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Edge spinning algorithm for implicit surfaces✩
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Abstract

This paper presents a new fast method for polygonization of implicit surfaces. Our method put emphasis on
shape of triangles generated and on the polygonization speed. The main advantages of the triangulation prese
are simplicity and the stable features that can be used for future expansion. The implementation is not com
and only the standard data structures are used. This algorithm is based on the surface tracking scheme and it
compared with the well-known marching cubes algorithm that is based on the similar principle. The pre
algorithm is accelerated by the space subdivision which is an effective technique to speed-up any geometric of this
type.
 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Implicit surfaces seem to be one of the most appealing concepts for building complex shap
surfaces. They have become widely used in several applications in computer graphics and visua

An implicit surface is mathematically defined as a set of points in spacex that satisfy the equatio
f (x) = 0. Thus, visualizing implicit surfaces typically consists in finding the zero-set off , which may
be performed either by polygonizing the surface or by direct ray-tracing.

There are two different definitions for implicit surfaces. The first one [2,3] defines an implicit o
asf (x) < 0 (function f1(x) below) and the second,F -rep [7,12], (functional representation, functio
f2(x)) defines it asf (x) � 0. In our implementation, we use theF -rep definition of implicit objects. The
implicit functions described below show the differences between both definitions for the function s

f1(x): x2 + y2 + z2 − r2 = 0, f2(x): r2 − x2 − z2 = 0.
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Iso-surface extraction is needed for the visualization purposes that have a set of triangles as a result.
Existing techniques may be classified into three categories.
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Spatial sampling techniques regularly or adaptively sample the space to find the cells stradd
implicit surface, and tessellate those cells to create overall polygonization [2,3,9]. In general, c
either cubes or tetrahedra.

Surface tracking approaches (also known as continuation method) iteratively create a triang
from a seed element by marching along the surface [1,2,5,6,14].

Surface fitting techniques progressively adapt and deform an initial mesh to converge to the
surface.

2. Data structures

The presented algorithm uses only the standard data structures used in computer graphics. T
data structure is the edge that is used as a basic building block for polygonization. We use the s
winding edge and therefore, the resulting polygonal mesh is correct and complete with neighb
among all triangles generated. The basic data structures used there are:

• edge—winding edge;
• active edge—an edge that lies on the triangulated area’s border; implemented as an ind

winding edge’s array;
• list of active edges—dynamically allocated list of active edges;
• point—if a point lies on an active edge it contains also two pointers to left and right active edg

and right directions are in active edges orientation.

Fig. 1. The first steps of the algorithm.
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3. Principle of our algorithm
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Our algorithm is based on the surface tracking scheme and therefore, there are several lim
A starting point must be determined and only one separated implicit surface can by polygonized
first point. Several disjoint surfaces can be polygonized from a starting point for each of them. The
algorithm consists of following steps:

(1) Find a starting pointp0.
(2) Create a first triangleT0, see Fig. 1.
(3) Include the edges(e0, e1, e2) of the first triangleT0 into the active edges list.
(4) Polygonize the first active edgee from the active edges list.
(5) Delete the actual active edgee from the active edges list and include the new generated active e

at the end of the active edges list.
(6) Check the distance between the new generated pointpnew and all the other points which lie on th

border of already triangulated area (which lie in all the other active edges).
(7) If the active edges list is not empty return to step 4.

4. Starting point

There are several methods for finding a starting point on an implicit surface. These algorithms
based on some random search method as in [2] or on more sophisticated approach. In [14], sea
constant direction from an interior of an implicit object is used.

In our approach, we use a simple algorithm for finding a starting point. A starting point is s
from any place in a defined area in the direction of a gradient vector∇f of an implicit functionf . The
algorithm looks for a pointp0 that satisfies the equationf (p0) = 0.

5. First triangle

The first triangle in polygonization is assumed to lie near a tangent plane of the starting pointp0 that
is on the implicit surface.

Fig. 2. The first triangle generation.
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(1) Determine the normal vectorn = (nx, ny, nz) in the starting pointp0, see Fig. 2,
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n = ∇f/‖∇f‖.
(2) Determine the tangent vectort as in [5]. If (nx > 0.5) or (ny > 0.5) then t = (ny,−nx,0); else

t = (−nz,0, nx).
(3) Use the tangent vectort as a fictive active edge and use the edge spinning algorithm (desc

bellow) for computation coordinates of the second pointp1. The pair of points(p0,p1) forms the
first edgee0.

(4) Polygonize the first edgee0 with the edge spinning algorithm for getting the third pointp2. Points
(p0,p1,p2) and edges(e0, e1, e2) form the first triangleT0.

6. Edge spinning algorithm

The main goal of this work is a numerical stability of a surface point coordinates’ computatio
objects which are defined by the implicit function. Differential properties for each implicit function
different in dependence on the modeling techniques [6,7,10,12,13] and the accurate determina
position of a surface vertex depends on them. In general, a surface vertex position is searched in
of a gradient vector of an implicit functionf , e.g., in [5]. In many cases, the computing of a gradien
the functionf is influenced by a major error. Because of these reasons, in our approach, we have
these restrictions for finding a new surface pointpnew.

• The new pointpnew is sought in a constant distance, i.e., on a circle; then each new generated t
preserves the desired accuracy of polygonization—the average edge’s lengthδe. The circle radius is
proportional to theδe.

• The circle lies in the plane that is defined by the normal vector of triangleTold (see Fig. 3) and axiso
of the actual edgee; this guarantees that the new generated triangle is well shaped (isosceles)

Then, the algorithm is:

(1) Set the pointpnew to its initial position; the initial position is on the triangle’sTold plane on the othe
side of the edgee, see Fig. 3. Let the angle of the initial position beα = 0.

(2) Compute the function valuesf (pnew) = f (α), f (p′
new) = f (α +�α)—initial position rotated by the

angle+�α, f (p′′
new) = f (α − �α)—initial position rotated by the angle−�α; the rotation axis is

the edgee.
(3) Determine the right direction of rotation; if|f (α + �α)| < |f (α)| then+�α else−�α.
(4) Let the function valuesf1 = f (α) andf2 = f (α ± �α); actualize angleα = α ± �α.
(5) If (f1 ·f2) < 0 then compute the accurate coordinates of the new pointpnew by the binary subdivision

between the last two points which correspond to function valuesf1 andf2; else return to step 4.
(6) Check if both trianglesTold andTnew do not cross each other; if the angle between these triangβ

is greater thanβlim (see Fig. 4) then pointpnew is accepted; else pointpnew is rejected and return t
step 4.



M. Cermak, V. Skala / Applied Numerical Mathematics 49 (2004) 331–342 335

cent
Fig. 3. The edge spinning algorithm principle.

Fig. 4. The angle between two triangles; the view is in direction of edge’s vectore.

7. Active edge polygonization

Polygonization of an active edgee consists of several steps. At first, the algorithm checks adja
active edges of the active edgee and determines which case appeared, see Fig. 5.

• If (αi < αlim_1) then case (a);i = 1,2.
• If (α2 < αlim _2) and(‖pe1 − pr_e2‖ < δlim _1) then case (a); analogically forα1.
• If (α2 > αlim _3) and(‖pe1 − pr_e2‖ < δlim _2) then case (b); analogically forα1.
• else case (c).

The relations among limit angles areαlim _1 < αlim _2 � αlim_3.
Possible cases which are illustrated in Fig. 5 are:

(a) In this case, algorithm creates a new triangle and includes a new active edgeenew to the end of the
active edges list.
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Fig. 5. The possible cases for polygonization of an active edgee.

(b) In some situations, the length of certain edges can be shorter then the tolerable limit. In th
algorithm must repair the length of the new edgesenew1 andenew3 to achieve better shapes of ne
triangles. The axiso1 (see Fig. 5) is used as a fictive active edge for the algorithm edge spinnin
the new pointpnew is created as well as two new triangles.

In all the other situations, the edgee is polygonized by the standard algorithm edge spinning.

8. Distance test

To preserve the correct topology and the shape of the mesh triangles it is necessary to per
distance check between the new triangle and a border of already triangulated area. Therefore, e
generated pointpnew must be checked for distance with all the other points which lie in active edge
the triangulation border).

Let the pointpmin be the nearest point to this new pointpnew and distance between both points
δ = ‖pnew − pmin‖. Further, letpmin not lie in the active edges which are in the neighborhood of b
active edges which contain the pointpnew. Then there are two cases described in Fig. 6.
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Fig. 6. The possible cases for distance test.

(a) If δ < δlim _3 then the new pointpnew is replaced with the pointpmin.
(b) If δ < δlim _4 then a new triangle must be created between the new pointpnew and one of two

active edges which contain the pointpmin, i.e., either the triangle(pmin,pnew,pr_min) or the triangle
(pl_min,pnew,pmin), see Fig. 6(b). The decision, which active edge will be used, depends on a
α1, α2. The anglesαi , i = 1,2 are in interval〈0, π〉 and therefore, the triangle with the angleαi that
is better approximation of angle 90◦ is chosen.

The relation between distance limits isδlim _3 < δlim _4.
Now the situation described in Fig. 6(a) and (b) is similar for both cases. Pointpnew is contained in

four active edgese1, e2, e3, e4 and a border of already triangulated area intersects itself on it. The so
of the problem will be introduced in case (b) and solution for case (a) is analogical. Let the four
edges be divided into pairs; the left pair is(e3, e2) and the right pair is(e1, e4). One of these pairs will b
polygonized and the second one will be cached in memory for later use. The solution depends o
β1, β2, see Fig. 6(b). If(β1 < β2) then the left pair(e3, e2) is polygonized; else the right pair(e1, e4) of
active edges is polygonized. In both cases, the second pair that is not polygonized is deleted from
of active edges and the pointpnew is contained only in one pair of active edges.

In Fig. 6(b), the first case is valid(β1 < β2), i.e., the active edges(e3, e2) are polygonized in order tha
depends on anglesγ3, γ2. If (γ3 < γ2) then the active edgee3 is polygonized as the first; else the act
edgee2 is polygonized first. Now, the border of the triangulated area does not cross itself in the poipnew

and the recently polygonized pair of edges is removed from the active edges list. The previously
pair of edges must be returned into the list of active edges.
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9. Space subdivision principle

rowing

to any
ahead.
en the

orhood.

b-
s in

in;
int lies

rithm

tation.
The original distance check algorithm takes more time if a required scene detail grows (g
number of points on the triangulation border). The algorithm complexity for one included point is O(N),
whereN is a number of points in active edges. In aspect that the new included point can lie near
point of the boundary, it is not possible to determine some subset of candidates to nearest point

Advantageous solution is dividing of space into sub-spaces (sub-areas), similarly as in [4]. Th
nearest point must lie in the same sub-area like the new included point or in the closest neighb
In order to validate this theorem next equation must be valid as well:σ � δlim _4, whereσ is the size of
sub-areas (cube shape), see Fig. 7, andδlim _4 is the high limit distance for distance check.

The algorithm complexity of this solution is O(M), whereM is a number of points in adjacent su
areas andM � N . Fig. 7 shows 9 possible sub-areas inE2 case and there are 27 possible sub-area
E3 case.

In implementation, the data structures mentioned in Section 2 must be slightly expanded.

• sub-areas—an array; each sub-area has its own dynamically allocated list of points which lie
• point–each point that lies on the triangulation border has the index of sub-area in which the po

as well.

The computational time of the Edge spinning algorithm consists of two main parts, thepolygonization
time and thedistance test time. Fig. 8 shows the ratio between both parts for the edge spinning algo
without and with usage of the space subdivision technique.

It is obvious that such acceleration technique is effective in result and simple for implemen
More examples and tests are found in next section.

Fig. 7. The space subdivision scheme for distance checking.
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Fig. 8. The time ratio between the polygonization time and the distance test time of the edge spinning algorithm; (a)
the space subdivision scheme, (b) with the space subdivision.

Fig. 9. The triangular mesh of the implicit object Genus that is polygonized by (a) the edge spinning algorithm, (b) the m
cubes algorithm.

10. Experimental results

All the experiments described above were accomplished on the implicit objectGenus, see Fig. 9. Its
implicit function is described as follows:

f (x) = r4
z · z2 − [

1− (x/rx)
2 − (y/ry)

2
] × [

(x − x1)
2 + y2 − r2

1

]

× [
(x + x1)

2 + y2 − r2
1

] = 0,

wherex = [x, y, z] and the parameters are:rx = 6, ry = 3.5, rz = 4, r1 = 1.2, x1 = 3.9.
A visual comparison of a triangle’s shape quality proves that the polygonal mesh generated

edge spinning algorithm is much better than the marching cubes method. This result is vindicate
next histogram, Fig. 10 that shows the percentage frequency of triangles’ angles generated in th
polygonal mesh.

The original edge spinning (ES) algorithm (without usage the space subdivision technique) take
time for polygonization of implicit objects than the marching cubes (MC) algorithm. This deficien
successfully remedied in the accelerated version. Fig. 11 shows the polygonization time’s ratios b
mentioned algorithms. This diagram proves that the accelerated edge spinning (ESA) algorithm i
(constantly) faster than the marching cubes algorithm in all experiments. Fig. 11 contains the sp
between both versions of the edge spinning algorithm as well and demonstrates the efficienc
acceleration technique used.
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Fig. 10. Histogram of the triangle shape quality for the edge spinning and the marching cubes algorithms. Gene
N = 1000, see Table 1.

Fig. 11. Computational time comparison (speed-up) between the original ES algorithm and the accelerated one, between
original ES and the MC algorithm and between the ESA and the MC method.

TheN variable used in figures above and in Table 1, represents a desired object detail. Spec
the average triangles edges’ length is proportional toN and to the computing area’s size as well. W
growing N , the triangles’ edges are shorter, i.e., each side of the computing area is like dividedN

parts and length of such part is the average edges’ length of generated triangles. The computin
size used in experiments is[〈xmin, xmax〉, 〈ymin, ymax〉, 〈zmin, zmax〉] = [〈−8,8〉, 〈−8,8〉, 〈−8,8〉].

The measured values from all experiments described above are contained in Table 1.
It is obvious that the edge spinning algorithm generates about 23% triangles less than the m

cubes method and the output polygonal mesh consists of well-shaped triangles. The results pres
original and also were verified on many nontrivial implicit surfaces.

11. Conclusion

In this paper, we have presented the new principle for polygonization of implicit surfaces
algorithm marches over the object’s surface and computes the accurate coordinates of new
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Table 1
The measured values from experiments
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res, in:

hics 24
N 160 240 400 630 1000

Edge spinning Triangles: 53992 120766 335622 834966 2110
Vertices: 26992 60379 167807 417479 10552
Time [ms]: 380 871 2664 7511 2116

Marching cubes Triangles: 69676 157520 437800 1085376 2735
Vertices: 34826 78756 218896 542684 13679
Time [ms]: 450 1182 3646 12588 2554

by spinning the edges of already generated triangles. The algorithm can be simply accelera
experimental results prove that the selection of subset of candidate points by the space sub
scheme is an effective way for this type of geometric algorithms. The edge spinning algorithm gen
well-shaped triangular mesh and its polygonization speed is comparable with the well-known and
marching cubes algorithm.

Presented method can polygonize implicit surfaces which complyC1 continuity. In future work, we
want to modify the current algorithm for implicit functions with onlyC0 continuity. We suppose tha
our defined restrictions, for polygonization of an active edge, are the right way. In next research,
work on adapting the Edge spinning algorithm to local curvature of an implicit surface, [1,8].
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