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1. Introduction

To  describe certain complex  natura]

phenomena as, for instance, stress and strain in
the materia] science, - diffusion of water
molecules in biological tissyes important for
the medical science or rate of strain and
viscous stresses in studying fluid flows,

The theoretical back
iven in chapters 2 angd 3,
Verview of the

ground will be
which bring an
existing visualization
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Stress Tensor Field
Visualization

2, Existing Methods

In this section, ex

isting approaches to second
order tensor f

eld visualization will be

concentrate
approaches,
method descr.

on most
which are related t

ibed later in chapter 4

well-known
0 our own

2.1 Color Coding

Methods based op color coding try to offer an
aid for exploring the tengor data by displaying

its  individua] Scalar components. More
precisely, the scalar va]

color and then applied on
the volume, Since three
order tensorg consist o
scalar Components, it g necessary to utiljze
nine images of 4 slice, each corresponding to
One component. Thege colored slice images
are usually arranged to 5 3x3 grid resembling
the matrix Notation of a tensor 80 that the user
automatically associates individyal images
with the relevant Components. [4)

planar slices through
dimensional second
f nine independent




As all the scalar values are depicted,
the entire information available in the selected
slice through the tensor field is included in the
final picture. Yet, it is too demanding for
human brain to acquire information from
multiple images simultaneously and combine
it together to construct a comprehensible
notion of the phenomenon behind. Although
not useless, this method is far from providing
intuitively interpretable results.

Another possibility is to use color
coding based on the eigenvalues of the tensors,
which produces only three images expressing
certain geometric information (see [5] for
illustration). Yet, it is still difficult to
understand the behavior of the data values and
rather insufficient for making analyses.

2.2 Glyphs Rendering

Methods falling to this category depict data in
discrete locations of the dataset by mapping
the values on the properties of a simple
geometrical object such as shape, size and
color. [7] These objects are usually called
glyphs or icons and may take various forms.

Selection of the geometrical object to
use must reflect the needs of the visualization.
In flow exploration some kind of ring
complemented 3D arrow is often the choice.
The most frequently encountered shape,
however, is probably an ellipsoid, whose axes
are parallel to the eigenvectors of the tensor
matrix. Length of each axis then corresponds
to the magnitude of the appropriate
eigenvalue. The power of using such ellipsoids
consists in two facts. First, its shape is simple
thus making the information easy to
understand.  Second,  the  system of
eigenvectors represents the situation at a
specific location very concisely.

Ellipsoidal glyph as described above
works well for symmetric second order
tensors, where the eigenvectors are guaranteed
to be orthogonal. In case of non-symmetric
tensor fields one should rather use tripoids.

The discrete character of glyphs seems
to be their main disadvantage. They only allow
displaying information in separate locations,
whose density, moreover, must not be too
high. Otherwise, glyphs might overlap each
other and cause visual clutter. To maintain
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visual clarity some ellipsoids might
require rescaling or the tensors might ne
be decomposed prior to the visualization i
In that case, however, certain pat
magnitude information may be lost.

2.3 Hyperstreamlines

Unlike glyphs, tensor field lines
hyperstreamlines [2] aim to pr
continuous  display. They were, in

developed as a modification of orc
streamlines known from vector fields.

Before the computation
hyperstreamlines themselves, the syster
eigenvectors are found. These vector
sorted according to the correspo
eigenvalues thus forming three vector
one for each eigenvalue. One of these
fields is then chosen for integ
streamlines.

Figure 1: Sketch of a hyperstreamline fo
Symmetric (top) and non-symmetric (bottol

Up to now the procedure d
distinguish between symmetric ~ anc
symmetric  1ensor fields. At this
however, similarly as in case of glyphs
differences can be found in the
hyperstreamlines for these two kinds ¢
In the case of symmetric data with th
eigenvectors being orthogona
hyperstreamline is rendered as a tul
elliptical cross-section, whose siz




w
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orientation jg driven by the two remaining
eigenvectors, In the other case, the non-
Symmetric information is represented by a
System of ribbong along the hyperstreamline as
illustrated jn Figure 1.

Hyperstreamlines give a continuous
notion of how the values in the tensor field
evolve, To provide complete information,
however, one needs to integrate along each of
the three vector fields thus producing three
images. All the three images must then be
taken into account by the user. To avoid visual
chaos, seeding must be considered carefully
again.

2.4 Topological Approach

To a certain extent, this method s a solution
for the hyperstreamline seeding strategy issye.
The topological approach [3] first locates
points, where at least two of the eigenvalues
equal to each other. These locations are called
degenerate points and may be classified
according to the behavior of the tensor field in
their surrounding as, so called, trisectors or
wedge points, Degenerate points are then used
a8 seeding  locations for integrating
hyperstreamlines. Together they express the
tensor field’s topology, which is, according to
the authors, often simpler than that of 4 vector
field.

2.5 Interactive Deformations

Boring and Pang [1] suggest visualizing
Symmetric second order tensor fields by letting
the tensors deform a geometric object as, for
Instance, plane, First, the so called resolute
vector of g tensor, which determines the
tensor’s impact on ap interrogation object 7
with normal vector n, is computed at al points
defining / using equation (1) bellow. Where
the tensor js unknown, trilinear interpolation is
used to approximate it and the resolute vector
is then applied on the interrogation object. The
displacement of point Ax) of the interrogation
object to a new position ((x) is controlled by
the following rule:

AX)=1(x) + {T(x) - n(x)),
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where x denotes position, s is a scale factor,
T(x) tensor at x and n(x) is the user selected
position of x, The product
T(x) - n(x) corresponds to the resolute vector.
The deformed object illustrating the impact of
the tensor field’s influence is then visualized
using appropriate visualization techniques,

This concept has been extended later in
[51, where volume is deformed instead of the
Interrogation object,

3. Stress Tensor Definition ang
Description

The state of stress in location Mis defined, if
and only if stress on any facet passing through
this location js given. [6] A stress vector p is
then a function of ALs position and a normal
vector of the considered facet. We can write it
as

P =p(r,n),

with r being the Position vector and
nN=(n,m,n) a unit normal vector of the

considered facet. Ag there is ap infinite
number of facets passing through M, this
vector representation s unsuitable, Therefore,
a tensor representation was derived, It starts
from an elementary tetrahedron chosen in the
vicinity of Af whose three edges are parallel to
the three axis of the Cartesian coordinate
System as depicted in Figure 2.

Ps

X

Figure 2: The elementary tetrahedron for stregs
tensor derivation




Employing the condition of balance of
concerned forces, the following relation can be

obtained
3

Pt Pyt P8 = Z(Apﬂelnl + Pptytly + Patyih)
=l

where p and P denote the components of
vectors p and p;. The above equation can be

rewritten as follows
P = Z Pl -

The state of stress in location M is thus
uniquely described by the nine values pi,
which are independent of the chosen facet and
together make up an object called stress fensor.
The three components for /= k represent the,
so called, normal stresses on the three
perpendicular facets at location M and they are
referenced as ©; in material science. The
remaining components for i# k represent the
shear sitresses on these facets and are
referenced as Tx. The whole equation can be
expressed in matrix notation as well

p=ZL-A, M)

where T=[p,]isa3x3 matrix representing
the stress tensor.

Moreover, the conditions of balance also
imply that the stress tensor is symmetric,
which is an important property for some of the
visualization methods.

4. Our Approach

All the existing methods, we have found,
visualize the information contained in a tensor
field by addressing the query to display the
stresses acting in the user defined region.
Whether this region covers the whole dataset
or just a segment of it and whether the
visualization is continuous or not, represents
two main aspects, which distinguish these
approaches from each other.

4.1 Theory

In our work, however, we visualize the tensor
field information the opposite way, answering
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the query to locate and display the region,
where the user defined stresses act. In other
words, we let users specify a stress vector they
are interested in and see the region, where
such stress appears within the tensor field
dataset.

For this reason Wwe
equation (1) to obtain

first invert

n=X"p, @

where p is the user defined stress vector.
Equation (2) thus yields vector n that is normal
to the facet, on which p acts. It is, however,
necessary to note that in this case n may not be
unit vector any more. Instead, its magnitude
provides us with the information about the
magnitude of the stress that is really present.
In fact, if the magnitude of n equals to one, the
actual stress magnitude matches the user
specified request precisely, as can be verified
by back substituting this vector to equation (1).
If ln] >1, the actual stress parallel to the usel

defined vector is weaker than the user definec
one. In other words, if we normalize n anc
back substitute it to (1) again, we will obtain ¢
stress vector in the same direction as the use
requested stress vector p, but with lowe
magnitude. Similarly, if |ni <1, the actua

stress parallel to the user defined vector i
stronger than the user requested.

Under certain conditions, matrix X~
may not exist. Such a case corresponds to th
situation, when vectors pi (see Fig.1) ar
coplanar or collinear and, therefore, the row
of matrix X become lincarly dependen
Obviously, no solution exists if the ust
chooses a stress Vector, which does not reclir
in the same plane or line defined by the:
vectors while, on the other band, an infini
number of solutions can be found for one th
does. We then need to find out, if some
these solutions is of unit length. Mathematic
background of this issue can be found in [8].

The above procedure provides us wi
the possibility to locate regions, where t
stress in the requested direction is higher
lower than the user defined one. We can th
visualize the surface separating these regic
as a kind of isosurface.
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4.2 Implementation Issues

6. Conclusijon and Future Work
There are Several implementatjon issues that Our Procedure, described in this article,
deserve mentioning here, The firg concerns Provides us with the possibility to locate areas,
Matrix inversion, e use singular valye where the yger defined stress acts. We aim to
decomposition 5 described in (8], which subject the visualization of thig extracted
offers - several advantages. First off, this region to further investigation focusing on the
Procedure  asgyreg sufficient i

1 Possibility to complement it with as much
locations with regular tensor matrix. Second, it iti information as possible and

Teasonable. For thjs burpose, we might utilize
tensor matrix becomes close to singular. Third, some  glyph rendering or colop coding
it allows ys to treat both the aboye cases in a techniques.

Similar way. In other words, we can perform We are also going to study the
VD of all the tensor matrices in advance, accuracy issue mentioned jp the detail in the

regardless from whether they are regular or last Paragraph of section 4.2

not. Then, after the User specifies the stress

vector of interest, jt allows us to find a solution 7. Acknowledgements

in the singular location as wel] if one exists.
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Figure 3:

Visualization of the separating surface
between the region, where the actual stress
parallel to the user defined stress has lower
magnitude than requested and the region,
where it exceeds the user requested value.

The upper two images (a.) and (b.) were taken
for a user defined stress vector (0.5, 0.5, 0.5).
(a.) shows the position of the surface within
the object. (b.) shows the same surface
complemented with nodes shaded according to
the stress magnitude, where dark means higher
values and light the lower ones.

Picture (c.) shows the same information as (b.)
but for a different user defined stress vector
(0.1,0.1,0.1).
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