− (x/rx)

2 − (y/ry)
2
]

(3)

·
[
(x − x1)

2 + y2 −r2
1

]
·
[
(x + x1)

2 + y2 −r2
1

]
= 0

where the parameters are set as follows: rx = 6, ry = 3.5,
rz = 4, r1 = 1.2, and x1 = 3.9.

The measured values from the experiment are shown
in Table 1. The values have been achieved with a variable
lowest level of detail (LOD) because we want the number
of generated triangles to be similar.

Note that for the marching cubes algorithm, the LOD
value represents the size of a cube cell.

Table 1 contains the number of triangles and vertices
generated. The value Angle err is proportional to surface
curvature and denotes the average deviation between sur-
face normal vectors at points sharing an edge. For the
edge-spinning algorithm, it corresponds to αerr given at the
beginning of the polygonization. The value Centroid angle
err represents the deviation between the normal vector of
a triangle and the function normal vector computed at the
centroid of the triangle. Note that the real normal vector is
measured numerically from the implicit function at a given
point.

The values Alg dist avg, Euc dist avg, and Taub dist
avg measure the approximation quality as an average dis-
tance of a triangle from the real implicit surface. They are
measured at the gravity centre of each triangle. The dis-
tance is either algebraic (Alg dist avg), real Euclidian (Euc
dist avg), or the Taubian (Taub dist avg) [28].

Note that the algebraic distance (function value)
strongly depends on the given implicit function and it is
only proportional to the real distance. The Euclidian dis-
tance has been measured between a triangle centroid and

Table 1. Values of the object Genus 3 measured with variable level
of detail (LOD)

GENUS 3 Edge- Marching Marching
spinning triangles cubes

LOD 4.00 ×10−2 4.50 ×10−2 4.57 ×10−2

Triangles 331 832 310 811 334 816
Vertices 165 912 155 401 167 404
Angle err 7.96 ×10−3 8.23 ×10−3 8.12 ×10−3

Centroid angle err 1.89 ×10−3 1.94 ×10−3 2.29 ×10−3

Alg dist avg 1.62 ×10−1 1.72 ×10−1 2.03 ×10−1

Euc dist avg 1.09 ×10−4 1.15 ×10−4 1.40 ×10−4

Taub dist avg 1.09 ×10−4 1.15 ×10−4 1.40 ×10−4

Angle criterion 0.853 0.719 0.368
Edge length criterion 0.908 0.821 0.526
Time (ms) 7801 4267 2564
Time avg (ms) 23.509 13.729 7.658



10

Fig. 13. Histogram of triangle shape quality for
the edge-spinning, the marching triangles and the
marching cubes algorithms, generated according to
values in Table 1

Fig. 14. The jack object generated by the (a) edge-
spinning algorithm, (b) marching triangles algoritm,
and (c) marching cubes algorithm. Above each jack
is a zoomed-in image for better illustration of the
details

its corresponding surface point by applying the straight
root-finding algorithm (Algorithm 5) to the triangle cen-
troid to find the surface point. For the function Genus 3,
the Taubian distance is a good approximation to the real
distance.

The Angle criterion denotes the ratio of the small-
est angle to the largest angle in a triangle, and the Edge
length criterion denotes the ratio of the shortest edge to
the longest edge of a triangleCE

b . These values show the
quality of resulting triangles generated.

The histogram in Fig. 13 illustrates the triangulation
quality as well. It can be seen that the edge-spinning
method generates about 80% triangles with angles in the
interval < 50, 70 > degrees.

The value Time in Table 1 shows the measured compu-
tational time of each algorithm, and Time avg represents
the average time needed to create 1000 triangles.

Note that the time values are included only for a better
illustration of the algorithm properties because the pre-
sented method is primarily focused on the quality of ap-
proximation, not on the speed. In our test, the accelerated
version of the MTR method [12] has been used and its re-
sults correspond to the methodCE

b .
Another test is aimed at comparing the surface approx-

imation quality with the same maximum LOD values for

all polygonization methods. The test is performed on the
Jack object, introduced in Bloomenthal[5] and shows ad-
vantages over the adaptive approach.

The adaptive edge-spinning algorithm shrinks the size
of triangles in regions of higher curvature; therefore, the
number of triangles is greater then the number generated
by the other non-adaptive algorithms. The precision of the

Table 2. Values of the jack object measured with a constant level of
detail for all methods

JACK Edge- Marching Marching
spinning triangles cubes

LOD 0.16 0.16 0.16
Triangles 34 256 6107 6552
Vertices 17 130 3055 3278
Angle err 3.33×10−2 7.47×10−2 7.54×10−2

Centroid angle err 7.10×10−3 1.40×10−2 2.13×10−2

Alg dist avg 2.39×10−3 1.32×10−2 1.67×10−2

Euc dist avg 8.29×10−4 4.62×10−3 5.93×10−3

Taub dist avg 8.30×10−4 4.66×10−3 5.97×10−3

Angle criterion 0.700 0.729 0.377
Edge length criterion 0.806 0.828 0.536
Time (ms) 1442 70 71
Time avg (ms) 42.095 11.462 10.836
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Fig. 15. Objects generated by the adaptive edge-
spinning algorithm using the introduced tech-
nique. (a) An object taken from [22]. (b) The
rabbit modeled by F-Rep [17]. c) The eclipse
model

Fig. 16. A tap generated by the adaptive edge-
spinning algorithm using the introduced method.
(a) Its triangulation. (b) The array of normal
vectors

polygonization is higher by about one order of magnitude
as well (see Table 2).

The algorithm can also polygonize objects with sharp
features. Triangulations of some examples are shown in
Fig. 15.

Fig. 16 shows the implicit model of a tap with its nor-
mal vector array. The tap object contains sharp edges as
well.

Note that the tap and the rabbit are modeled with use
of an implicit modeling module [30], which is a part of

Table 3. Values generated by the edge-spinning algorithm

Edge-spinning Yutaka Rabbit Eclipse Tap

LOD 0.32 0.32 0.32 0.32
Triangles 111 173 48 529 31 233 38 184
Vertices 55 648 24 268 15 627 19 094
Angle err 5.31×10−2 4.55×10−2 6.94×10−2 4.40×10−2

Centroid
angle err 1.43×10−2 1.06×10−2 3.15×10−2 1.00×10−2

Alg dist avg 9.76×10−2 9.79×10−2 9.32×10−1 9.37×10−2

Euc dist avg 1.42×10−3 2.06×10−3 1.11×10−3 3.03×10−3

Taub dist avg 8.85×10−2 1.77×10−1 2.29×10−2 6.10×10−2

Angle criterion 0.649 0.662 0.618 0.684
Edge length

criterion 0.772 0.780 0.748 0.796
Time (ms) 10 175 7841 6519 7741
Time avg (ms) 91.524 161.573 208.721 202.728

the modular visualization environment (MVE) developed
at University of West Bohemia [21].

Table 3 contains values measured on complex implicit
objects visualized in the figures mentioned above. There,
you can see that the Taubian distance is not a good enough
approximation of the real distance for such complex ob-
jects.

The average time values to create 1000 triangles are
higher in comparison with the simpler models because the
one call of the function takes more time.

10 Conclusion

This paper presents a new adaptive approach for poly-
gonization of implicit surfaces. The algorithm marches
over the object’s surface and computes accurate coor-
dinates of new points by spinning the edges of already
generated triangles. The resulting triangulation is fully
adapted to the surface curvature estimation. As a local
curvature estimation, we used the deviation of angles of
adjacent points because it is simple and fast for com-
putation. According to this estimation, the new points
are sought on a circle with radius computed to satisfy
precisely the desired error. Therefore, the whole algo-
rithm preserves the required level of detail and the ap-
proximation error given at the beginning of the pro-
cess.
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Fig. 17. (a) the original “olympic
rings” object. (b) Olympic rings
polygonized with ε = 10. (c) Vi-
sualization after projection back
to ε = 0

The main advantage of our algorithm, in comparison
with other methods [1, 18], is the aforementioned con-
trol of approximation quality during computation. The
whole process is directed to achieve the given accu-
racy, and the algorithm maintains this requirement in
all places of an implicit object (with high or low cur-
vature). This means that the resulting polygonal mesh
not only consists of well-shaped triangles, but the mesh
satisfies predefined requirements of accuracy as
well.

A similar curvature estimation has been used in the
literature [3, 18, 31], and our experiments proved the func-
tionality of the method as well.

The algorithm can polygonize a variety of implicit sur-
faces whose size and degree of continuity is not known
beforehand. It is possible to use the introduced technique
when there is a non-zero ε value of an implicit function
rather than a zero valueCE

b .

Of course there must be limitations to this feature.
There is no exact way to predict the value of ε. It de-
pends on the size of the object, the sharpness of edges, etc.
Moreover, for higher values of ε, an implicit object could
change its topology (see Fig. 17). In such cases, the pro-
jection phase cannot work properly.

In our future research, we would like to propose an
algorithm that will make possible the polygonization of
unknown complex implicit scenes that consists of more
disjoint implicit objects. The algorithm will use our in-
troduced method for each object separately, but it should
be possible to use the algorithm with other surface ap-
proaches as well. We are currently work on such an
algorithm.
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