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Abstract. An adaptive method for polygonization of implicit surfaces is 
presented. The method insists on the shape of triangles and the accuracy of 
resulting approximation as well. The presented algorithm is based on the 
surface tracking scheme and it is compared with the other algorithms based on 
the similar principle, such as the Marching cubes and the Marching triangles 
methods. The main advantages of the triangulation presented are simplicity and 
the stable features that can be used for next expanding. 

1   Introduction 

Implicit surfaces seem to be one of the most appealing concepts for building complex 
shapes and surfaces. They have become widely used in several applications in 
computer graphics and visualization.  

An implicit surface is mathematically defined as a set of points in space x that 
satisfy the equation f(x) = 0. There are two different definitions of implicit surfaces. 
The first one [2], [3] defines an implicit object as f(x) < 0 and the second one, F-rep 
[9], [11], [12], defines it as f(x) ≥ 0. 

Existing polygonization techniques may be classified into three categories. Spatial 
sampling techniques that regularly or adaptively sample the space to find the cells that 
straddle the implicit surface [2], [4]. Surface tracking approaches iteratively create a 
triangulation from a seed element by marching along the surface [1], [2], [5], [7], 
[10], [16]. Surface fitting techniques [11] progressively adapt and deform an initial 
mesh to converge to the implicit surface. 

2   Algorithm Overview 

Our algorithm is based on the surface tracking scheme (also known as the 
continuation scheme) and therefore, there are several limitations. A starting point 
must be determined and only one separated implicit surface is polygonized for such 
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point. Several disjoint surfaces can be polygonized from a starting point for each of 
them.  

The algorithm uses only the standard data structures used in computer graphics. 
The main data structure is an edge that is used as a basic building block for 
polygonization. If a triangle’s edge lies on the triangulation border, it is contained in 
the active edges list (AEL) and it is called as an active edge. Each point, which is 
contained in an active edge, contains two pointers to its left and right active edge (left 
and right directions are in active edges’ orientation). The whole algorithm consists of 
the following steps: 
1. Initialize the polygonization: 

a. Find the starting point p0 and create the first triangle T0., see [5] for 
details. 

b. Include the edges (e0,e1,e2,) of the first triangle T0 into the active edges 
list. 

2. Polygonize the first active edge e from the active edges list. 
3. Update the AEL; delete the currently polygonized active edge e and include the 

new generated active edge/s at the end of the list. 
4. If the active edges list is not empty return to step 2. 

3   Edge Spinning 

The main goal of this work is a numerical stability of a surface point coordinates’ 
computation for objects defined by implicit functions. In general, a surface vertex 
position is searched in direction of a gradient vector ∇f of an implicit function f, as in 
[7]. In many cases, the computation of gradient of the function f is influenced by a 
major error that depends on modeling techniques used [9], [10], [11], [12], [14], [15]. 
Because of these reasons, in our approach, we have defined these restrictions for 
finding a new surface point pnew: 
- The new point pnew is sought on a circle; therefore, each new generated triangle 

preserves the desired accuracy of polygonization. The circle radius is 
proportional to the estimated surface curvature. 

- The circle lies in the plane that is defined by the normal vector of triangle Told and 
axis o of the current edge e, see Fig. 2; this guarantees that the new generated 
triangle is well shaped (isosceles). 

3.1   Circle Radius Estimation 

The circle radius is proportional to the estimated surface curvature. The surface 
curvature in front of current active edge is determined in according to angle α 
between the surface normals n1, n2, see Fig. 1. The normal vector n1 is computed at 
point s that lies in the middle of the current active edge e and the vector n2 is taken at 
initial point pinit that is a point of intersection of the circle c1 with the plane defined by 
the triangle Told. 
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Fig. 1. The circle radius estimation. 

Note that the initial radius r1 of the circle c1 is always the same and it is set at 
beginning of polygonization as the lowest desired level of detail (LOD). 
The new circle radius r2 is computed as follows. 
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where αlim is a limit angle and the constant c represents a speed of “shrinking” of the 
radius according to the angle α. To preserve well shaped triangles, we use a constant 
kmin that represents a minimal multiplier. In our implementation we used αmin = π/2, kmin 
= 0.2 and c = 1.2.  

Correction notes:  
if (α > αmin)  then k = kmin 
if (k < kmin)  then k = kmin 

These parameters affect a shape of triangles of the polygonal mesh generated. 

3.2   Root Finding 

If the algorithm knows the circle radius, the process continues as follows. 
 

1. Set the point pnew to its initial position; the initial position is on the triangle’s Told 
plane on the other side of the edge e, see Fig. 2. Let the angle of the initial 
position be α=0. 

2. Compute the function values f(pnew) = f(α),  
f(p’new) = f(α + ∆α) – initial position rotated by the angle +∆α,  
f(p”new ) = f(α - ∆α) - initial position rotated by the angle -∆α; Note that the 
rotation axis is the edge e. 

3. Determine the right direction of rotation; if |f(α + ∆α)| < |f(α)| then +∆α else -
∆α. 

4. Let the function values f1 = f(α) and f2 = f(α ± ∆α); update the angle α = α ± ∆α. 
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Fig. 2. The principle of root finding algorithm. 

5. Check which of following case appeared: 
a) If (f1⋅f2)<0 then compute the accurate coordinates of the new point pnew by the 

binary subdivision between the last two points which correspond to the function 
values f1 and f2;  

b) If the angle |α| is less than αsafe (see safe angle area in Fig. 1) return to step 4.  
c) If the angle |α| is greater than αsafe then there is a possibility that both triangles Told 

and Tnew could cross each other; the point pnew is rejected and it is marked as not 
found. 

3.3   Root Finding of a Sharp Edge 

Let us assume that the standard edge spinning root finding algorithm presented above 
has found the point pnew. The algorithm then determines the surface normal vector nnew 
at this point and computes the angle α between normal vectors nnew and ns. The vector 
ns is measured at mid-point s of the active edge e, see Fig. 3. If the angle α is greater 
then some user-specified threshold αlim_edge (limit edge angle) then the algorithm will 
look for a new edge point as follows. 
1. Compute coordinates of the point pinit as an intersection of the three planes, 

tangent planes t1 and t2, and the plane in which the seeking circle c lies, see 
Fig. 3. 

2. Apply the straight root finding algorithm described in section 3.4 and find the 
new point p’new. 

 

Fig. 3. The principle of root finding algorithm for sharp edges. 
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Fig. 4. Principle of root-finding in straight direction. 

3.4   Straight Root Finding Algorithm 

The algorithm starts from an initial point pinit (see Fig. 4) and supposes that the 
implicit surface is at least C0 continuity. 
1. At point pinit, compute the surface normal vector ninit that defines the seeking 

axis o. 
2. Compute coordinates of point p’init with distance δ from point pinit in direction 

ninit * sign( f(pinit) ); where δ is the length of step and the function sign returns 
“1” if (f > 0) or “0” if (f < 0). 

3. Determine function values f, f’ at points pinit, p’init. 
4. Check next two cases. 

a. If these points lie on opposite sides of implicit surface, i.e. (f *f’) < 0; 
compute the exact coordinates of the point pnew by binary subdivision 
between these points.  

b. If the points pinit, p’init lie on the same side of the surface then pinit = p’init 
and return to step 2. 

4   Polygonization of an Active Edge 

Polygonization of an active edge e consists of several steps. In step 1, the process will 
use the root finding algorithm (see section 3.2) to find a new point pnew in front of the 
edge e. If pnew exists, there are two cases illustrated in Fig. 5. 

4.1   Neighborhood Test 

Decision between cases a) and b) depends on relation among angles α1, α2, αn, see 
Fig. 5, step 1; let the angle α be min(α1,α2). If (α < αshape) then case a) else case b), see 
Fig. 5, step 2; The limit shape angle is determined as αshape = k*αn, k ≥ 1, αshape < π, 
where the constant k has effect to shape of generated triangles and in our 
implementation is chosen k = 1.7. If the point pnew is not found, angle αn is not defined 
and the limit shape angle should be just less then π; we have chosen αshape = π*0.8. 

a) In this case, a new triangle tnew is created by connecting the edge e with one of its 
neighbors, see step 2a. 

b) The new triangle tnew is created by joining the active edge e and the new point pnew, 
see step 2b. 
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Fig. 5. Polygonization of the active edge e. 

In both cases, a bounding sphere is determined for the new triangle tnew. The bounding 
sphere is the minimal sphere that contains all three points of the triangle, i.e. the 
centre of the sphere lies in the plane defined by these three points. If there is not a 
new triangle (the point pnew does not exist and case a) has not appeared) the bounding 
sphere of the active edge e is used. The next procedure is analogical for all cases. 

4.2   Distance Test 

To preserve the correct topology, it is necessary to check each new generated triangle 
if it does not cross any other triangles generated before. It is sufficient to perform this 
test between the new triangle and a border of already triangulated area (i.e. active 
edges in AEL). For faster evaluation of detection of global overlap there is used the 
space subdivision acceleration technique introduced in [6]. 

The algorithm will make the nearest active edges list (NAEL) to the new triangle 
tnew. Each active edge that is not adjacent to the current active edge e and crosses the 
bounding sphere of the new triangle (or the edge e), is included to the list, see Fig. 6, 
step 2. The extended bounding sphere is used for the new triangle created by the new 
point pnew (case b) because the algorithm should detect a collision in order to preserve 
well-shaped triangles. The new radius of the bounding sphere is computed as r2 = c*r1 
and we used the constant c = 1.5. 

If the NAEL list is empty then the new triangle tnew is finally created and the active 
edges list is updated.  
- In case a), Fig. 5 step 2, the current active edge e and its neighbor edge er are 

deleted from the list and one new edge enew is added at the end of the list. The new 
edge should be tested if it satisfies the condition of the surface curvature. If it 
does not then the new triangle will be split along the edge enew, see section 4.3. 

- In case b) Fig. 5 step 2, the current active edge e is deleted from the list and two 
new edges enew1, enew2 are added at the end of the list.  

Note that if there is no new triangle to be created (the point pnew does not exist and 
case a) in Fig. 5 has not appeared) the current active edge e is moved at the end of the 
AEL list and the whole algorithm will return back to step 2, see section 2.  
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Fig. 6. Solving of distance test. 

If the NAEL list is not empty then the situation has to be solved. The point pmin with 
minimal distance from the centre of the bounding sphere is chosen from the NAEL 
list, see Fig. 6, step 3. The new triangle tnew has to be changed and will be formed by 
the edge e and the point pmin, i.e. by points (pe1,pmin,pe2); the situation is described in 
Fig. 6, step 3. The point pmin is owned by four active edges enew1, enew2, emin1, emin2 and the 
border of already triangulated area intersects itself on it. This is not correct because 
each point that lies on the triangulation border should has only two neighborhood 
edges (left and right).  
Solution of the problem is to triangulate two of four edges first. Let the four active 
edges be divided into pairs; the left pair be (emin1, enew2) and the right pair be (enew1, emin2). 
One of these pairs will be polygonized and the second one will be cached in memory 
for later use. The solution depends on angles αm1, αm2, see Fig. 6, step 3. If (αm1 < αm2) 
then the left pair is polygonized; else the right pair is polygonized.  

In both cases, the recently polygonized pair is automatically removed from the list 
and the previously cached pair of edges is returned into the list. The point pmin is 
contained only in one pair of active edges and the border of the triangulated area is 
correct, Fig. 6, step 4. 
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Note that the polygonization of one pair of edges consists just of joining its end 
points by the edge and this second new triangle has to fulfill the empty NAEL list as 
well; otherwise the current active edge e is moved at the end of AEL list. 

4.3   Splitting the New Triangle 

This process is evaluated only in cases when the new triangle has been created by 
connecting of two adjacent edges, i.e. situation illustrated in Fig. 7, step 2a. If the new 
edge does not comply a condition of surface curvature the new triangle should be 
split. That means, see Fig. 7; if the angle α between surface normal vectors n1, n2 at 
points pe1, per2 is greater then some limit αsplit_lim then the new triangle will be split into 
two new triangles, see Fig. 7, step 2. 

The point pnew is a midpoint of edge enew and it does not lie on the implicit surface. 
Its correct coordinates are additionally computed by the straight root finding 
algorithm described in section 3.4. 

 

Fig. 7. Splitting of the new triangle. 

5   Experimental Results 

The Edge spinning algorithm (ES) is based on the surface tracking scheme (also 
known as the continuation scheme). Therefore, we have compared it with other 
methods based on the same principle – the Marching triangles algorithm (MTR, 
introduced in [7]) and the Marching cubes method (MC, Bloomenthal’s polygonizer, 
introduced in [2]). As a testing function, we have chosen the implicit object Genus 3 
that is defined as follows. 

( ) ( ) ( )[ ] ( )[ ] ( )[ ] 01 2
1

22
1

2
1

22
1

2224 =−++⋅−+−⋅−−−⋅= ryxxryxxryrxzrf yxzx  

where the parameters are: x = [x,y,z]T, rx=6, ry=3.5, rz=4, r1=1.2, x1=3.9. 
The values in Table 1 have been achieved with the desired lowest level of detail 

(LOD) equal 0.8. It means that maximal length of triangles’ edges is 0.8. Note that 
there is not defined a unit of length, so that number could be for example in 
centimeters as well as the parameters of the function Genus 3 described above. 

The table contains the number of triangles and vertices generated. The value Avg 
dev. means the average deviation of each triangle from the real implicit surface. It is 
measured as algebraic distance of a gravity centre of a triangle from an implicit 
surface, i.e. the function value at the centre of gravity of the triangle. Note that the 
algebraic distance strongly depends on the concrete implicit function; in our test, the 
Genus 3 object is used for all methods, so the value has its usefulness.  
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Table 1. Values of the object Genus 3 with the lowest level of detail LOD = 0.8. 

 ES MTR MC 
# Triangles 4886 947 1056
# Vertices 2439 473 516
Avg dev. 10,99 56,80 73,28
Angle crit. 0,65 0,67 0,38
Elength crit. 0,77 0,78 0,54

The value Angle crit. means the criterion of the ratio of the smallest angle to the 
largest angle in a triangle and the value Elength crit. means the criterion of the ratio of 
the shortest edge to the longest edge of a triangle. The value Avg dev. shows the 
accuracy of an implicit object approximation and the adaptive ES algorithm is 
logically the best of tested methods. The criterions of angles and length of edges in 
triangles are similar for the ES and the MTR algorithms, so the both approaches 
generate well-shaped triangular meshes.  

For visual comparison, the resulting pictures of the Genus 3 object generated in the 
test are in figures below. Fig. 8a shows the object generated by the adaptive 
algorithm, so the number of triangles generated is higher in dependence on the surface 
curvature. In Fig. 8b, some parts of the object are lost because the algorithm just 
connects nearest parts by large triangles depending of the lowest level of detail. The 
resulting image generated by the Marching cubes algorithm is shown in Fig. 8c. This 
algorithm produces badly-shaped triangles but it is fast and also stable for complex 
implicit surfaces with C0 continuity, only. 

 

Fig. 8. The Genus 3 object generated by the a) Adaptive Edge spinning algorithm; b) Marching 
triangles algorithm; c) Marching cubes algorithm. 

6   Conclusion 

This paper presents the new adaptive approach for polygonization of implicit 
surfaces. The algorithm marches over the object’s surface and computes the accurate 
coordinates of new points by spinning the edges of already generated triangles. 
Coordinates of the new points depend on surface curvature estimation. We used the 
estimation by deviation of angles of adjacent points because it is simple and fast for 
computation. The similar measurement has been used as curvature estimation in [17] 
as well. Our experiments also proved its functionality. 
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The algorithm can polygonize implicit surfaces which comply C1 continuity, thin 
objects and some non-complex objects of C0 continuity (an object should have only 
sharp edges, no sharp corners or more complex shapes). In future work, we want to 
modify the current algorithm for more complex implicit functions of the C0 
continuity, only.  

Acknowledgement. The authors would like to thank to all who contributed to the 
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colleagues MSc. and PhD. students at the University of West Bohemia in Plzen. 
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