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Abstract

This paper presents a new fast hmad for polygonization of implicit sugices. Our method put emphasis on the
shape of triangles generated and on the polygonizatieadsprhe main advantages of the triangulation presented
are simplicity and the stable features that can be used for future expansion. The implementation is not complicated
and only the standard data structures are used. Th@sitim is based on the saxe tracking scheme and it is
compared with the well-known marching cubes algorithm that is based on the similar principle. The presented
algorithm is accelerated by the space subdivision which isffective technique to speagh any geometric of this
type.
0 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Implicit surfaces seem to be one of the most appealing concepts for building complex shapes and
surfaces. They have become widely used in several applications in computer graphics and visualization.

An implicit surface is mathematically defined as a set of points in spabat satisfy the equation
f(x) = 0. Thus, visualizing implicit surfaces typically consists in finding the zero-s¢t, afhich may
be performed either by polygonizing the surface or by direct ray-tracing.

There are two different definitions for implicit surfaces. The first one [2,3] defines an implicit object
as f(xX) < 0 (function f1(x) below) and the second;-rep [7,12], (functional representation, function
f2(X)) defines it asf (x) > 0. In our implementation, we use tlferep definition of implicit objects. The
implicit functions described below show the differences between both definitions for the function sphere.

A0 2492472220,  fo(X): r2—x2—72=0.

Y This work was supported by the Ministry of Education of the Czech Republic — project MSM 235200005.

* Corresponding author.
E-mail addresses: cermakm@kiv.zcu.cz (M. Cermak), skala@kiv.zcu.cz (V. Skala).

0168-9274/$30.000 2004 IMACS. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.apnum.2003.12.011



332 M. Cermak, V. Skala / Applied Numerical Mathematics 49 (2004) 331-342

Iso-surface extraction is needed for the visualization purposes that have a set of triangles as a result.
Existing techniques may be classified into three categories.

Spatial sampling techniques regularly or adaptively sample the space to find the cells straddling the
implicit surface, and tessellate those cells to create overall polygonization [2,3,9]. In general, cells are
either cubes or tetrahedra.

Surface tracking approaches (also known as continuation method) iteratively create a triangulation
from a seed element by marching along the surface [1,2,5,6,14].

Surface fitting techniques progressively adapt and deform an initial mesh to converge to the implicit
surface.

2. Data structures

The presented algorithm uses only the standard data structures used in computer graphics. The mait
data structure is the edge that is used as a basic building block for polygonization. We use the standard
winding edge and therefore, the resulting polygonal mesh is correct and complete with neighborhood
among all triangles generated. The basic data structures used there are:

e edge—winding edge;

e active edge—an edge that lies on the triangulated area’s border; implemented as an index into
winding edge’s array;

o list of active edges—dynamically allocated list of active edges;

e point—if a point lies on an active edge it contains also two pointers to left and right active edge; left
and right directions are in active edges orientation.
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Fig. 1. The first steps of the algorithm.
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3. Principleof our algorithm

Our algorithm is based on the surface tracking scheme and therefore, there are several limitations.
A starting point must be determined and only one separated implicit surface can by polygonized for this
first point. Several disjoint surfaces can be polygonized from a starting point for each of them. The whole
algorithm consists of following steps:

(1) Find a starting poinpg.

(2) Create a first triangl&;, see Fig. 1.

(3) Include the edge&y, e1, e2) Of the first triangleTy into the active edges list.

(4) Polygonize the first active edgdrom the active edges list.

(5) Delete the actual active edgdrom the active edges list and include the new generated active edges
at the end of the active edges list.

(6) Check the distance between the new generated pgiptand all the other points which lie on the
border of already triangulated area (which lie in all the other active edges).

(7) If the active edges list is not empty return to step 4.

4, Starting point

There are several methods for finding a starting point on an implicit surface. These algorithms can be
based on some random search method as in [2] or on more sophisticated approach. In [14], searching ir
constant direction from an interior of an implicit object is used.

In our approach, we use a simple algorithm for finding a starting point. A starting point is sought
from any place in a defined area in the direction of a gradient vécyoof an implicit function f. The
algorithm looks for a poinpg that satisfies the equatiof(pg) = O.

5. First triangle

The first triangle in polygonization is assumed to lie near a tangent plane of the startingttiat
is on the implicit surface.

Fig. 2. The first triangle generation.
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(1) Determine the normal vector= (n, n,, n;) in the starting poinpo, see Fig. 2,
n = Vf/| Vi].

(2) Determine the tangent vectoras in [5]. If (n, > 0.5) or (n, > 0.5) thent = (n,, —n,, 0); else
t=(—n,0,ny).

(3) Use the tangent vectdras a fictive active edge and use the edge spinning algorithm (described
bellow) for computation coordinates of the second p@intThe pair of points(pg, p1) forms the
first edgeeg.

(4) Polygonize the first edg® with the edge spinning algorithm for getting the third pgiat Points
(Po, P1, P2) and edgesey, e1, ¢2) form the first trianglely.

6. Edge spinning algorithm

The main goal of this work is a numerical stability of a surface point coordinates’ computation for
objects which are defined by the implicit function. Differential properties for each implicit function are
different in dependence on the modeling techniques [6,7,10,12,13] and the accurate determination of a
position of a surface vertex depends on them. In general, a surface vertex position is searched in direction
of a gradient vector of an implicit functiopi, e.g., in [5]. In many cases, the computing of a gradient of
the functiony is influenced by a major error. Because of these reasons, in our approach, we have defined
these restrictions for finding a new surface pggd,.

e The new poinpney iS SOught in a constant distance, i.e., on a circle; then each new generated triangle
preserves the desired accuracy of polygonization—the average edge’sdgntftie circle radius is
proportional to the, .

e The circle lies in the plane that is defined by the normal vector of triafiglésee Fig. 3) and axie
of the actual edge; this guarantees that the new generated triangle is well shaped (isosceles).

Then, the algorithm is:

(1) Setthe poinphewto its initial position; the initial position is on the trianglef 4 plane on the other
side of the edge, see Fig. 3. Let the angle of the initial positionde- 0.

(2) Compute the function value&(pnew) = f (@), f(Prew = f (o + Aa)—initial position rotated by the
angle+Aca, f(ppew) = f (o — Aa)—initial position rotated by the angle A«; the rotation axis is
the edger.

(3) Determine the right direction of rotation;|if (« + Aa)| < | f(«)| then+A«x else—Aa.

(4) Letthe function valueg; = f(«) and fo = f (@ & A«); actualize angler = o + Ac.

(5) If (f1- f2) < 0then compute the accurate coordinates of the new pgipty the binary subdivision
between the last two points which correspond to function vafaesd f>; else return to step 4.

(6) Check if both triangle§,q and Ty do not cross each other; if the angle between these triaggles
is greater tharg;n, (see Fig. 4) then poirtney iS accepted; else poit,ey is rejected and return to
step 4.



M. Cermak, V. Skala/ Applied Numerical Mathematics 49 (2004) 331-342 335

- Tnew

Told < \.\\"\-‘,

Fig. 4. The angle between two triangles; the view is in direction of edge’s vector

7. Active edge polygonization

Polygonization of an active edgeconsists of several steps. At first, the algorithm checks adjacent
active edges of the active edg@and determines which case appeared, see Fig. 5.

o If (0; < im 1) then case (a);=1, 2.

o If (a2 <aiim 2) and(||p.1 — pr «2ll < 8im 1) then case (a); analogically for.
o If (02> ajim 3) @and(||pe1 — pr e2ll <38iim 2) then case (b); analogically fo.
e else case (C). B B

The relations among limit angles agn 1 < dlim_2 < &jim_3-
Possible cases which are illustrated in Fig. 5 are:

(&) In this case, algorithm creates a new triangle and includes a new activeggt the end of the
active edges list.
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Fig. 5. The possible cases for polygonization of an active edge

(b) In some situations, the length of certain edges can be shorter then the tolerable limit. In this case,
algorithm must repair the length of the new edggs,: and enews t0 achieve better shapes of next
triangles. The axig; (see Fig. 5) is used as a fictive active edge for the algorithm edge spinning and
the new poinew is created as well as two new triangles.

In all the other situations, the edgas polygonized by the standard algorithm edge spinning.

8. Distancetest

To preserve the correct topology and the shape of the mesh triangles it is necessary to perform the
distance check between the new triangle and a border of already triangulated area. Therefore, each nev
generated poinpnew Mmust be checked for distance with all the other points which lie in active edges (on
the triangulation border).

Let the pointpmin be the nearest point to this new pomie, and distance between both points is
8 = |IPnew — Pminll- Further, letpmin not lie in the active edges which are in the neighborhood of both
active edges which contain the popi.,. Then there are two cases described in Fig. 6.
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Fig. 6. The possible cases for distance test.

(@) If § <é8im 3then the new poinpney is replaced with the poirdmin.

(b) If § < Sim 4 then a new triangle must be created between the new it and one of two
active edgEs which contain the popy;n, i.e., either the triangl€Pmin, Prews P min) OF the triangle
(P min» Prews Pmin), See Fig. 6(b). The decision, which active edge will be used, depends on angles
ozl,_ozz. The anglesy;, i =1, 2 are in interval0, ) and therefore, the triangle with the anglethat
is better approximation of angle 9% chosen.

The relation between distance limitsdig, 3 < Sim 4.

Now the situation described in Fig. 6(a) and (b) is similar for both cases. Pqigis contained in
four active edges,, e, e3, e4 and a border of already triangulated area intersects itself on it. The solution
of the problem will be introduced in case (b) and solution for case (a) is analogical. Let the four active
edges be divided into pairs; the left pait(ég, e2) and the right pair iges, e4). One of these pairs will be
polygonized and the second one will be cached in memory for later use. The solution depends on angles
B1, B2, see Fig. 6(b). {81 < B2) then the left paires, e,) is polygonized; else the right paie;, es) of
active edges is polygonized. In both cases, the second pair that is not polygonized is deleted from the list
of active edges and the poipfey is contained only in one pair of active edges.

In Fig. 6(b), the first case is valiB; < B.), i.e., the active edgeggs, ¢,) are polygonized in order that
depends on angles, y». If (y3 < y») then the active edge; is polygonized as the first; else the active
edgee; is polygonized first. Now, the border of the triangulated area does not cross itself in thpqint
and the recently polygonized pair of edges is removed from the active edges list. The previously cached
pair of edges must be returned into the list of active edges.
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9. Space subdivision principle

The original distance check algorithm takes more time if a required scene detail grows (growing
number of points on the triangulation border). The algorithm complexity for one included poitwig O
whereN is a number of points in active edges. In aspect that the new included point can lie near to any
point of the boundary, it is not possible to determine some subset of candidates to nearest point ahead.

Advantageous solution is dividing of space into sub-spaces (sub-areas), similarly as in [4]. Then the
nearest point must lie in the same sub-area like the new included point or in the closest neighborhood.
In order to validate this theorem next equation must be valid as wel3$jim 4, Whereo is the size of
sub-areas (cube shape), see Fig. 7,&Rd is the high limit distance for distance check.

The algorithm complexity of this solution is(@f), whereM is a number of points in adjacent sub-
areas and < N. Fig. 7 shows 9 possible sub-areasfifi case and there are 27 possible sub-areas in
E3 case.

In implementation, the data structures mentioned in Section 2 must be slightly expanded.

e sub-areas—an array; each sub-area has its own dynamically allocated list of points which lie in;
e point—each point that lies on the triangulation border has the index of sub-area in which the point lies
as well.

The computational time of the Edge spinning algorithm consists of two main parfgliyenization
time and thedistance test time. Fig. 8 shows the ratio between both parts for the edge spinning algorithm
without and with usage of the space subdivision technique.

It is obvious that such acceleration technique is effective in result and simple for implementation.
More examples and tests are found in next section.
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Fig. 7. The space subdivision scheme for distance checking.
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Polygonization time Polygonization time
6,8% 70,3%

Distance test time Distance test time
a) 93,2% b) 29,7%

Fig. 8. The time ratio between the polygonization time and the distance test time of the edge spinning algorithm; (a) without
the space subdivision scheme, (b) with the space subdivision.
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Fig. 9. The triangular mesh of the implicit object Genus that is polygonized by (a) the edge spinning algorithm, (b) the marching
cubes algorithm.

10. Experimental results

All the experiments described above were accomplished on the implicit dbgpos, see Fig. 9. Its
implicit function is described as follows:

FOO=r-22 = [1=(x/r)? = (/r)?] x [(x = x)? + 2 = 1]
X [(x +x1)% 4 y? — rlz] =0,
wherex = [x, y, z] and the parameters avg:=6,r, =3.5,r, =4,r; =1.2,x1 =3.9.

A visual comparison of a triangle’s shape quality proves that the polygonal mesh generated by the
edge spinning algorithm is much better than the marching cubes method. This result is vindicated by the
next histogram, Fig. 10 that shows the percentage frequency of triangles’ angles generated in the outpu
polygonal mesh.

The original edge spinning (ES) algorithm (without usage the space subdivision technique) takes more
time for polygonization of implicit objects than the marching cubes (MC) algorithm. This deficiency is
successfully remedied in the accelerated version. Fig. 11 shows the polygonization time’s ratios between
mentioned algorithms. This diagram proves that the accelerated edge spinning (ESA) algorithm is stably
(constantly) faster than the marching cubes algorithm in all experiments. Fig. 11 contains the speed-up

between both versions of the edge spinning algorithm as well and demonstrates the efficiency of the
acceleration technique used.
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Fig. 10. Histogram of the triangle shape quality for the edge spinning and the marching cubes algorithms. Generated for
N =1000, see Table 1.
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Fig. 11. Computational time comparison (speed-up) betweemtiginal ES algorithm and the accelerated one, between the
original ES and the MC algorithm and between the ESA and the MC method.

The N variable used in figures above and in Table 1, represents a desired object detail. Specifically,
the average triangles edges’ length is proportionaVtand to the computing area’s size as well. With
growing N, the triangles’ edges are shorter, i.e., each side of the computing area is like dividéd into
parts and length of such part is the average edges’ length of generated triangles. The computing area
size used in experiments [i6min, Xmax)» {Ymins Ymax)» {Zmin» Zmax'] = [(—8, 8), (=8, 8), (—8, 8)].

The measured values from all experiments described above are contained in Table 1.

It is obvious that the edge spinning algorithm generates about 23% triangles less than the marching
cubes method and the output polygonal mesh consists of well-shaped triangles. The results presented ar
original and also were verified on many nontrivial implicit surfaces.

11. Conclusion

In this paper, we have presented the new principle for polygonization of implicit surfaces. The
algorithm marches over the object’s surface and computes the accurate coordinates of new points
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Table 1
The measured values from experiments
N 160 240 400 630 1000
Edge spinning Triangles: 53992 120766 335622 834966 2110538
Vertices: 26992 60379 167807 417479 1055265
Time [ms]: 380 871 2664 7511 21161
Marching cubes Triangles: 69676 157520 437800 1085376 2735836
Vertices: 34826 78756 218896 542684 1367914
Time [ms]: 450 1182 3646 12588 25546

by spinning the edges of already generated triangles. The algorithm can be simply accelerated and
experimental results prove that the selection of subset of candidate points by the space subdivision
scheme is an effective way for this type of geometric algorithms. The edge spinning algorithm generates a
well-shaped triangular mesh and its polygonization speed is comparable with the well-known and simple
marching cubes algorithm.

Presented method can polygonize implicit surfaces which com@plgontinuity. In future work, we
want to modify the current algorithm for implicit functions with on@® continuity. We suppose that
our defined restrictions, for polygonization of an active edge, are the right way. In next research, we will
work on adapting the Edge spinning algorithm to local curvature of an implicit surface, [1,8].
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