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The point xo is a non-degenerate critical point
if colxg) = cifxy) =0 and cx(xy) does not
vanish:
@) e, (x)x-x,)".
The point x, is a degenerate critical points if
cofxo) = ci(xg) = c2(xg) = 0 and c3(xy) does not
vanish:
S = e (x)(x-x,)"

Note that sometimes critical and non-critical
points are also called singularities of
the function f{x). A smooth function f{x) is
called the Morse function iff all singularities
are non-degenerate critical points.

Now we can think more generally. Let us
suppose that x is not a single variable but it is
a point in EV. According to analogy, the point
x is non-degenerate if the gradient of
the function vanish at this point, ie.
grad(f(x)) =0, and the determinant of
the Hessian is not zero, i.e. det(H( £ (x))) =0.
Let us denote the number of negative
eigenvalues of Hessian H( /' (x)) as the index /.
Then the following lemma can be introduced
(81, [71:

Morse Lemma: Let pe E' be a non-
degenerate critical point of a Morse function
J(x) with the index [ and let ¢ = f(p). Then
there is a local coordinate system
Y= y2 .., yv) in a neighbourhood U of p
as its origin and:

S ==y =yi ==yt yl 4ty

A practical meaning of this theory can be
shown on a 2D differentiable manifold (N = 2)
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where the Morse function f(x) represents
the height from an xz plane. A surface shape
of neighbourhood U of point p can be
estimated on the basis of the index / (see the
figure 1). Note that in this case the Hessian
matrix has the rank 2 with the following
values:

2y 9
HUe)=| 5, 351
ooz o

According to eigenvalues of the matrix H we
can classify type of the non-degenerate critical
point as a pit, a saddle, or a peak. It is also
demonstrated in the figure 1 (for more details
see e.g. [11]).

3. Reeb graph

The Morse theory is a fundamental for the
Reeb graph. In the 1940s, G. Reeb proposed
agraph that encrypts information about
behaviour of the Morse function
onamanifold [9). Its definition can be
following (taken from [2]):

Reeb graph: Let M be a compact manifold
and let /- M R be a real Morse function.
The Reeb graph of the function fis a quotient
space of the graph of f in MxR by
the equivalence relation “~” given by:

(x5, S (x1)) ~ (%2, [(x2))
iff /(x,) =f(x2) and x; and x; are in the same
connected component off"(f(xl)).

T =c+yl+yf

S = C"}’/2+J’22

f) =c-yi-y’

Figure 1: Examples of surface shapes of neighborhood U for different values of eigenvalues H( f(x)), the Morse

function f(x) is represented as a height from a xz plane.
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This property permits us to use knowledge
from differential mathematics. A short
introduction to the differential geometry is
also included here. Then this information is
used to a proposal of a topological description
that can be used for the feature extraction.

An arbitrary curve in the 3D space can be
described unambiguously by so called the first
and the second curvature. The main advantage
of this description is invariance to rotation and
position of the curve. If we moved or rotated
acurve we still would get the same
description.

Unfortunately, an invariant description
of a surface based on curvatures is not so easy
(details in related publication, e.g. [1], [3],
[10]). Some interesting variables only will be
mention here, such as the Mean curvature H
and Gaussian curvature K that can be used to
solve our problem. These curvatures can be
defined many ways. One of them is
for example by the following equations:

K=k ky,
1
=_2-(kl+k2):

where k; and k; are principal curves of normal
section in the point x (see mentioned books for
details). According to values of these
curvatures the points of a surface can be
classified into several groups as the following
table shows.

K<0 K=0| K>0
H<0 |saddleridge |ridge i peak
H =10 | min. surface | flat none
H> 0 |saddle valley | valley | pit

This table also can serve as a help to analyze
alocal neighbourhood of a point on the
surface of an object. Graphical shapes of
individual type of the point are shown in the
figure 4 (their importance for us is discussed
later).

Note that the curvatures can be calculated
either numerical or analytical ways. Due to
triangular meshes that usually represent
a surface of 3D objects, numerical methods are
preferred. However, there are many algorithms
that estimate curvatures, e.g. [12] presents
an overview and a comparison among them.

5. Topological description

In the introduction we mentioned that feature
extraction methods - were used in many
applications and the main task of these
methods was to describe objects by limited
number of information. Note that a proposal
of that method also has to be connected
with its employment. A problem of similarity
comparing among objects usually has to be
solved and this still has to be kept in the mind.
The first part of this paper introduced the Reeb
graph. We can see this graph as a ‘skeleton’

RS\ RE

f O

- CRTRE
GRERERR

- RTRTRR

BRI

X\“‘:\\ ¢
X
R

11y,
i,
V2081870004, l,""',

:33:‘}3&3333\\\:}}3\ 46550 seitsitisag oy dted
: 33&3“3{%“\W‘ R )
Fre o NRTHY K<t R 3y
<o H<o R ; 4
. : i H>0
K>0 K=0 K<0

Figure 4: A classification of points on a surface of a smooth manifold into several groups according to values of the

Gaussian curvature K and the Mean curvature M (the figures are taken from [1]).
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In the future, we will use this description for L’Académie ses Séances, Paris, Vol. 222, pp.
a similarity comparison problem. Exactly, we 847-849, 1946,

want to propose a feature extraction method {10] Rektorys, K. and at al: Pfehled uZité
that could be used in a retrieval system for 3D matematiky.  Nakladatelstvi ~ Prometheus,
models represented by triangular meshes. ISBN: 80-85849-72-0, Praha, 1995.

{11] Shinagawa, Y., Kunii, T, L,
Kergosien, Y., L.: Surface Codings Based on
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