THEF
/ TECANO795/P

; Skjala,V.: OpenGL interface for .NET, EC&I 2004, KoSice, VIENALA Press, pp.421-426, ISBN 80-8073-150-0, 2004

FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS
OF
THE TECHNICAL UNIVERSITY OF KOSICE

PROCEEDINGS
of
THE SIXTH INTERNATIONAL SCIENTIFIC CONFERENCE

ELECTRONIC
COMPUTERS and INFORMATICS
ECI 2004

The conference is organized by
Department of Computers and Informatics

It co-operation with:
Slovak Society for Applied Cybernetics and Informatics
Czech and Slovak Society for Simulation

Sponsoring by:
SIEMENS Program & System Engineering s.r.o. Bratislava
Ing. Milan RoSko, TEGH, Information Technology Dep. Toronto, Kanada
ZTS Vyskumno-vyvojovy ustav a.s., KoSice

Editors: Stefan Hudsk, Jin Kollr

September 22-24, 2004
Kosice - Herlany
Slovakia

.. OpenGL interface for .NET, EC&l 2004, KoSice, VIENALA Press, pp.421-426, ISBN 80-8073-150-0, 2004

Editors’ Note

This publication was reproduced by the photo process, using the
manuscripts and soft copies supplied by their authors. The layout, figures, and
tables of some papers did not comform exactly with the standard requirements.
In some cases the layout of the manuscripts were rebuilt. All mistakes in
manuscripts there either could not be fixed, or could not be checked completely
by reviewers and there are a responsibility of authors. The readers are therefore
asked to excuse any deficiencies in this publication which may have arisen from
the above causes.

Copyright © 2004 by the ECI 2004 Editor

Extracting and nonprofit use of the material is permitted with credit to the
source. Libraries are permitted to photocopy for private use of patrons.
Instructors are permitted to photocopy isolated articles for noncommercial
classroom use without fee. After this work has been published, the authors have
the right to republish it, in whole or part, in any publication of which he/she is
an author or editor, and to make other personal use of the work.

Proceedings of the Sixth International Scientific Conference Electronic
Computers and Informatics ECI 2004

ISBN 80-8073-150-0

Editors: Stefan Huddk, Jan Kollar

September 22-24, 2004, Kogice - Herl'any, Slovakia

© Layout & Design: J. Ba¢a, D. Mihalyi, D. Sobotova

Additional copies can be obtained from:
Department of Computers and Informatics of FEI,
The University of Technology KoSice,

Letna 9, 04200 KoSice, Slovakia

Phone: +421-55-63 353 13

Fax: +421-55-6330115

E-mail: Stefan.Hudak@tuke.sk, Jan.Kollar@tuke.sk

Proceedings of
the Sixth International Scientific Conference
Electronics Computer and Informatics ECI 2004

VIENALA Press
Moldavska 8/A, 040 01 Kogice

Edition: 35
September 2004

ISBN 80-8073-150-0

Scanned by the Library of UNB

’ SS, Pl

e, VIENALA Pre P 42
| c N ’ C ’

lanak kala,V.: OpenGL terface fo E EC&I 2004, KoSic

aley S i

OpengGr, Interface for NET

Ivo Hangk, Viclay Skala
Department of Computer Scien

University of West Bohemia,
E-maij; hanak@y

Abstract

OpenGL s one of the mog; used interfaceg for 8raphica] Output that jg widely Supported by gr. aphict‘:il
E a platform Specification that offers comfortable and sale
ides ap interface fo, .NET COoperation. The interface is

IS an implementa

This Paper prese
approach fur OpenGL and NET
onment interoperabiiity. Rather then

Mplete solution thjg Paper present feasibility
1dy of the approach that jg aimed op ,

‘ viewpoint of the uger.
In the Section 1, this Paper descripeg
ironments and major ¢ that were used
reati - Section 2 then
another already

that are solved

Microsoft, It is ap
MA standard thg¢
for a platform

421

independent code, je. Common Language

Infrastructure (CLD [1] that consists of two

major partg: Common Type System (CTS) and

‘ ich specifieg an amount of

Supported by any correct CLI

imp]ementation.
The

that are

languageg [2]. Every

° fit in the CTS

may be used ¢, Eenerate code that

le with any CLJ implementation.

is not bounded ¢, any specific

Programming language anq there are avajlable

Ianguages, such ag C#, J#, Visua] Basic.NET,

C++ Manageq Extension (MC++), Ada.NET,

etc. The Construction of the CLI allows easy

C0operation of , code generated by any of
CLI-compatibIe Ianguages.

CLI provides a safe and

It yges memory

&arbage collector

Operationg,
The code that
implementation
mmon Immedijate
ather Optimijzed

for a compilation and the CLI utilizes Just-In-

Time compiler for this purpose. The CLI

supports execution of native binary code, i.e.

unmanaged code. The unmanaged code

cooperation is supported in a form of:

e Platform Invoke (P/lnvoke) that allows
executing simple functions stored in a DLL
library.

o COM Interoperability that allows a user to
operate with COM object.

o [t Just Works (1JW) mechanism that allows
fine control over data type conversions and
therefore leads to better performance in the
comparison to P/Invoke. However, this
mechanism is available only from MC++.

1.2 OpenGL

OpenGL is common graphic interface
developed by SGI [3]. It allows advanced
graphical output and utilizes hardware if
available. The interface consists of simple
functions and numeric constants. The fact that
the interface consists only of functions stored
in a DLL allows us to benefit from CLI
capabilities for unmanaged code cooperation.
However, the interface utilizes pointers quite a
lot and therefore the direct introduction of
these functions to the managed environment is
not suitable.

Functionality of the OpenGL library
can be extended and/or simplified by other
libraries such as the GLU [4] and the GLUT.
The GLU contains set of functions that allows
rendering of high-order primitives, such as
parametric surfaces. It also provides support
for more sophisticated transformation
operation. The GLUT library [5] is a third-
party toolkit that simplifies operating system
cooperation tasks for the OpenGL.

The essential part of the OpenGL is
GL Extensions miechanism [6] that allows
adding of a new functionality. The system
allows anyone to add new functionality by
defining new GL Extension. However, each
extension may not only to add new function
but may also modify functionality and values
accepted by already existing function.

Another possibility for high-
performance graphical output is the Direct3D
(D3D) library. Despite the fact that the D3D
provides simple interface that is comfortable at

: \/ OpenGL interface for .NET, EC&l 2004, KoSice, VIENALA Press, pp.421-426, ISBN 80-8073-150-0, 2004

the same time, we aimed on OpenGL from
reasons. First, the D3D has already offi
managed version. Second, the D3D
currently available only on a single platforn

1.3 The Goal

The goal the project is to cre
interface that would allow advanced graph-
output with hardware support. This interf
shall use native binary libraries, such
OpenGL, in order to provide desi
functionality. It is clear that for such purp
the best solution is to port some other alre:
available interface because it leads to
lower requirement on learning time for s
interface.

The next goal of the project is
provide simple and easy interface,
interface that would be possible to use with
deep knowledge of .NET environment. Thai
to that the user should be able to experim
with the interface without long and extens
learning. The interface shall not force user
use pointers and low level native o
operations because the use of mentior
capabilities requires knowledge that is dee
than the necessary level.

The interface shall also utilize enu
instead of numeric constants. It narrows do
the set of values the user is forced to cho
from. It shall also prevent from accider
passing of wrong value as a funct
parameter.

One of the important goals of
project is to allow parameter checking in or
to prevent unexpected application crashes, ¢
accessing invalid memory. It shall also prew:
the user from passing invalid combination
parameter values.

The last goal the project is 1
performance. We are sure that there will
some performance loss due to both .NI
framework environment and unmanaged co
cooperation. However, the loss shall be as k
as possible and the result shall be comparal
to other solution and even to unmanag
version.

2. Previoys Work

One of the already existing ports of the
OpenGL o the .NET is the CsGL project [7].

a single class, AJ] functions and constants of
every GL Extensions are members of the same
class. Due to the inheritance, the final class
containg 4] OpenGL functions that are
available,

The recommended yge
via inhcritanc_e. Thanks

of the CsGL is
to that the yger can

use CsGL types instead of CL] nati
order to avoid unsafe code,

3. Difficulties

not reference to such block.
From the viewpoint of the managed

¢ to particular memory block, the GC d

4.1 Structure

Based on featureg
utilized object

interface t0o0 much

original OpenGL. We
of classes:

Unmanaged part stij] uses (unmanaged) pointer
to such bjock.

Callback functions e the
important difficulty. They are useq
GLU in order t i

next

by the
O provide error notification

class for such callback.

The last diff;
difficulty jg based
shall prevent forci
blocks and/or repl

culty is vosg Pointer. This
on a fact that the solution
ng the user to yge unsafe
acement for natjve built-in
data types. It IS not possible to provide
Straightforward replacement of the void
pointers by any of valid Managed constructjop,

4. Solution

Our solution is a wra
binary libraries of the O

of the NET environment we
oriented approach, AJ]

in Comparison to the
then create thege groups

System classes t

hat handles initialization
and underlying G

UI cooperation,

o OpenGL and GLU classes contain
functions of both OpenGL and GLU
interface. These classes require system
classes. New versions of the interface are
derived from these classes.

; s GL Extension classes provide functionality

! of GL Extensions. Functions are divided
by their affiliation to particular class.
Functions modified by particular GL
Extension are included too. The advantage
of this approach is that the user is able to
choose which extensions to use. On the
other hand this approach is not useful for
complicated extensions that modify
parameters of far too many functions.

o Internal data structures that contain data
kept inside of OpenGL/GLU for later use,
e.g. vertex arrays. It provides protection
from the GC. The drawback is the fact that
these classes may require modification
when new version of the OpenGL is
wrapped. However, these classes are

_invisible to the user and therefore the
interface stays intact.

o Other classes that provide functionality
similar to "GLUT, ie. they simplify
underlying GUI cooperation.

Constants that are used by the interface
are replaced by enums. The division into
particular enums is based on their affiliation to
functions. The advantage of enums is a fact
that the user is not forced to choose from wide
range of constants only a small set is available.
It allows the user to benefit from capabilities
of modern IDEs that provide completion of
identifiers. The disadvantage is a fact that this
leads to the code that differs from original
OpenGL code. Example of a simple code is

available in Figure 1.

gl.ClearColox (0, 0, 0, 0);

gl.Clear(
ClearMasks.GL_COLOR_BUFFER_BIT);

gl.Begin (RenderPrimitive.GL_POINTS) ;

gl.Color3d(1l, 1, 1, 1);

gl.Vertex3d(0, 0, 0);

gl.End():

Figure |: Example of a code that draws a point
4.2 Construction

Among other things, the wrapper allows us to
implement parameter checking that prevents
the user to use invalid and/or uninitialized

424

V. QpenGL interface for .NET, EC&l 2004, KoSice, VIENALA Press, pp.421-426, ISBN 80-8073-150-0, 2004

structures. It can also protect the user fro:
passing invalid combination of parameters.
is sure that this may lead to significa
slowdown. However, it is possible to crea
two versions of the interface: one that does n
utilize parameter checking and one that doe
The last version is intended for debuggi
purposes.

As it was mentioned each functi
wraps another existing function. This wrapp
first performs parameter checking and the
locks data to protect them if required. As ne:
the wrapper calls original function and obtai
its return value that is stored into tempora
variable. Afterwards the wrapper unloc
locked data and returns the return value if an’

4.3 Difficulties

One of the major difficulties is the d:

sharing of reference types, i.e. protection

referenced data structures from the GC.
order to solve the difficulty we have thr
possible approaches:

e P/nvoke is a general approach intend
for calling unmanaged functions stored
DLL. During the call, the P/Invoke hand
protection from the GC and the d
conversion if required. The P/Invoke is
second fastest approach in comparison
the rest. Jt is also capable to han
callbacks. Therefore our solution uses
for such purpose.

e (CHandle is a structure that allo
handling of almost any reference data ty
However, the GCHandle is slow due
runtime validity checking. On the otl
hand, it is a general approach that allo
us to handle even data that are sto
inside OpenGL binary for later use, ¢
vertex arrays. Therefore our solut
utilizes GCHandle for such purpose.

e Pinning pointers that are similar
GCHandle but with a few restrictions. 1
major restriction is the fact that the pinni
pointer data type can be used only a
local variable. On the other hand, pinni
pointers are significantly faster then :
GCHandle because they do not util
runtime validity checking. Pinning point
are used for data that are not stored ins
OpenGL for later use.

stored inside predefined
Structures, .8 glVertex2dy, Qur solution
utilizes Structures wherever possible,

NET provideq capability. In

a few cases
environment b

pinning pointers ang needs
little additiona] constructions,

this approach iIs the most

Is just an integer form the view,
environment and jt requires additiona]
Constructions and/or function calls in order to

obtain jt. Therefore we used eijther general
arrays or overloading.

Genera/ anays benefits from the fact
that each i i

Combination of Parameters,

of tests are relative to
, i.e. Win32 version. Thig
smaller then 1. de
In order to make our
red both debug,

note
tests
i.e. our

¥orse performance,
Omplex we compa

425

more details refer to

Parameter checking,

£irst test is aimed On passing of built-in
data valye, The test renders a triangle that jg

AQur (debug)
8 Our (retail)
¢ CsGL-

The next fes

¢ compares approaches for
data sharing of small

Structures, For Such purpose g &lColorep
function s used. This test tompares P/Invoke
with and withoyt unsafe

er block of memory, j.e.

Skala,V.: OpenGL interface for .NET, EC&l 2004, KoSice, VIENALA Press, pp.421-426, ISBN 80-8073-150-0, 2004

case, only retail version of our solution is
compared. The results are shown in Figure 4.

CsGL (P/Invoke) @ Our (pinning ptr)
AOur (structure) X CsGL (unsafe)

¥~H~§—m~ﬂ‘+

0.200
0.000 +— T
1000 10000 100000
log(Call No.)

Figure 4: Various approaches for data sharing of
non-built-in value data types

From the results it is sure that the
existence of unsafe blocks has almost no
impact on P/Invoke performance. Also the
performance of structures, i.e. value data
types, and pinning pointers is very close to
each other and therefore solution that utilizes
value data types instead of arrays shall not
suffer from any significant performance
dropdown.

The last test is a complex scene. This
shall check the overall performance for real
scene. In this case a matrix of spheres is
rendered. For each sphere its material, texture,
transformations, and geometry using vertex
array are set. This test combines various
approaches to data sharing and the results are
available in Figure 3.

1.000 @ Our (retail)
0.990 A Our {(debug)
& CsGL

0.980 T
20870 Ll

0.960 * % 1.58.8.5.8.8
0.950 -+ ,]
1000

eed

10000 100000

log(Object No.)

Figure 5: Complex Scene

6. Conclusion

We presented a possible solution for an
OpenGL interface in managed environment
that is both comfortable and safe. We intended
to keep interface as close as it is possible to
original OpenGL interface even though we
used object oriented approach including
inheritance. However, it was not possible to
create a smooth object oriented approach due

to the construction of the GL Extensions
mechanism.

We then proved that our solution
provides performance similar to CsGL for
complex scene and that both solutions are
close to performance of the unmanaged code.
It is even possible to assume that there is no
significant slowdown for rendering from
managed environment. We also implemented a
tool that allows semi-automatic generation of
wrapper source code from OpenGL C header
files. The only manual input is the handling of
void pointers. However, it is applied only to a
small fraction of the whole function set.

Acknowledgments

We would like to thank you our colleagues and
students of APG and GSVD course. This
project is supported by the Ministry of
Education of The Czech Republic project
MSM 23500005 and by Microsoft Research
Ltd. (U.K).

References

[1] Standard ECMA-335: CLIL.
http://www.ecma-international.org/
publications/standards/Ecma-335.htm
[2] Prosise J.: Programming Microsoft .NET.
Microsoft Press, 2002.

[3] Segal, M., Akeley, K. The OpenGL
Graphics System: A Specification Version 1.3.
http://www.opengl.org/developers/documentat
ion/versionl _3/glspeci3.pdf

[4] Chin, N., Frazier, C., Ho, P, Liu, Z,
Smith, K. P.: The OpenGL Graphics System .
Utility Library (Version 1.3). ftp://ftp.sgi.com/
opengl/doc/opengl1.2/glul.3.pdf
{5] Kilgard, J. M.. The OpenGL Utility
Toolkit Programming Interface (API Versiotl
3).
http://www.opengl.org/developers/documentat
jon/glut/spec3/spec3.html

[6] GL Extensions Registry.http:
projects/ogl-sample/registry/ :
[7] CsGL Project. http://csgl.sourceforge.m’ft
[8] Richter, J.: Garbage Collection: Automa
Memory Management in the Microsoft. .2
Framework. http://msdn.microsoft.com/m
mag/issues/1 100/GCl/default.aspX.

//oss.sgi.com/

	img100.pdf
	img101.pdf
	img102.pdf
	img103.pdf
	img104.pdf
	img105.pdf
	img106.pdf
	img107.pdf
	img108.pdf

