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Abstract The clipping operation is
still the bottleneck of the graphics
pipeline in spite of the latest devel-
opments in graphical hardware and a
significant increase in performance.
Algorithms for line and line segment
clipping have been studied for a long
time and many research papers have
been published so far. This paper
presents a new robust approach to
line and line segment clipping using
a rectangular window. A simple
extension for the case of convex
polygon clipping is presented as well.
The presented approach does not
require a division operation and

uses homogeneous coordinates for
input and output point representation.
The proposed algorithms can take
advantage of operations supported by
vector–vector hardware.
The main contribution of this paper
is a new approach to intersection
computations applied to line and
line segment clipping. This approach
leads to algorithms that are simpler,
robust, and easy to implement.

Keywords Clipping · Homogeneous
coordinates · Projective space ·
Duality · Computer graphics

Notation

N – number of edges of the given polygon
X = (X, Y) – a point in Euclidean coordinates
X – coordinate in Euclidean coordinates
x = [x, y, w]T – point in projective space represented by
homogeneous coordinates
x – coordinate in homogeneous coordinates
xA, xB – end-points of the line segment or points that de-
fine a line p
xi – ith vertex of the given polygon
p – line to be clipped or a line segment on which the
clipped line segment lies
pi – line on which the ith edge of the given polygon lies
p = [a, b, c]T – vector of a line p defined as ax +by +
c = 0
ei – vector of a line on which the ith edge of the given
polygon lies; ei = [ai, bi, ci]T

si – directional vector of the ith edge of the given polygon
ni – normal vector of the ith edge of the given polygon –

a vector perpendicular to the ith edge
s – directional vector of the given line p, i.e., s = xB − xA
ρ – a plane
D(p) – dual representation of p
aTb – dot product of two vectors a, b
a ×b – cross product of two vectors a, b
i = [1, 0, 0]T, j = [0, 1, 0]T, k = [0, 0, 1]T

P – polygon, vertices indexed as 0, . . ., N −1
land – bitwise and logical operation
lor – bitwise or logical operation
operations used with indices: xi+1 means x(i+1) mod N

1 Introduction

In spite of the latest graphical hardware developments and
a significant increase in performance, clipping is still the
bottleneck of the graphics pipeline.
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There are many algorithms devoted to line and line
segment clipping in E2 and E3. Generally, algorithms
have been developed and modified for line or line seg-
ment or polygon clipping against a rectangular window,
a convex polygon, or a polygonal clipping area (see [4, 5,
8, 10–13, 15–19, 21]). Some modifications have also been
developed for a self-intersecting clipping polygon or for
areas with linear or quadric edges [14]. A comparison of
several algorithms can be found in [2].

In addition, some algorithms were specially developed
or modified for special cases such as small windows or
for specific characteristics of the input data set. Some al-
gorithms and their efficiencies are very sensitive to input
data, the i.e. geometrical distribution of lines or line seg-
ments.

Algorithms used in E2 are usually based on a Eu-
clidean space representation. Nevertheless, the positive
projective space representation using homogeneous coor-
dinates is more convenient in some cases. In many appli-
cations, the clipping window or polygon is constant for
many clipped lines. In this case, pre-processing might be
considered to speed up the algorithm as well.

This paper presents a new and robust approach for line
and line segment clipping against a rectangular window
with a simple modification for line clipping by a convex
polygon. The proposed algorithms are compared with the
well-known Cyrus–Beck [4] and Cohen–Sutherland [5]
algorithms, as these are commonly used as reference al-
gorithms that enable us to make a mutual-comparison of
several algorithms. Theoretical evaluation of the proposed
algorithm is presented, and experimental verification and
algorithm comparison are presented as well.

2 Projective geometry and duality

Homogeneous coordinates are widely used in computer
graphics applications, usually connected with geometric
transformations such as rotation, scaling, translation, and
projection. In many cases, homogeneous coordinates are
seen just as a mathematical tool that enables a simple
description of geometric transformations. Nevertheless,
there are many “invisible” impacts of algorithm design
that can lead to new, fast, and robust algorithms that can
also be supported by GPU (Graphics Processing Unit)
hardware. Figure 1 presents a geometrical interpretation of
the Euclidean and projective spaces.

The point x is defined as a point in E2 with coordinates
X = (X, Y) or as a point with homogeneous coordinates
[x, y, w]T, where w = 1, usually. The point x is actually
a line without an origin in the projective space P2, and
X = x/w and Y = y/w. It can be seen that a line p ∈ E2

is actually a plane ρ without the origin in the projective
space P2, i.e., the Euclidean line p is defined as

ax +by + cw = 0, w �= 0

Fig. 1a,b. Euclidean, projective, and dual space representations

Any ξ �= 0 can multiply the equation without any effect to
the geometry. In dual representation, the plane ρ can be
represented as a line D(ρ) ∈ D(P2) or as a point D(p) ∈
D(E2), when a projection is made, e.g., for c = 1. A com-
plete theory on projective spaces can be found in [6, 20].

On the other hand, there is a principle of duality that
is useful when deriving certain formulas. The principle
states that any theorem remains true when we interchange
the words “point” and “line,” “lie on” and “pass through,”
“join” and “intersect,” and so on. Once the theorem has
been established, the dual theorem is obtained as de-
scribed above (see [3, 9]).

In other words, the principle of duality says that in all
theorems, it is possible to substitute the term “point” by
the term “line” and the term “line” by the term “point,” and
the given theorem stays valid. This helps tremendously in
the solution of some geometrical problems.

Definition 1. The cross product of two vectors x1 =
[x1, y1, w1]T and x2 = [x2, y2, w2]T is defined as

x1 × x2 = det

[
i j k

x1 y1 w1
x2 y2 w2

]
,

where i = [1, 0, 0]T, j = [0, 1, 0]T, k = [0, 0, 1]T.

Please note that homogeneous coordinates are used.

Theorem 1. Let two points x1 and x2 be given in the pro-
jective space. Then, the coefficients of the line p, which is
defined by those two points, are the cross product of their
homogeneous coordinates, p = x1 × x2.

Proof. Let the line p ∈E2 be defined as

ax +by + cw = 0.

Then

a = det

[
y1 w1
y2 w2

]
b = − det

[
x1 w1
x2 w2

]

c = det

[
x1 y1
x2 y2

]
.
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For w = 1, we get the standard cross-product formula, and
the cross product defines the line p, i.e.,

x1 × x2 = p,

where p = [a, b, c]T.

Theorem 2. Let two lines p1 and p2 be given in projective
space. Then the homogeneous coordinates of the point x at
the intersection of those two lines are given by the cross
product of their coordinates x = p1 × p2, i.e.,

p1 × p2 = det

[
i j k

a1 b1 c1
a2 b2 c2

]
,

where i = [1, 0, 0]T, j = [0, 1, 0]T, k = [0, 0, 1]T.

Proof. Immediate from Theorem 1 and the duality princi-
ple.

These two theorems are very important as they enable
us to handle some problems defined in homogeneous co-
ordinates efficiently and make computations quite robust
and effective.

3 The Cyrus–Beck algorithm

The Cyrus–Beck (CB) algorithm [4] is the most well-
known algorithm for line and line segment clipping by a
convex polygon. There are several algorithms for line clip-
ping against the given convex polygon that claimed some
advantages over the original CB algorithm (see [1, 12, 13,
16]). Nevertheless, the CB algorithm is very stable, and
its performance is nearly independent of such factors as
the geometrical distribution of clipped primitives. The al-
gorithm assumes that the clipping polygon is convex, and
its vertices x0, x1, . . ., xN−1 are ordered in a defined sense,
usually counterclockwise.

Let xA, xB define the line to be clipped. For each edge
xi, xi+1, one computes the parameter ti along the line of its
intersection with the line of the edge xixi+1 and whether
this edge belongs to the leading or tailing part of the poly-
gon relative to the direction xB − xA (see Fig. 2).

The maximum tmax of the tailing part and minimum
tmin of the leading part delimit the visible part of the seg-
ment. If the interval is empty, the segment is invisible.
Since the CB algorithm computes the intersection for each
edge, its complexity is O(N), where N is the number of
edges.

The parameter t of the point where the given line p in-
tersects the line pi defined by the points xixi+1 is obtained
by solving the following equations:

p : x(t) = xA + st pi : nT
i x + ci = 0.

Fig. 2. Intersections computed by the CB algorithm

We get

nT
i xA +nT

i st + ci = 0.

Solving this equation, we get

ti = −nT
i xA + ci

nT
i .s

The principle of the CB algorithm is described by Algo-
rithm 1 (see [5] for details).

Algorithm 1: Principle of the Cyrus–Beck algorithm
procedure CB;
{input: xA, xB}
begin

s := xB − xA;
tmin := −∞; tmax := ∞;
{tmin := 0; tmax := 1; in the case of a line segment}
for i := 0 to N −1 do
begin

q := nT
i s;

if q < 0 then
begin {the ith edge can be seen from}

{infinity in the negative direction of −s}
t := −(nT

i xA + ci)/q; tmin := max(t, tmin);
end else

if q > 0 then
begin {the ith edge can be seen from}

{infinity in the direction of s}
t := −(nT

i xA + ci)/q; tmax := min(t, tmax);
end else solve a special case {nT

i s = 0}
end;
if tmin < tmax then
begin xA := xA + stmin;

xB := xA + stmax;
output (xA, xB)

end
end {CB}

The CB algorithm runs well, but there are some critical
situations that must be handled very carefully – namely,
the cases when the clipped line is collinear or nearly
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collinear with an edge, i.e., the case when nT
i s = 0 or is

close to zero.
It is obvious that the CB algorithm computes N values

of the parameter t for all intersection points, but only two
are actually needed if an intersection exists. It means the
CB algorithm is of O(N) complexity. There are algorithms
of O(lg N) complexity, that are convenient for higher N –
see [13, 16].

4 The line-clipping algorithm

A new approach to line clipping by a convex polygon in
E2 is presented. It is based on a function of separation.
The main advantages of the proposed approach are ro-
bustness, stability, speed, and native use of homogeneous
coordinates.

Let us assume a convex polygon P (see Fig. 3) and
a line p given as F(x) = ax +by + c = 0.

The line p subdivides the space into two half-spaces as
shown in Fig. 3, i.e., F(x) < 0 and F(x) ≥ 0.

It can be seen that the function F(x) can be evaluated
for each vertex of the given convex clipping polygon, and
for the ith vertex, the value ci is obtained as follows:

ci =
{

1 if F(xi) ≥ 0
0 otherwise

i = 0, . . ., N −1.

This means that each vertex is classified whether it is
on the “left” (if we look from infinity in the direction of
the xB − xA vector) or on the “right” side of the clipped
line, p.

For the purposes of explaining the algorithm, let us
assume a rectangular window, i.e., a polygon with 4 orth-
ogonal edges (see Fig. 4). This is actually a very frequent
occurrence for line segment clipping.

Now, we will concentrate on the algorithm for line
clipping. The line segment clipping algorithm will be ex-
plained later on.

In the case of a rectangular window, the vector c con-
sists of bits:

c = [c3, c2, c1, c0]T

Fig. 3. Classification of polygon vertices

Fig. 4. Clipping against a rectangular window

Table 1. Table TAB with all possible cases. N/A denotes non-
applicable cases

c c3 c2 c1 c0 TAB1 TAB2 MASK

0 0 0 0 0 None None None
1 0 0 0 1 0 3 0100
2 0 0 1 0 0 1 0100
3 0 0 1 1 1 3 0010
4 0 1 0 0 1 2 0010
5 0 1 0 1 N/A N/A N/A
6 0 1 1 0 0 2 0100
7 0 1 1 1 2 3 1000
8 1 0 0 0 2 3 1000
9 1 0 0 1 0 2 0100
10 1 0 1 0 N/A N/A N/A
11 1 0 1 1 1 2 0010
12 1 1 0 0 1 3 0010
13 1 1 0 1 0 1 0100
14 1 1 1 0 0 3 0100
15 1 1 1 1 None None None

and “codes” the position of a line p according to the given
polygon. It is necessary to point out that this coding is dif-
ferent from the coding scheme of the Cohen–Sutherland
algorithm (we do not code the position of points xA, xB).

Let us construct a table TAB of all the possible values
of the vector c (see Table 1).

If all the combinations are interpreted geometrically,
it can be seen that for each line of the table, the indices
of the intersected edges can be pre-computed. This means
that the function F(x) is evaluated for each vertex of the
clipping polygon, and the indices of the intersected edges
are stored in vectors TAB1 and TAB2 (see Table 1). Some
combinations are not applicable, e.g., [0, 1, 0, 1]T, and
these combinations are indicated as N/A.

It can be seen that the vectors TAB1 and TAB2 are
symmetric, i.e., the orientation of the clipping polygon P
is not needed.

The vectors TAB1 and TAB2 do not depend on the
position of the polygon vertices; they depend only on the
number of vertices N of the given convex clipping poly-
gon, i.e., the given table TAB is unchanging for all orth-
ogonal clipping windows.
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The extension to the general case when the given line
p is clipped by the convex polygon P is straightforward,
i.e., the vector c has N bits. In this case, vectors TAB1 and
TAB2 can be similarly generated. Of course, it is neces-
sary to determine which edges intersect for each possible
combination of the vector c.

In fact, the indices of intersected edges can be deter-
mined easily. If the two following bits in the vector c
are different, i.e., ci �= ci+1, the edge xixi+1 will be in-
tersected. Of course, there will be non-applicable cases,
denoted as N/A, because in the case of a convex clipping
polygon, the edges are actually split into

• one segment consisting of edges on the “right” side of
the line p,

• one segment consisting of edges on the “left” side of
the line p,

• edges intersected by the line p, if any.

It can be seen that the table construction can be done only
once for all lines clipped if the clipping polygon P is not
changed. If necessary, the vectors TAB1 and TAB2 can be
interpreted by if statements “on the fly,” or alternatively,
indices can also be computed by a simple algorithm.

The Algorithm 2 describes the proposed algorithm for
line clipping by the given convex polygon. It can be seen
that the proposed algorithm is very simple.

Algorithm 2: The proposed algorithm for line-clipping by
a rectangular window

procedure C_L;
{C_L – clipping lines}
{xA , xB – in homogeneous coordinates}
{input: xA , xB}
begin {xA = [x A, yA, wA]T}
{1} p := xA × xB; {ax +by + c = 0; p = [a, b, c]T}
{2} for k := 0 to N −1 do {xk = [xk, yk, wk]T}
{3} if pTxk ≥ 0 then ck := 1 else ck := 0;
{4} if c �= [0. . .0]T and c �= [1..1]T then
{5} begin i := TAB1[c]; j := TAB2[c];
{6} xA := p×ei ; xB := p×ej ;
{7} output (xA, xB )
{8} end
end {C_L}

As all operations in Algorithm 2 are performed in
homogeneous coordinates, the algorithm can be used in
cases when input and output points are in homogeneous
coordinates as well.

Note that

• the dot-product processor can compute pTxk − step{3}
• the cross-product processor can perform steps {1, 6}
• the loop – steps {2,3} – can be made in parallel.

In the case where the clipping polygon is a rectangular
window, the proposed algorithm can be implemented effi-
ciently as the dot product and cross product computations
can be simplified.

5 Theoretical comparison

The properties of the CB and the proposed C_L algo-
rithms were analyzed and compared. A number of floating
point operations were used for rough estimation of the
properties of both algorithms and for theoretical compari-
son. The number of operations presented in Table 2 were
found after optimization of the appropriate sequences of
the CB and the proposed C_L algorithms for a rectangu-
lar window. The following simple modifications of both
algorithms were evaluated:
1. input (x, y), output (x, y), denoted as CB1 and C_L1
2. input (x, y, w), output (x, y), denoted as CB2 and

C_L2
3. input (x, y, w), output (x, y, w), denoted as CB3 and

C_L3

It is obvious that if the algorithms are used in today’s com-
puter systems, this estimation is influenced by caching,
multithreading, etc., and this analysis can only be used for
very basic performance estimations.

Table 2. Number of floating-point operations needed

( ± * / > := ) ( ± * / > := )

CB1 ( 6 4 0 1 8 ) + N * ( 4 5 1,5 2,5 4 )
CB2 ( 6 4 4 1 8 ) + N * ( 4 5 1,5 2,5 4 )
CB3 ( 6 4 4 1 8 ) + N * ( 4 5 1,5 2,5 4 )
C_L1 ( 9 17 2 0 9 ) + N * ( 3 6 0 0 3 )
C_L2 ( 9 18 0 0 9 ) + N * ( 3 6 0 0 3 )
C_L3 ( 9 13 0 0 9 ) + N * ( 3 6 0 0 3 )

Let us define the increase in speed as

νi = TCBi

TC_Li

,

where TCB and TC_L is time spent by CB and by the new
proposed C_L algorithm, respectively.

The theoretical estimation of the potential increase
in speed is based on experimentally obtained timing of
floating-point instructions (where the ratio, not the abso-
lute value, is substantial); other operations were not con-
sidered.

Table 3. Relative timing of floating operations for a 750 MHz CPU

Timing ± * / > :=

Clocks 31 31 78 149 16
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N 3 4 5 6 10 20

ν1 1,5 1,6 1,7 1,8 2,0 2,3
ν2 1,7 1,8 1,9 2,0 2,2 2,3
ν3 1,9 2,0 2,1 2,1 2,3 2,4

Table 4. Estimation of
the increase in speed of
the algorithm modifica-
tions for clipping on an
N-sided convex polygon

The theoretical increase in speed for the above-
mentioned modifications, (C_L1, C_L2, C_L3) is as fol-
lows:

In the first two cases, the output of the proposed algo-
rithm is in Euclidean coordinates, while in the third case,
the output is in homogeneous coordinates, as expected in
the graphical pipeline of GPU processors.

It can be seen that the proposed C_L algorithm:

• should be faster than the CB algorithm and the increase
in speed will effectively grow with the number of poly-
gon edges N,

• no division by homogeneous coordinates after vertex
transformation is needed,

• if the resulting end-points are in homogeneous coordi-
nates, no division is needed,

• is robust as no sensitive tests are needed, e.g., a = b in
floating-point representation,

• it is very simple and easy to implement,
• if dot product and cross product operations are sup-

ported in the hardware, the proposed algorithm will
benefit from it.

In the case of hardware implementation, the timing of
all of the operations takes just one cycle, and operations
such as a ∗b+ c take one cycle as well. Unfortunately, the
current GPUs do not allow us to prepare an experimen-
tal implementation, as the clipping part of the graphics
pipeline is fixed in the hardware.

6 Experimental results

Both the CB and the proposed C_L algorithms were im-
plemented in Pascal (Delphi) and C++ and compared. The
experiments proved that the increase in speed for all cases

ν ≥ 1, 9.

In addition, the increase in speed grows slightly with
value N, where N is the number of edges of the given
convex clipping polygon.

Several factors, e.g., caching, additional instructions,
cycles, etc., cause the difference between theoretical esti-
mation and experimental results.

The main advantages of the proposed C_L algorithm
are as follows:

• the robustness of the algorithm,
• the simplicity of computation in homogeneous coordi-

nates,
• simple implementation in software and hardware,
• vector–vector and parallel processing can be used to

speed up the proposed algorithm significantly (the for
loop can be performed in parallel).

7 Line segment clipping

In the previous parts, a new algorithm for line clipping
by a convex polygon has been described, compared with
the Cyrus–Beck algorithm, and experimentally evaluated.
In order to explain the proposed algorithm, a rectangular
window was used.

In many applications, line segment clipping is re-
quired, especially for a rectangular clipping window. The
Cohen–Sutherland algorithm is used almost exclusively
for those purposes. Therefore, the question is how the pro-
posed algorithm can be modified for the line segment case.
Of course, the coding of the end-points used in the Cohen–
Sutherland algorithm is very effective, and the proposed
algorithm for the line segment clipping will use the coding
of the end-points as well.

The Cohen–Sutherland algorithm

The Cohen–Sutherland (CS) [5] algorithm is used very
often. The CS algorithm relies on the end-point classifi-
cation (see Fig. 5). This classification enables us to detect
cases when the given line segment is inside or totally
above, below, to the left or to the right of the clipping win-
dow.

Fig. 5. A line segment classification
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Algorithm 3 describes the principle of the CS algo-
rithm – see [5] for the complete algorithm. It can be seen
that the algorithm contains a loop and a quite complicated
decision scheme for deciding which edge is intersected by
the given line segment.

Algorithm 3: Principle of the Cohen–Sutherland algo-
rithm
{global variables xmin , ymin , xmax, ymax}

function CODE (x);
begin

c := [0000];
if x < xmin then c := [1000]

else if x > xmax then c := [0100];
if y < ymin then c := c lor [1001]

else if y > ymax then c := c lor [0010];
CODE := c

end {CODE};

procedure CS;
{input: xA , xB}
{The EXIT statement ends the procedure}
begin

cA := CODE (xA); cB := CODE (xB);
if (cA lor cB) = 0 then {case 1}

begin output (xA; xB); EXIT {CS}
end;
if (cA land cB) �= 0 then {case 2} EXIT; {CS}
repeat

if cA = 0 then c := cB else c := cA;
if (c land [0001]) then
begin

y := yA+(ymax− yA)∗(yB− yA)/(xB −x A);
x := ymin;

end else . . . {similarly for others cases}

if c = cA then
begin x A := x; yA := y; cA := CODE(xA) end
else
begin xB := x; yB := y; cB := CODE(xB) end
if (cA land cB) �= 0 then {case 2} EXIT;

until (cA lor cB) = 0 {zero vector};
output (xA, xB)

end {CS}
It can be seen that up to four divisions are needed for

intersection computations in the worst case if the CS algo-
rithm is used and additional four divisions for input points
given in homogeneous coordinates.

Modification of the C_L algorithm for line segment
clipping

Let us introduce a modification of the C_L algorithm for
line segment clipping. We have to distinguish cases when
both end-points are inside or outside of the clipping win-
dow from the case when only one end-point is inside the
window. In the latter case, we have to determine which

edge of two known edges (a line on which the line segment
lies intersect two edges of the given rectangular window)
is intersected by the given line segment. One end-point
can lie inside of the clipping rectangle, i.e., an intersection
point of the line p with e0 or e1 must be computed – see
case 5 in Fig. 5.

The solution is very simple. Let us consider case 5
in Fig. 5. The same coding used within CS algorithm
is applied for the each end-point, i.e., for the situ-
ation shown in Fig. 5. In case of the end-point xA, the
vector cA is constructed according to the CS coding
scheme as

cA = [LEFT | RIGHT | TOP | BOTTOM]
and similarly for xB.

If the C_L algorithm is used directly, we know the
edges, i.e., edges e0 and e1, intersected by a line p on
which the given line segment lies. The indices of those
edges are stored in the vectors TAB1 and TAB2.

This means that a simple test, whether the “outside”
point is on the left of the edge e1 or below the edge e0,
must be used. If cB = [∗1 ∗∗], then the edge e1 is inter-
sected. By contrast, if cB �= [∗1 ∗∗], then the edge e0 is
intersected by the given line segment. This actually results
in the following condition:
if cB land MASK[c] �= 0

then intersection p&e1
else intersection p&e3

where c is the polygon vertex (not the end-point) classi-
fication code, and MASK[c] = [0100] for this case. The
table TAB (see Table 1) defines these mask values.

Algorithm 4 describes the proposed clipping line seg-
ment (C_LS) algorithm for the line segment clipping by
a rectangular window.

Algorithm 4: The proposed algorithm for line segment
clipping
function CODE (x);
begin

c := [0000];
if x < xmin then c := [1000]

else if x > xmax then c := [0100];
if y < ymin then c := c lor [1001]

else if y > ymax then c := c lor [0010];
CODE := c

end {CODE};

procedure C_LS; {input: xA, xB}
{C_LS – clipping line segment}
{xA, xB – can be in homogeneous coordinates}
{The EXIT statement ends the procedure}
{land / lor – bitwise operations and / or}
begin {end-points classifications}

cA := CODE(xA); cB := CODE(xB);
{detection of trivial cases}
{case 1 – line segment inside}
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if (cA lor cB) = 0 then
begin output (xA; xB); EXIT {C_LS}

end;
{case 2 – line segment outside – just EXIT}
if (cA land cB) �= 0 then EXIT; {C_LS}
{all trivial cases solved}
{compute coefficients of the line p}
p := xA × xB; {ax +by + c = 0; p = [a, b, c]T}
for k := 0 to 3 do {xk = [xk, yk, 1]T}

if pTxk ≥ 0 then ck := 1 else ck := 0;
{c = [c3, c2, c1, c0]T }
if c = [0000]T or c = [1111]T then EXIT;
{the line segment lies outside of the window}
{it distinguishes cases 4 and 6 in Fig. 5}
{there MUST be one intersection at least}
i := TAB1[c]; j := TAB2[c];
if cA �= 0 and cB �= 0
then

{there are two intersections}
begin xA := p×ei ; xB := p×ej end
{vector ei is pre-defined for the ith edge}

else {there is only one intersection point}
if cA = 0 then {xB is outside}

begin
if cB land MASK[c] �= 0
then xB := p×ei
else xB := p×ej

end
else if cB = 0 then {xA is outside}

begin
if cA land MASK[c] �= 0

then xA := p×ei
else xA := p×ej

end;
output (xA, xB)

end {C_LS}

It can be seen that the proposed C_LS algorithm

• uses the vector dot product and cross product opera-
tions in homogeneous coordinates,

• has a loop that can be easily replaced by evaluation in
parallel,

• has a very simple decision scheme convenient for hard-
ware implementation,

• does not use the division operation.

The main advantage is that it only uses homogeneous co-
ordinates, which make hardware implementation simpler.

Experimental results

Both the original CS and the proposed C_LS algorithms
were implemented and tested. The C_LS is slightly faster,
and the experimentally measured increase in speed ν was

approximately

ν = TCS

TC_LS

∼= 1, 2.

Nevertheless, its use and implementation is targeted to-
ward hardware-supported implementation. Also, all tests
were performed only for cases when the homogeneous co-
ordinate of the end-points was w = 1. If the end-points of
the line segment are given in homogeneous coordinates,
the algorithm is faster, as it saves up to four divisions per
line segment.

It is expected that the proposed C_LS algorithm will
perform significantly better in hardware implementations
and speed up the clipping and computational operations in
the graphical pipeline.

Future possible extensions of the algorithm

One can ask if the proposed algorithm can be modified
for a case when the clipping polygon is not convex. In this
case, we have to answer the following questions:

• What actually does the convexity mean to the algo-
rithm?

• How is the table TAB constructed and interpreted?

It is actually a simple and straightforward extension of
the presented principle. Let us imagine a simple situation
in Fig. 6 with a non-convex, non-self-intersecting clipping
polygon P.

It is obvious that the polygon P is intersected by the
given line p several times. The direct impact to the table
TAB is that it has no N/A cases anymore, and all combi-
nations have to be interpreted. In our case, the vector c is
defined as

c = [c8, c7, c6, c5, c4, c3, c2, c1, c0]T;
i.e., for the case in Fig. 6,

c = [1, 0, 1, 0, 1, 1, 1, 0, 0]T,

Fig. 6. Clipping by a non-convex polygon
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and the same algorithm for finding indices of intersected
edges can be applied as in the convex polygon case. Of
course, the table TAB must be implemented as a “jagged”
array (a vector of vectors) in this case. This is due to the
fact that we can have more pairs of edges that are inter-
sected by the given line p. Special handling of the inter-
section points will be needed as they are not ordered in one
direction on the line p, and a similar approach to [14] can
be applied.

8 Conclusion

This paper describes a new approach to the line clipping
problem and the line segment clipping problem in E2

using projective space and homogeneous coordinates. The
proposed algorithms are robust and easy to implement.
Both algorithms use a separation function in order to ob-
tain higher stability, and all computations are performed in
homogeneous coordinates.

The first proposed algorithm C_L for the line clipping
by a convex polygon is faster than the original Cyrus–
Beck algorithm and does not need a predefined clipping
polygon orientation, for example. If the clipped line is
given by end-points in homogeneous coordinates, the C_L
algorithm is especially convenient.

The second proposed algorithm C_LS for the line seg-
ment clipping by a rectangular window is a direct modifi-
cation of the C_L algorithm. It is faster than the Cohen–
Sutherland algorithm and significantly faster especially if
the line segment is given by two end-points in homoge-
neous coordinates, and output points are in homogeneous
coordinates as well.

Both proposed algorithms will benefit in an increase in
speed if vector–vector operations or/and parallel process-
ing can be used. The cross product processor will increase
the performance significantly as well. Both proposed al-
gorithms increase performance if the clipping window is
〈0, 1〉×〈0, 1〉, as many operations might be optimized for
this case.
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