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Abstract 

Algorithms for line clipping against convex polygon 
have been studied for a long time and many research 
papers have been published so far. In spite of the latest 
graphical hardware development and significant 
increase of performance the clipping is still a 
bottleneck of the graphical pipeline. This paper 
presents a new robust and fast algorithm for line 
clipping by a convex polygon. The algorithm uses 
a small pre-processing in order to obtain significant 
speed up. The proposed algorithm is especially 
convenient for applications where points or lines are 
represented in homogeneous coordinates. The 
algorithm does not use division in floating point 
representation as the resulting points are in 
homogeneous coordinates. The algorithms will benefit 
if vector-vector hardware supported operations can be 
used.  

1. Introduction 

There are many algorithms devoted to the line and 
line segment clipping in E2 and E3. Generally 
algorithms have been developed and modified for line 
or line segment or polygon clipping against rectangular 
window, convex polygon or polygonal clipping area 
[4], [7], [8], [9], [10], [11]. Some modifications have 
been developed also for self-intersecting clipping 
polygon or for areas with linear or quadric edges [12]. 

Also some algorithms were specially developed or 
tuned for some special cases like small windows or for 
some specific characteristics of input data set. Some 
algorithms and their efficiency are very sensitive to 
input data, i.e. geometrical distribution of lines or line 
segments, too. 

Algorithms used in E2 space are mostly based on 
Eucledian space representation while homogeneous 

coordinates in spite of the fact that positive projective 
space representation is more natural in some cases. In 
many applications the clipping window or polygon are 
constant for many clipped lines. In this case a 
pre-processing might be another factor speeding the 
algorithm, too. 

In spite of the latest graphical hardware 
development and significant increase of performance 
the clipping is still a bottleneck of the graphics 
pipeline. 

This paper presents a new fast and robust algorithm 
for line clipping against convex polygon and line 
clipping against rectangular window. The proposed 
algorithm is compared with well-known Cyrus-Beck 
algorithm [3], [4]. Experimental evaluation, 
verification and comparison of the proposed algorithm 
are presented. 

2. Projective geometry and duality 

Homogeneous coordinates are widely used in computer 
graphics applications, usually connected with 
geometric transformations like rotation, scaling, 
translation and projection, etc. The “geometrical” 
interpretation is shown at Figure 1.  

The point x is defined as a point in E2 with 
coordinates (X,Y) or as a point with homogeneous 
coordinates [x, y, w]T, where w = 1 usually. The point x
is actually a “line” without the origin in the projective 
space P2(x,y,w), and X = x / w and Y = y / w.  It can be 
seen that a line p∈E2 is actually a plane ρ without the 
origin in the projective space P2, i.e. the line p is 
defined as 
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Figure 1 

The line p is actually geometric interpretation of that. 
The equation can be divided by any ξ ≠ 0 without any 
effect to the geometry. In dual representation the plane 
ρ can be represented as a line D(ρ)∈D(P2) or as a point 
D(ρ)∈D(E2), when a projection is made, e.g. for c = 1.
There is a complete theory on projective spaces, see 
[5], [13] for details. 

On the other hand, there is a phenomenon of 
principle of duality that can be used for derivation of 
some useful formula. The principle states that any 
theorem remains true when we interchange the words 
“point” and line”, “lie on” and “pass through”, “join”
and “intersection”, “collinear” and “concurrent” and so 
on. Once the theorem has been established, the dual 
theorem is obtained as described above, for details see 
[Cox61a], [John96a]. In other words, the duality says 
that in all theorems it is possible to substitute a term 
“point” by a term “line” and term “line” by the term 
“point” and the given theorem stays valid. This helps a 
lot in solution of some geometrical cases.  

Definition1

The cross product of two vectors x1 and x2 is defined as 
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where i = [1,0,0]T, j = [0,1,0]T, k = [0,0,1]T

Theorem1

Let two points x1 and x2 are given in the projective 
space. Then a line p, that is defined by those two 
points, is determined as the cross product p = x1 x x2

Note: It can be seen that it is valid also for cases if 
w ≠ 1 & w ≠ 0. 

Theorem2

Let two lines p1 and p2 are given in the projective 
space. Then a point x, that is defined as intersection of 
those two lines, is determined as a cross product 
x = p1 x p2.

These two theorems are very important as they 
enable us to handle some problems defined in 
homogeneous coordinates and make computations 
quite effective. 

The Cyrus-Beck algorithm (CB) is the most famous 
algorithm [3] for line and line segment clipping by 
convex polygon. There are also several algorithms for 
line clipping against the given convex polygon, see [1], 
[8], [9], [12] that claimed some advantages over the 
CB algorithm. Nevertheless the CB algorithm is very 
stable and its performance is nearly independent from 
“geometrical” distribution of clipped primitives. The 
CB algorithm assumes that the clipping polygon is 
convex, 

It is obvious that the CB algorithm computes N
intersection points, but only two are actually needed if 
an intersection exists. 

3. The proposed algorithm 

A new approach to the line clipping by convex polygon 
in E2 based on “function of separation” is presented 
here. Main advantages of the proposed algorithm are: 

• robustness and stability, 
• significant speed up, 
• it works in homogeneous coordinates natively. 
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Figure 2 

Let us assume a convex polygon P, see Figure 2, and 
a line p given as F(x) = ax + by + c = 0. The line p
splits space into two half spaces, i.e. F(x) < 0 and 
F(x) ≥ 0

It can be seen that the function F(x) can be 
evaluated for each vertex of the given clipping convex 
polygon and for the i-th vertex the value ci is obtained 
as follows: 
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It means that each vertex is classified whether it is on 
the “left” or the “right” side of the clipped line p.
 For simplicity of explanation, let us assume 
a rectangular window, i.e. a polygon with 4 edges, see 
Figure 3.  
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Figure 3 

In this case the vector c consists of bits 
c = [ c4 , c3 , c2 , c1 ]

T

Let us construct a table TAB of all possible values of 
the vector c, see Table 1. If all the combinations are 
interpreted geometrically, it can be seen that for each 
line of the table the indices of the intersected edges can 
be pre-computed. It means that the function F(x) can be 
evaluated for each vertex of the clipping polygon and 
indices of intersected edges are stored in vectors TAB1 
and TAB2, see Table 1. Some combinations are 
impossible, like [ 0, 1, 0 , 1 ]T, and these combinations 
are signed as N/A. Also it can be seen that the 
vectors TAB1 and TAB2 are “symmetrical”, i.e. the 
orientation of the clipping polygon P is not needed.

The extension for a general case when the 
given line p is clipped by the convex polygon P is 
straightforward, i.e. the vector c has N bits in this case 
and similar vectors TAB1 and TAB2 can be generated 
for general case as well. Of course, it is necessary to 
determine which edges are intersected for each possible 
combination of the vector c.
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Table 1 

A reader can find out that those indices of intersected 
edges can be determined easily. When the two 
following bits in the vector c are different, i.e. ci ≠ ci+1

(+ means with mod N ) the edge xixi+1 will be 
intersected. Of course there will be more impossible 
cases, assigned recently as N/A, because in the case of 
convex clipping polygon the edges are actually split to: 

• one segment of edges on the “right” side of 
the line p,

• one segment of edges on the “left” side of the 
line p,

• edges intersected by the line p.

It can be seen that the table construction can be made 
once for all clipped lines if the clipping polygon P is 
not changed. In case of necessity the vectors TAB1 and 
TAB2 can be interpreted by if statements “on the fly”.
The Algorithm 1 describes the proposed algorithm. 

procedure CLIP_L; 
{ xA , xB – can be in homogeneous coordinates } 
{ The EXIT statement ends the procedure } 
{ input: xA , xB } 
begin { xA=[xA,yA,1]T } 
{1} p := xA x xB;  { ax+by+c = 0; p = [a,b,c]T } 
{2} for k:=0 to N-1 do { xk=[xk,yk,1]T } 
{3} if pTxk ≥ 0 then ck:=1 else ck:=0;
{4} if c = [0000]T or c = [1111]T then EXIT;
{5} i:= TAB1[c]; j:= TAB2[c]; 
{6} xA := p x ei ; xB := p x ej ; 
{7}  DRAW (xA; xB )
end {CLIP_L}; 

Algorithm 1 

It can be seen that the algorithm is very simple. The 
N/A cases will be never used.  

Because all operations in the Algorithm 1 are 
valid in homogeneous coordinates, this algorithm can 
be used if input and output points are in homogeneous 
coordinates. Note that cross-product processor can 
perform steps {1,6} and steps {2,3} can be made in 
parallel. The cross-product can be replaced by dot 
product with matrix multiplication 
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4. Experimental results 

Both, the CB and the proposed CLIP_L algorithms 
were implemented in Pascal (Delphi) and C++. Their 
efficiency compared on PC 750 MHz. All experiments 
were made with w = 1. Let us define the speed-up as 
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where: TCB, resp. TCLIP_L is time spent by CB, resp. by 
the new proposed CLIP_L algorithm. 

The experiments proved that  
ν ≥ 1,9

and it slightly grows with value N, where N is the 
number of edges of the given convex clipping polygon. 
For very high N the value ν reached value  

ν = 2,1
Several aspects, e.g. caching, additional instructions, 
cycles etc., cause some differences between theoretical 
estimation and experimental results. 

The main advantages of the proposed CLIP_L 
algorithm are: 

• robustness of the algorithm, 
• ability to work with homogeneous 

representation, 
• the vector-vector and parallel processing (the 

cycle can be made in parallel) speed up the 
processing significantly, 

• simple implementation in hardware. 

5. Conclusion 

This paper describes a new approach to the line 
clipping problem using projective space and 
homogeneous coordinates. The new proposed 
algorithm is robust and fast. It uses separation function 
that ensures very high robustness.  

The proposed algorithm CLIP_L for line clipping 
by a convex polygon is significantly faster than the 
original Cyrus-Beck algorithm and does not need 
predefined clipping polygon orientation. Additional 
speed-up has been obtained for general case, when 
w ≠ 1. It can be used for cases when a line is given by 
end-points in homogeneous coordinates. The CLIP_L 
algorithm seems to be convenient for hardware 
implementation, too. 

The proposed algorithm will benefit in speeding up 
if vector-vector operations or parallel processing can 
be used. It can be seen that the cross-product processor 
will increase the performance as well. Also the 

algorithms increases performance if the clipping 
window is will be < 0 , 1 > x < 0 , 1 >. 
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