
A. Laganà et al. (Eds.): ICCSA 2004, LNCS 3045, pp. 325–334, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Curvature Dependent Polygonization
by the Edge Spinning

Martin Čermák* and Václav Skala

University of West Bohemia, Pilsen
Department of Computer Science and Engineering

Czech Republic
{cermakm,skala}@kiv.zcu.cz

Abstract. An adaptive method for polygonization of implicit surfaces is
presented. The method insists on the shape of triangles and the accuracy of
resulting approximation as well. The presented algorithm is based on the
surface tracking scheme and it is compared with the other algorithms based on
the similar principle, such as the Marching cubes and the Marching triangles
methods. The main advantages of the triangulation presented are simplicity and
the stable features that can be used for next expanding.

1 Introduction

Implicit surfaces seem to be one of the most appealing concepts for building complex
shapes and surfaces. They have become widely used in several applications in
computer graphics and visualization.

An implicit surface is mathematically defined as a set of points in space x that
satisfy the equation f(x) = 0. There are two different definitions of implicit surfaces.
The first one [2], [3] defines an implicit object as f(x) < 0 and the second one, F-rep
[9], [11], [12], defines it as f(x) ≥ 0.

Existing polygonization techniques may be classified into three categories. Spatial
sampling techniques that regularly or adaptively sample the space to find the cells that
straddle the implicit surface [2], [4]. Surface tracking approaches iteratively create a
triangulation from a seed element by marching along the surface [1], [2], [5], [7],
[10], [16]. Surface fitting techniques [11] progressively adapt and deform an initial
mesh to converge to the implicit surface.

2 Algorithm Overview

Our algorithm is based on the surface tracking scheme (also known as the
continuation scheme) and therefore, there are several limitations. A starting point
must be determined and only one separated implicit surface is polygonized for such

* This work was supported by the Ministry of Education of the Czech Republic – project MSM

235200002.

ICCS 2004, pp. 325-334, Lecture Notes in Computer Science LNCS 3045, Springer Verlag, 2004.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

326 M. Čermák and V. Skala

point. Several disjoint surfaces can be polygonized from a starting point for each of
them.

The algorithm uses only the standard data structures used in computer graphics.
The main data structure is an edge that is used as a basic building block for
polygonization. If a triangle’s edge lies on the triangulation border, it is contained in
the active edges list (AEL) and it is called as an active edge. Each point, which is
contained in an active edge, contains two pointers to its left and right active edge (left
and right directions are in active edges’ orientation). The whole algorithm consists of
the following steps:
1. Initialize the polygonization:

a. Find the starting point p0 and create the first triangle T0., see [5] for
details.

b. Include the edges (e0,e1,e2,) of the first triangle T0 into the active edges
list.

2. Polygonize the first active edge e from the active edges list.
3. Update the AEL; delete the currently polygonized active edge e and include the

new generated active edge/s at the end of the list.
4. If the active edges list is not empty return to step 2.

3 Edge Spinning

The main goal of this work is a numerical stability of a surface point coordinates’
computation for objects defined by implicit functions. In general, a surface vertex
position is searched in direction of a gradient vector ∇f of an implicit function f, as in
[7]. In many cases, the computation of gradient of the function f is influenced by a
major error that depends on modeling techniques used [9], [10], [11], [12], [14], [15].
Because of these reasons, in our approach, we have defined these restrictions for
finding a new surface point pnew:
- The new point pnew is sought on a circle; therefore, each new generated triangle

preserves the desired accuracy of polygonization. The circle radius is
proportional to the estimated surface curvature.

- The circle lies in the plane that is defined by the normal vector of triangle Told and
axis o of the current edge e, see Fig. 2; this guarantees that the new generated
triangle is well shaped (isosceles).

3.1 Circle Radius Estimation

The circle radius is proportional to the estimated surface curvature. The surface
curvature in front of current active edge is determined in according to angle α
between the surface normals n1, n2, see Fig. 1. The normal vector n1 is computed at
point s that lies in the middle of the current active edge e and the vector n2 is taken at
initial point pinit that is a point of intersection of the circle c1 with the plane defined by
the triangle Told.

ICCS 2004, pp. 325-334, Lecture Notes in Computer Science LNCS 3045, Springer Verlag, 2004.

Curvature Dependent Polygonization by the Edge Spinning 327

Fig. 1. The circle radius estimation.

Note that the initial radius r1 of the circle c1 is always the same and it is set at
beginning of polygonization as the lowest desired level of detail (LOD).
The new circle radius r2 is computed as follows.

,

;1,0,

lim

lim

12

 ⋅−
=

∈⋅=

α
αα c

k

kkrr

(1)

where αlim is a limit angle and the constant c represents a speed of “shrinking” of the
radius according to the angle α. To preserve well shaped triangles, we use a constant
kmin that represents a minimal multiplier. In our implementation we used αmin = π/2, kmin
= 0.2 and c = 1.2.

Correction notes:
if (α > αmin) then k = kmin
if (k < kmin) then k = kmin

These parameters affect a shape of triangles of the polygonal mesh generated.

3.2 Root Finding

If the algorithm knows the circle radius, the process continues as follows.

1. Set the point pnew to its initial position; the initial position is on the triangle’s Told
plane on the other side of the edge e, see Fig. 2. Let the angle of the initial
position be α=0.

2. Compute the function values f(pnew) = f(α),
f(p’new) = f(α + ∆α) – initial position rotated by the angle +∆α,
f(p”new) = f(α - ∆α) - initial position rotated by the angle -∆α; Note that the
rotation axis is the edge e.

3. Determine the right direction of rotation; if |f(α + ∆α)| < |f(α)| then +∆α else -
∆α.

4. Let the function values f1 = f(α) and f2 = f(α ± ∆α); update the angle α = α ± ∆α.

ICCS 2004, pp. 325-334, Lecture Notes in Computer Science LNCS 3045, Springer Verlag, 2004.

328 M. Čermák and V. Skala

Fig. 2. The principle of root finding algorithm.

5. Check which of following case appeared:
a) If (f1⋅f2)<0 then compute the accurate coordinates of the new point pnew by the

binary subdivision between the last two points which correspond to the function
values f1 and f2;

b) If the angle |α| is less than αsafe (see safe angle area in Fig. 1) return to step 4.
c) If the angle |α| is greater than αsafe then there is a possibility that both triangles Told

and Tnew could cross each other; the point pnew is rejected and it is marked as not
found.

3.3 Root Finding of a Sharp Edge

Let us assume that the standard edge spinning root finding algorithm presented above
has found the point pnew. The algorithm then determines the surface normal vector nnew
at this point and computes the angle α between normal vectors nnew and ns. The vector
ns is measured at mid-point s of the active edge e, see Fig. 3. If the angle α is greater
then some user-specified threshold αlim_edge (limit edge angle) then the algorithm will
look for a new edge point as follows.
1. Compute coordinates of the point pinit as an intersection of the three planes,

tangent planes t1 and t2, and the plane in which the seeking circle c lies, see
Fig. 3.

2. Apply the straight root finding algorithm described in section 3.4 and find the
new point p’new.

Fig. 3. The principle of root finding algorithm for sharp edges.

ICCS 2004, pp. 325-334, Lecture Notes in Computer Science LNCS 3045, Springer Verlag, 2004.

Curvature Dependent Polygonization by the Edge Spinning 329

Fig. 4. Principle of root-finding in straight direction.

3.4 Straight Root Finding Algorithm

The algorithm starts from an initial point pinit (see Fig. 4) and supposes that the
implicit surface is at least C0 continuity.
1. At point pinit, compute the surface normal vector ninit that defines the seeking

axis o.
2. Compute coordinates of point p’init with distance δ from point pinit in direction

ninit * sign(f(pinit)); where δ is the length of step and the function sign returns
“1” if (f > 0) or “0” if (f < 0).

3. Determine function values f, f’ at points pinit, p’init.
4. Check next two cases.

a. If these points lie on opposite sides of implicit surface, i.e. (f *f’) < 0;
compute the exact coordinates of the point pnew by binary subdivision
between these points.

b. If the points pinit, p’init lie on the same side of the surface then pinit = p’init
and return to step 2.

4 Polygonization of an Active Edge

Polygonization of an active edge e consists of several steps. In step 1, the process will
use the root finding algorithm (see section 3.2) to find a new point pnew in front of the
edge e. If pnew exists, there are two cases illustrated in Fig. 5.

4.1 Neighborhood Test

Decision between cases a) and b) depends on relation among angles α1, α2, αn, see
Fig. 5, step 1; let the angle α be min(α1,α2). If (α < αshape) then case a) else case b), see
Fig. 5, step 2; The limit shape angle is determined as αshape = k*αn, k ≥ 1, αshape < π,
where the constant k has effect to shape of generated triangles and in our
implementation is chosen k = 1.7. If the point pnew is not found, angle αn is not defined
and the limit shape angle should be just less then π; we have chosen αshape = π*0.8.

a) In this case, a new triangle tnew is created by connecting the edge e with one of its
neighbors, see step 2a.

b) The new triangle tnew is created by joining the active edge e and the new point pnew,
see step 2b.

ICCS 2004, pp. 325-334, Lecture Notes in Computer Science LNCS 3045, Springer Verlag, 2004.

330 M. Čermák and V. Skala

Fig. 5. Polygonization of the active edge e.

In both cases, a bounding sphere is determined for the new triangle tnew. The bounding
sphere is the minimal sphere that contains all three points of the triangle, i.e. the
centre of the sphere lies in the plane defined by these three points. If there is not a
new triangle (the point pnew does not exist and case a) has not appeared) the bounding
sphere of the active edge e is used. The next procedure is analogical for all cases.

4.2 Distance Test

To preserve the correct topology, it is necessary to check each new generated triangle
if it does not cross any other triangles generated before. It is sufficient to perform this
test between the new triangle and a border of already triangulated area (i.e. active
edges in AEL). For faster evaluation of detection of global overlap there is used the
space subdivision acceleration technique introduced in [6].

The algorithm will make the nearest active edges list (NAEL) to the new triangle
tnew. Each active edge that is not adjacent to the current active edge e and crosses the
bounding sphere of the new triangle (or the edge e), is included to the list, see Fig. 6,
step 2. The extended bounding sphere is used for the new triangle created by the new
point pnew (case b) because the algorithm should detect a collision in order to preserve
well-shaped triangles. The new radius of the bounding sphere is computed as r2 = c*r1
and we used the constant c = 1.5.

If the NAEL list is empty then the new triangle tnew is finally created and the active
edges list is updated.
- In case a), Fig. 5 step 2, the current active edge e and its neighbor edge er are

deleted from the list and one new edge enew is added at the end of the list. The new
edge should be tested if it satisfies the condition of the surface curvature. If it
does not then the new triangle will be split along the edge enew, see section 4.3.

- In case b) Fig. 5 step 2, the current active edge e is deleted from the list and two
new edges enew1, enew2 are added at the end of the list.

Note that if there is no new triangle to be created (the point pnew does not exist and
case a) in Fig. 5 has not appeared) the current active edge e is moved at the end of the
AEL list and the whole algorithm will return back to step 2, see section 2.

ICCS 2004, pp. 325-334, Lecture Notes in Computer Science LNCS 3045, Springer Verlag, 2004.

Curvature Dependent Polygonization by the Edge Spinning 331

Fig. 6. Solving of distance test.

If the NAEL list is not empty then the situation has to be solved. The point pmin with
minimal distance from the centre of the bounding sphere is chosen from the NAEL
list, see Fig. 6, step 3. The new triangle tnew has to be changed and will be formed by
the edge e and the point pmin, i.e. by points (pe1,pmin,pe2); the situation is described in
Fig. 6, step 3. The point pmin is owned by four active edges enew1, enew2, emin1, emin2 and the
border of already triangulated area intersects itself on it. This is not correct because
each point that lies on the triangulation border should has only two neighborhood
edges (left and right).
Solution of the problem is to triangulate two of four edges first. Let the four active
edges be divided into pairs; the left pair be (emin1, enew2) and the right pair be (enew1, emin2).
One of these pairs will be polygonized and the second one will be cached in memory
for later use. The solution depends on angles αm1, αm2, see Fig. 6, step 3. If (αm1 < αm2)
then the left pair is polygonized; else the right pair is polygonized.

In both cases, the recently polygonized pair is automatically removed from the list
and the previously cached pair of edges is returned into the list. The point pmin is
contained only in one pair of active edges and the border of the triangulated area is
correct, Fig. 6, step 4.

ICCS 2004, pp. 325-334, Lecture Notes in Computer Science LNCS 3045, Springer Verlag, 2004.

332 M. Čermák and V. Skala

Note that the polygonization of one pair of edges consists just of joining its end
points by the edge and this second new triangle has to fulfill the empty NAEL list as
well; otherwise the current active edge e is moved at the end of AEL list.

4.3 Splitting the New Triangle

This process is evaluated only in cases when the new triangle has been created by
connecting of two adjacent edges, i.e. situation illustrated in Fig. 7, step 2a. If the new
edge does not comply a condition of surface curvature the new triangle should be
split. That means, see Fig. 7; if the angle α between surface normal vectors n1, n2 at
points pe1, per2 is greater then some limit αsplit_lim then the new triangle will be split into
two new triangles, see Fig. 7, step 2.

The point pnew is a midpoint of edge enew and it does not lie on the implicit surface.
Its correct coordinates are additionally computed by the straight root finding
algorithm described in section 3.4.

Fig. 7. Splitting of the new triangle.

5 Experimental Results

The Edge spinning algorithm (ES) is based on the surface tracking scheme (also
known as the continuation scheme). Therefore, we have compared it with other
methods based on the same principle – the Marching triangles algorithm (MTR,
introduced in [7]) and the Marching cubes method (MC, Bloomenthal’s polygonizer,
introduced in [2]). As a testing function, we have chosen the implicit object Genus 3
that is defined as follows.

() () ()[] ()[] ()[] 01 2
1

22
1

2
1

22
1

2224 =−++⋅−+−⋅−−−⋅= ryxxryxxryrxzrf yxzx

where the parameters are: x = [x,y,z]T, rx=6, ry=3.5, rz=4, r1=1.2, x1=3.9.
The values in Table 1 have been achieved with the desired lowest level of detail

(LOD) equal 0.8. It means that maximal length of triangles’ edges is 0.8. Note that
there is not defined a unit of length, so that number could be for example in
centimeters as well as the parameters of the function Genus 3 described above.

The table contains the number of triangles and vertices generated. The value Avg
dev. means the average deviation of each triangle from the real implicit surface. It is
measured as algebraic distance of a gravity centre of a triangle from an implicit
surface, i.e. the function value at the centre of gravity of the triangle. Note that the
algebraic distance strongly depends on the concrete implicit function; in our test, the
Genus 3 object is used for all methods, so the value has its usefulness.

ICCS 2004, pp. 325-334, Lecture Notes in Computer Science LNCS 3045, Springer Verlag, 2004.

Curvature Dependent Polygonization by the Edge Spinning 333

Table 1. Values of the object Genus 3 with the lowest level of detail LOD = 0.8.

 ES MTR MC
Triangles 4886 947 1056
Vertices 2439 473 516
Avg dev. 10,99 56,80 73,28
Angle crit. 0,65 0,67 0,38
Elength crit. 0,77 0,78 0,54

The value Angle crit. means the criterion of the ratio of the smallest angle to the
largest angle in a triangle and the value Elength crit. means the criterion of the ratio of
the shortest edge to the longest edge of a triangle. The value Avg dev. shows the
accuracy of an implicit object approximation and the adaptive ES algorithm is
logically the best of tested methods. The criterions of angles and length of edges in
triangles are similar for the ES and the MTR algorithms, so the both approaches
generate well-shaped triangular meshes.

For visual comparison, the resulting pictures of the Genus 3 object generated in the
test are in figures below. Fig. 8a shows the object generated by the adaptive
algorithm, so the number of triangles generated is higher in dependence on the surface
curvature. In Fig. 8b, some parts of the object are lost because the algorithm just
connects nearest parts by large triangles depending of the lowest level of detail. The
resulting image generated by the Marching cubes algorithm is shown in Fig. 8c. This
algorithm produces badly-shaped triangles but it is fast and also stable for complex
implicit surfaces with C0 continuity, only.

Fig. 8. The Genus 3 object generated by the a) Adaptive Edge spinning algorithm; b) Marching
triangles algorithm; c) Marching cubes algorithm.

6 Conclusion

This paper presents the new adaptive approach for polygonization of implicit
surfaces. The algorithm marches over the object’s surface and computes the accurate
coordinates of new points by spinning the edges of already generated triangles.
Coordinates of the new points depend on surface curvature estimation. We used the
estimation by deviation of angles of adjacent points because it is simple and fast for
computation. The similar measurement has been used as curvature estimation in [17]
as well. Our experiments also proved its functionality.

ICCS 2004, pp. 325-334, Lecture Notes in Computer Science LNCS 3045, Springer Verlag, 2004.

334 M. Čermák and V. Skala

The algorithm can polygonize implicit surfaces which comply C1 continuity, thin
objects and some non-complex objects of C0 continuity (an object should have only
sharp edges, no sharp corners or more complex shapes). In future work, we want to
modify the current algorithm for more complex implicit functions of the C0
continuity, only.

Acknowledgement. The authors would like to thank to all who contributed to the
development of this new approach, for their comments and suggestions, especially to
colleagues MSc. and PhD. students at the University of West Bohemia in Plzen.

References

1. Akkouche, S., Galin, E.: Adaptive Implicit Surface Polygonization using Marching
Triangles, Computer Graphic Forum, 20(2): 67–80, 2001.

2. Bloomenthal, J.: Graphics Gems IV, Academic Press, 1994.
3. Bloomenthal, J.: Skeletal Design of Natural Forms, Ph.D. Thesis, 1995.
4. Bloomenthal, J., Bajaj, Ch., Blinn, J., Cani-Gascuel, M-P., Rockwood, A., Wyvill, B.,

Wyvill, G.: Introduction to implicit surfaces, Morgan Kaufmann, 1997.
5. Čermák, M., Skala, V.: Polygonization by the Edge Spinning, Int. Conf. Algoritmy 2002,

Slovakia, ISBN 80-227-1750-9, September 8–13.
6. Čermák, M., Skala, V.: Accelerated Edge Spinning algorithm for Implicit Surfaces, Int.

Conf. ICCVG 2002, Zakopane, Poland, ISBN 839176830-9, September 25–29.
7. Hartmann, E.: A Marching Method for the Triangulation of Surfaces, The Visual

Computer (14), pp. 95–108, 1998.
8. Hilton, A., Stoddart, A.J., Illingworth, J., Windeatt, T.: Marching Triangles: Range Image

Fusion for Complex Object Modelling, Int. Conf. on Image Processing, 1996.
9. “Hyperfun: Language for F-Rep Geometric Modeling”, http://cis.k.hosei.ac.jp/~F-rep/
10. Karkanis, T., Stewart, A.J.: Curvature-Dependent Triangulation of Implicit Surfaces, IEEE

Computer Graphics and Applications, Volume 21, Issue 2, March 2001.
11. Ohtake, Y., Belyaev, A., Pasko, A.: Dynamic Mesh Optimization for Polygonized Implicit

Surfaces with Sharp Features, The Visual Computer, 2002.
12. Pasko, A., Adzhiev, V., Karakov, M., Savchenko,V.: Hybrid system architecture for

volume modeling, Computer & Graphics 24 (67–68), 2000.
13. Rvachov, A.M.: Definition of R-functions, http://www.mit.edu/~maratr/rvachev/p1.htm
14. Shapiro, V., Tsukanov, I.: Implicit Functions with Guaranteed Differential Properties,

Solid Modeling, Ann Arbor, Michigan, 1999.
15. Taubin, G.: Distance Approximations for Rasterizing Implicit Curves, ACM Transactions

on Graphics, January 1994.
16. Triquet, F., Meseure, F., Chaillou, Ch.: Fast Polygonization of Implicit Surfaces,

WSCG'2001 Int.Conf., pp. 162, University of West Bohemia in Pilsen, 2001.
17. Velho,L.: Simple and Efficient Polygonization of Implicit Surfaces, Journal of Graphics

Tools, 1(2):5–25, 1996.

ICCS 2004, pp. 325-334, Lecture Notes in Computer Science LNCS 3045, Springer Verlag, 2004.

	Introduction
	Algorithm Overview
	Edge Spinning
	Circle Radius Estimation
	Root Finding
	Root Finding of a Sharp Edge
	Straight Root Finding Algorithm

	Polygonization of an Active Edge
	Neighborhood Test
	Distance Test
	Splitting the New Triangle

	Experimental Results
	Conclusion

