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CENTERED CUBIC LATTICE METHOD COMPARISON"

JAN PATERA" AND VACLAV SKALA?

Abstract. The Centered Cubic Lattice method is used for an iso-surface extraction. This paper focuses
on its comparison with other fundamental methods (Marching Cubes, Marching Tetrahedra) that are also
used to extract an iso-surface from regular volume data. Iso-surfaces that are generated using above
mentioned methods and mathematical data are compared due to area and volume approximation. The
Hausdorff and RMS distances are also utilized for comparisons. Also all possible cell tessellations into 6
tetrahedra are discussed and analyzed. We think that such a comparison can be helpful to decide which
of tested methods should be chosen when we have concrete demands concerning the iso-surface. Also
newly developed methods can be compared with existing ones in the similar way.
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1 Introduction. In the recent period of time volume data have started to play a
significant role in many scientific areas and are spread across many professions. In
medical field, various devices, such as Computer Tomography (CT) scanners, Magnetic
Resonance Imaging (MRI) scanners produce volume data. The volume data are also
produced as a result of mathematical or physical simulations and experiments and
researchers need to visualize such data.

There are two main techniques for the volume data visualization. The first approach
is based on a volume rendering (ray-tracing-like methods), the second one on a surface
rendering (iso-surface-extraction-like methods). The volume rendering methods are
complex and work with the whole volume data. This paper is concentrated on surface
rendering methods that visualizes surfaces stored in the volume data (so called
iso-surfaces). The extracted iso-surface is determined by a threshold value. All the
points on the iso-surface have their value equal to the threshold.

The field of the iso-surface extraction is quite large. There are many approaches
used for the iso-surface extraction such as view-dependent techniques, parallel or
distributed approaches, external memory (or sometimes called I/O) techniques,
multiresolution (LOD) based extractions and others. In general, we can describe the
iso-surface generation and visualization process with the following steps:

1. Search for all active cells (cells that are intersected by the iso-surface)
2. The iso-surface and its normal vectors approximation within these cells (e.g. by a
triangle set)
3. Iso-surfaces visualization (visualization of a set of triangles; different iso-surfaces
can be visualized with different colors depending on a selected threshold, etc.)
The first phase of the iso-surface extraction can be accelerated using a wide set of speed
up algorithms [7], [9], [11], [12], [18] or [19]. However, we are interested not that much
in speed of the extraction process but in properties of the output set of triangles.

There are many various methods for the iso-surface generation and each such a
method generates generally different approximation of a searched iso-surface for a
given threshold. There is probably no way how to compare the resulting iso-surfaces to
each other unless we know how the iso-surface should look like. Therefore we try to
compare generated iso-surfaces produced by different methods.
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A comparison can be made with respect to the volume data. When we generate the
volume data using some mathematical or physical model, we are able to gain some
additional information concerning the object that is utilized to make a comparison more
informative and objective. As additional information, we assume e.g. possibility to
compute area or volume of such an object. For real data sets, when we do not have any
additional information concerning a scanned object, we can just use general approaches
for comparison, e.g. Hausdorff distance or root mean square (RMS) distance.

This paper is organized in the following way. At first, compared methods are
described. Afterwards, we will explain used approaches for the comparison and how the
data are generated. The last two sections are devoted to the methods comparisons, error
analysis and conclusions.

2 Methods Descriptions.

2.1 Marching Cubes. There are many kinds of volume data. From simulations, we
often get unstructured volume data. On the other hand from medical imaging the output
data is structured one. We aimed at comparison of iso-surface generation methods that
are used for structured data, especially for regular grids. Compared methods do not
differ in the kind of used interpolation but only in the way they divide a cell into
tetrahedra. The well-known method is Marching Cubes (MC) method that was firstly
published by Lorensen and Cline [13]. At first, we will describe this method because the
main principle of other compared methods is similar.

The input volume data consists of samples organized into a regular 3D Cartesian
grid. From such a grid, we can easily obtain a set of cells. The cell has in this case a
cube shape and consists of eight corresponding samples from two adjacent sample
planes. Four samples are from the first plane and four samples are from the second
plane. MC method processes sequentially all the cells that can be found in volume data.
The iso-surface, which we are looking for, is specified by a threshold value.

Each cell is processed separately. Firstly, the cell index is computed. The cell has
eight vertices, let us name them from A to H, and each vertex has its data value.
Depending on a selected threshold the vertex is assigned a binary value
index = ABCDEFGHg. Each bit of the index is 0 when the data value in the
corresponding vertex is less than the threshold and 1 otherwise.

Based on the index, we are able to distinguish 256 cases how the iso-surface can
intersect the cell, because each vertex can be inside or outside of the iso-surface. When
the index is 0 or 255 the cell is not intersected by the iso-surface, otherwise such a cell is
called an active cell. The purpose of the index will be described later. For an active cell,
normal vectors are computed in all its vertices using symmetric or asymmetric
difference of data samples.

Each index represents a different case how the iso-surface can intersect the cell. All
these cases can be tabularized and easily triangulated using linear interpolation. The
vertices of triangles lay on the cell edges. Note, that vertices of triangles are interpolated
only on the cell edges, this will not be true for other methods. Maximum of four
triangles per the cell is needed to approximate the iso-surface. For each triangle vertex a
normal vector is computed from normal vectors in the cell vertices (using linear
interpolation).

Each cell face is shared by another cell. Due to such sharing, the iso-surface is
continuous among adjacent cells. Note that there can be ambiguous faces at which the
triangulation proposed by [13] will produce holes. There are few approaches how to
avoid the holes. Ambiguous cases can be detected and a special triangulation can be
applied [17]. The cells can be divided into tetrahedra and resulting simplices
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triangulated in a little bit different way as we will describe in the next section. Other
approaches are out of the scope of this paper, see [2], [3], [6], [14], [15], [16].

The algorithm complexity of MC method is O(N), where N is the number of all
cells. The following two described algorithms are dealing with tetrahedral tessellations
of the cube cell.

2.2 Marching Tetrahedra. Marching Tetrahedra (MT) method is based on the
same principle as MC method. The significant difference is that the cube cell is
furthermore split into tetrahedra. There are two main possibilities how to do that.

First the cell is divided into six tetrahedra (MT6), [16], [23] or [24]. This is
probably the most often used division of the cube cell. Kolcun [10] investigated all the
cube cell tessellations into six tetrahedra and defined a surface representation of the
tessellation schemes, which uniquely describes each particular division scheme. The
five non-equivalent tetrahedra (with respect to the rotation) which can be created using
the cube cell vertices are shown in Fig. 1.

FIG. 1 - Five non-equivalent tetrahedra within the cell

The number of all possible tetrahedra which can be constructed from eight cell vertices
is following [10]:

7-6-5

I . .
(1 — planar quadrilaterals = ——  — (6 + 6) = 58
4 4-3.2-1

The planar quadrilaterals are all six cell faces and six diagonal planar cuts of the cube,
these have to be subtracted because they do not represent a tetrahedron. Kolcun [10]
also counts all possible cube cell tessellations into six tetrahedra using incidence matrix
and a graph theory. The total number of all tetrahedral tessellations of the cube cell into
six tetrahedra is 72. An example of one particular division scheme is shown in Fig. 11.
Not all 72 division schemes are suitable for the iso-surface extraction. Some of them do
not maintain continuity among adjacent cells (same problem as in MT5, see bellow).

The second possibility is that the cell is divided into five tetrahedra (MT5) [8], [16],
[23]. There are several ways how the cube cell can be divided into five tetrahedra (e.g.
Fig. 2.a and Fig. 2.b). When using the five tetrahedra division scheme, it is necessary to
alternate two different splitting schemes. Otherwise, the continuity of the extracted
iso-surface will not be maintained properly among adjacent cells because each cell
would use interpolation at a different face diagonal within shared faces.

a) b) ©)

FIG. 2 — a), b) MT5 tetrahedra division schemes, ¢c) CCL division scheme
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After the cell is split into tetrahedra (each has four vertices), the index=ABCDg for each
tetrahedron is computed separately and tetrahedron is processed separately in the similar
way as the cube cell in the MC method. There are only 16 possibilities how the
tetrahedron can be intersected with iso-surface. These methods generate at most two
triangles per tetrahedron.

Five or six tetrahedra decompositions introduce new edges at which vertices of
triangles are to be interpolated. For five tetrahedra the interpolation will be held on face
diagonals of the cube cell, for six tetrahedra both face and internal diagonals are used. If
we look at the five tetrahedra division, there is one tetrahedron with different shape and
size. For some six tetrahedra splitting scheme all the tetrahedra can be the same.

2.3 Centered Cubic Lattice. The last method that will be compared to previously
mentioned ones is the Centered Cubic Lattice (CCL) method, see [5]. This method is
little bit different, because it splits the cube cell into 24 tetrahedra.

The difference is that the resulting tetrahedra are partially shared among adjacent
cells and a new data value is introduced to the center of gravity of the processed cell, as
outlined in Fig. 2.c. There are several ways how to compute the value of the central
sample, e.g. the arithmetic mean or the weighted mean.

Each tetrahedron is then processed separately in the same way as in MT6 or MT5
methods. Similarly to previous methods this kind of splitting of the cell also introduces
new edges at which the interpolations will be made. These are edges among adjacent
central points. In this division scheme, all the 24 tetrahedra dimensions are the same.

There are also other possible decompositions of the cube cell, e.g. [20] that
decomposes parallelepiped cell into two tetrahedra and one octahedron or [10] where
the cell is split into four pentahedra. These techniques were not included into this
comparison study.

3 Comparisons Approaches. This section covers basic approaches that we used for
comparison purposes.

3.1 Root Mean Square Distance. We use the Root Mean Square (RMS) of
computed distances between two extracted iso-surfaces. At first, we define a distance
between a point p (on the surface S) and a surface S’ (with points p’) as [1]

2 d(p, S?)=min||p-p’||,
for all p’ from S”. RMS distance in discrete case is then defined as in [21]

2 2
AlX; oo+ X
3) RMS(S,S") = "

n

bl

where 7 is a number of points of a mesh S’, x; (where i=1.. n) represents the distance of
corresponding point p;” from S, x;=d(p;’, S). We compare S’ to S.

Note that RMS is not symmetrical. We do not use symmetrical RMS distance in our
tests, thus it is not defined here. This measurement is computed with METRO tool [4].

3.2 Hausdorff Distance. As mentioned before, we use also Hausdorff distance [1]
for comparisons. Hausdorff distance between two surfaces S and S’ is defined as

4 du(S, S’)=max d(p, S’),

for all points p on the surface S. Note the important thing that Hausdorff distance is not
symmetrical d(S,S’)#d(S’,S). When we call d(S,S’) a forward and d(S’,S) a backward
distance, a symmetrical Hausdorff distance [1] can be defined as
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(5) dsi(S.S°)=max(d(S,S’), d(S’,S)).

The symmetrical difference provides better error measurement for two surfaces. In this
case, we also utilized a METRO software tool (described in [4]) for accurate
computation of Hausdorff distance of two discrete surfaces (triangle meshes). The
METRO tool was generally used to compare original mesh with its simplified (e.g.
decimated) version. We use it for comparison of two iso-surfaces, each generated with
different method.

Both the distances RMS and Hausdorff are calculated according to some source
mesh. As such a mesh, we use a mesh generated with MC method (the simplest one)
that do not divide a cell into tetrahedra.

3.3 Mathematical Data. If we know the object equation and its dimensions, we are
able to compute some additional information concerning the object, such as its surface
area, object volume, etc. We believe that these properties are worth to compute, because
they can help us to differentiate among the quality of examined methods.

Surface area — the iso-surface is generated by an extraction method in a form of a
set of triangles. We compute the total area as a sum of all triangles areas. Then we can
compute the area of the mathematical object and compare it with the iso-surface area
obtained. For special objects such as sphere, we are able to track the error behaviour
dependency on the sphere radius changes (threshold changes).

Volume enclosed with the iso-surface — for basic objects the volume is computed
using appropriate mathematical formula. The volume enclosed with the iso-surface is
computed in the following manner (for tetrahedra methods only, [22]). There are three
cases for each tetrahedron that can occur:

1. The whole tetrahedron is outside of the iso-surface — does not affect the total
volume computation.

2. The whole tetrahedron is inside of the iso-surface — the whole tetrahedron
contributes to the total volume. The tetrahedron volume is computed easily.

3. The tetrahedron is intersected with the iso-surface — we have to compute the part of
the tetrahedron which is inside of the iso-surface. As there are at most two triangles
generated per tetrahedron, these triangles form two small tetrahedra with
appropriate tetrahedron vertex and we are able to compute the volume of the
tetrahedron part which contributes to the total volume.

The two mentioned geometric properties are the main aspects that we used for
extraction methods output comparison. The obtained results are shown in the next
section.

4 Results. Let us mention and describe the data sets we used for comparisons and
give the reasons why we chose them. We used mainly mathematical objects that were
generated within volume data, see Fig. 3. The brief description of used data sets follows
in upcoming paragraphs.

FIG. 3 - Objects (csph, torus, sombrero, cube, sphere and noisedsph)
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4.1 Used Objects. Here, we would like to mention how the testing data are
generated from basic mathematical objects (given by their mathematical equation).

Sphere — a sphere is an example of an object that we use to follow the error
behaviour dependency on the sphere radius. The modified sphere equation is used for
data generation

(6) F(x,y,z)z\/(x—sx)z+(y—sy)2+(z—sz)2—r,

where x, y and z are samples coordinates, sy, sy and sz are the sphere centre coordinates,
r is the sphere radius and F(x,y,z) is a corresponding sample value. This equation
assigns data value to all the volume data samples. The sphere is then represented with a
zero threshold iso-surface. The samples that are inside of the sphere have negative
values, on the sphere surface zero values and samples placed out of the sphere have
positive values. The sample value represents the distance of the sample from the sphere
surface. The radius was 25 in our experiments.

Cell edge has a length 1 for our purposes. The object dimensions (e.g. radius, edge
length) are then related to a cell edge length.

Noised sphere — (noisedsph) to study the influence of the noise on the shape of the
output set of triangles we generate a noised sphere. The random noise is introduced
(added) to all samples of the volume data. The size of the noise is given in percentage
from the sphere radius size. We used radius 25 and 10% noise.

Cube — we use this kind of an object to follow the behaviour and properties of the
iso-surface on edges. We will show the iso-surface behaviour mainly visually. Data are
generated similarly as in the previous case using the distance of the sample from the
closest face, edge or vertex (in other words the sample distance from the cube). The
inner, on surface and outer samples have the negative, zero and positive values
respectively. Cube was generated using a=b=c=42.

Cube minus sphere — (csph) such an object was constructed to combine both
properties of the sphere (r=25) and the cube (a=b=c=42). The generation of it is a little
bit complicated. At first, the cube is generated in the volume data. Afterwards, the
values of all samples that are closer to the sphere than to the cube are modified to the
new value.

Torus — is the next object. Torus is defined with the following equation [21]

) Fx, 2 =] (== 5,07 + =) ) + (2= 5,0 =1y

where x, y and z are samples coordinates, sy, sy and s are the torus centre coordinates, 7;
is a torus main radius, 7, is a torus secondary radius and F(x,),z) is a corresponding
sample value. The samples values are negative, zero or positive as well. Torus
dimensions are ;=20 and r,=42 in our case.

Sombrero — is the last mathematically generated object we use. It is a surface
defined with the mathematical equation (taken from Derive mathematical program)

_reos(s((x=sy)” +(z=5,)")

t+(x=5,) +(z—5,)°

)] F(x,y,z)=y

b

where x, y and z are sample coordinates, sy, sy and s; are the sombrero centre
coordinates, and F(x,y,z) is a corresponding sample value and r, s and ¢ are constants
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modifying the shape of the function. Parameters of the sombrero, we used, are i=12,
j=0.25 and k=3. The following section covers the obtained results.

4.2 Performed Tests and Results. This section describes the obtained results using
comparison approaches and data sets that were mentioned in previous sections.

The more tetrahedra is used the larger area is extracted for all tested objects that
have edges, see Fig. 4. The results in Fig. 4 are relative due to mathematically computed
area and volume (hence 1 for mathematical results). For objects like torus (does not
have edges) the results were approximately the same as for a sphere. We think that for
the area approximation purposes the best choice is MC method without division of the
cube cells into tetrahedra.

From the view of volume approximation (the volume enclosed by the iso-surface)
the MT5 method is in most cases slightly better than MT6 method and both methods are
approaching to the original volume from below, see Fig. 4. The CCL method in the
other hand in most cases approaches to mathematically computed volume from above.
The MC method is not included in the volume comparison chart, because it is hard to
compute the volume enclosed with the iso-surface (due to 256 cases).

1610 Area Comparison @ Math 12 % Volume Comparison B Math
14 ] g mMC - g OMTS
124 aMT5| 1.0 oMT6
1.0 oMTe | g mCCL
08 4 mCCL 06

o ]

0.2 0.2

0.0 4 0.0 +

cube csph sphere cube csph sphere torus

FIG. 4 - Area and volume comparison (relative to mathematical volume)

If we use Hausdorff distance a sphere and a sombrero give approximately similar results
compared to torus. From the view of Hausdorff distance the MT6 method gives the
worst results for all tested objects, see Fig. 5. As you can see for noisedsph object the
CCL method is the best choice. The overall best method in this case is probably MTS5
method because it does not generate as much triangles as CCL method and gives
reasonable results.

The next test uses the RMS distance computation. Note that RMS and Hausdorff
distances are related to the MC method. For a sphere and a torus the obtained results
were slightly less than results for a sombrero. Again, when the object has edges the CCL
method is the worst from the view of RMS distance, see Fig. 5. For noisedsph object the
CCL method gives the best results. We suppose that the central cell sample value
computation (using arithmetic mean) filters data a little bit.

144 3 Hausdorff Distance Comparison OMTS | 025+ (, RMS Comparison OMT5
12 ¢ o MT6 2 O MT6
102 mCCL| 020+ mCCL
084 T 0.15
0.6 1 0.10
04 -
0.05 -
0.2 4
0.0 T T 0.00 T T
cube csph noisedsph torus cube csph noisedsph sombrero

FIG. 5 - Hausdorff and RMS distances histograms
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In Fig. 6 you can see that the choice of the method (or division scheme in MT6 method)
has a great impact on how objects edges will be extracted. For different division
schemes we obtain highly different iso-surface approximations of object edges.

9960

FIG. 6 - Iso-surface on edges (MT5, MC, MT6, CCL)

4.3 The MT6 Additional Tests. Next paragraph deals with the cell division
schemes into six tetrahedra. We have tested all 72 division schemes from [10]. As we
stated not all of them are suitable for the use in iso-surface extraction process. There are
only 22.2% division schemes that maintain continuity among adjacent cells from all
possible division schemes. These are 1, 6, 9, 17, 23, 25, 31, 35, 38, 44, 47, 50, 57, 62, 65
and 72 (schemes labeling is the same as in [10]).

The iso-surface area and the volume enclosed with the extracted iso-surface can be
computed. We have performed several tests concerning not only the area and volume
error. We have also measured the average minimal and maximal angles within the
extracted iso-surface to get rid of acute and obtuse angles in the resulting iso-surface.
These tests were performed to pick up the best overall division scheme for MT6
method. Mathematical objects sphere and cpsh were used as well as real data set
syn_64.vol. The division scheme number 38 (Fig. 8) gave the best overall results.

Now, have a look at the area of the extracted iso-surface when a threshold is
changing and MT6 method with the picked division scheme is used, see Fig. 7.

100.00 1 Sphere (division scheme 38) 0T Sphere (division scheme 38)
P P T
1000 1 50 5 7 9 1113 15 17 19 21 23 25 27 29
100 4 Threshold
Threshold
100 L N ey _1507
35 11 13 15 17 19 21 23 25 27 29 200 |
010 | @ 250 1 =
5 300 | 5
001 L -350 + W

FIG. 7 — Area and volume errors behaviour

A relative area error is defined in a following way

5-8
©) Serror = TW *100 [%],

where S, is an area of the extracted iso-surface and S is mathematically computed
volume of the sphere. The volume that is enclosed with the extracted iso-surface can be
also computed and the relative volume error is defined similarly as
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V-V,
(10) 14 = %100 [%].
4

error

As it can be observed from Fig. 7, with increasing threshold the error is getting smaller.
That is due to the fact that with increased threshold the extracted sphere is bigger and
the amount of active cells is also higher thus the sphere is sampled with higher number
of samples.

FIG. 8 — Division scheme number 38

4 Conclusions. We compared fundamental methods for the iso-surface extraction
utilizing Hausdorff distance, RMS distance, iso-surface area and volume.

Hausdorff distance is in fact the biggest distance between two compared surfaces
(extreme distance). Hausdorff distance can be also used, in our opinion, to compare
iso-surfaces that are extracted from real data sets when using different methods for their
extraction but there is a need to have some relative iso-surface.

In general, we are more interested in an average distance between two surfaces (the
RMS distance). In the case of RMS distance, the CCL method generally gives worse
results than other tested methods.

Interesting is that a volume of objects is approximated with the similar difference no
matter of method used except for csph object.

The division number 38 from [10] gives the best overall results, thus we would
recommend its use in MT6 method.

The quality of the extracted set of triangles for noised sphere was in general bad.
We think that for noised data the CCL method is the most suitable.

It is also important to realize that for real data we do not know the exact area or
volume of the object, thus the comparison can not be made.

As a future work we would like to examine also mentioned division schemes that
are not included in this paper (two tetrahedra plus one octahedron [20] or four
pentahedra [10]).
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