
A New Line Clipping Algorithm with Hardware Acceleration

Vaclav Skala1

University of West Bohemia, Pilsen
Department of Computer Science and Engineering

 Czech Republic
skala@kiv.zcu.cz

1 Supported the Ministry of Education of the Czech Republic-project LA240 and Microsoft Research - project No.2003-178

Abstract

Algorithms for line clipping against convex polygon
have been studied for a long time and many research
papers have been published so far. In spite of the latest
graphical hardware development and significant
increase of performance the clipping is still a
bottleneck of the graphical pipeline. This paper
presents a new robust and fast algorithm for line
clipping by a convex polygon. The algorithm uses
a small pre-processing in order to obtain significant
speed up. The proposed algorithm is especially
convenient for applications where points or lines are
represented in homogeneous coordinates. The
algorithm does not use division in floating point
representation as the resulting points are in
homogeneous coordinates. The algorithms will benefit
if vector-vector hardware supported operations can be
used.

1. Introduction

There are many algorithms devoted to the line and
line segment clipping in E2 and E3. Generally
algorithms have been developed and modified for line
or line segment or polygon clipping against rectangular
window, convex polygon or polygonal clipping area
[4], [7], [8], [9], [10], [11]. Some modifications have
been developed also for self-intersecting clipping
polygon or for areas with linear or quadric edges [12].

Also some algorithms were specially developed or
tuned for some special cases like small windows or for
some specific characteristics of input data set. Some
algorithms and their efficiency are very sensitive to
input data, i.e. geometrical distribution of lines or line
segments, too.

Algorithms used in E2 space are mostly based on
Eucledian space representation while homogeneous

coordinates in spite of the fact that positive projective
space representation is more natural in some cases. In
many applications the clipping window or polygon are
constant for many clipped lines. In this case a
pre-processing might be another factor speeding the
algorithm, too.

In spite of the latest graphical hardware
development and significant increase of performance
the clipping is still a bottleneck of the graphics
pipeline.

This paper presents a new fast and robust algorithm
for line clipping against convex polygon and line
clipping against rectangular window. The proposed
algorithm is compared with well-known Cyrus-Beck
algorithm [3], [4]. Experimental evaluation,
verification and comparison of the proposed algorithm
are presented.

2. Projective geometry and duality

Homogeneous coordinates are widely used in computer
graphics applications, usually connected with
geometric transformations like rotation, scaling,
translation and projection, etc. The “geometrical”
interpretation is shown at Figure 1.

The point x is defined as a point in E2 with
coordinates (X,Y) or as a point with homogeneous
coordinates [x, y, w]T, where w = 1 usually. The point x
is actually a “line” without the origin in the projective
space P2(x,y,w), and X = x / w and Y = y / w. It can be
seen that a line p∈E2 is actually a plane ρ without the
origin in the projective space P2, i.e. the line p is
defined as

��� ≠=++ �������

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Computer Graphics International 2004 conference proceedings, IEEE, ISSN 1530-1052, pp. 270-273, 2004

�
�

�

���

�

�
�

��	

�

�

���

��
	

�� 	ρ

�
�

�
	

��� 	
�

�
�

�
�

��� 	
�

ρ

Figure 1

The line p is actually geometric interpretation of that.
The equation can be divided by any ξ ≠ 0 without any
effect to the geometry. In dual representation the plane
ρ can be represented as a line D(ρ)∈D(P2) or as a point
D(ρ)∈D(E2), when a projection is made, e.g. for c = 1.
There is a complete theory on projective spaces, see
[5], [13] for details.

On the other hand, there is a phenomenon of
principle of duality that can be used for derivation of
some useful formula. The principle states that any
theorem remains true when we interchange the words
“point” and line”, “lie on” and “pass through”, “join”
and “intersection”, “collinear” and “concurrent” and so
on. Once the theorem has been established, the dual
theorem is obtained as described above, for details see
[Cox61a], [John96a]. In other words, the duality says
that in all theorems it is possible to substitute a term
“point” by a term “line” and term “line” by the term
“point” and the given theorem stays valid. This helps a
lot in solution of some geometrical cases.

Definition1

The cross product of two vectors x1 and x2 is defined as
















=

�

�����

��

����

��

��

���

��

where i = [1,0,0]T, j = [0,1,0]T, k = [0,0,1]T

Theorem1

Let two points x1 and x2 are given in the projective
space. Then a line p, that is defined by those two
points, is determined as the cross product p = x1 x x2

Note: It can be seen that it is valid also for cases if
w ≠ 1 & w ≠ 0.

Theorem2

Let two lines p1 and p2 are given in the projective
space. Then a point x, that is defined as intersection of
those two lines, is determined as a cross product
x = p1 x p2.

These two theorems are very important as they
enable us to handle some problems defined in
homogeneous coordinates and make computations
quite effective.

The Cyrus-Beck algorithm (CB) is the most famous
algorithm [3] for line and line segment clipping by
convex polygon. There are also several algorithms for
line clipping against the given convex polygon, see [1],
[8], [9], [12] that claimed some advantages over the
CB algorithm. Nevertheless the CB algorithm is very
stable and its performance is nearly independent from
“geometrical” distribution of clipped primitives. The
CB algorithm assumes that the clipping polygon is
convex,

It is obvious that the CB algorithm computes N
intersection points, but only two are actually needed if
an intersection exists.

3. The proposed algorithm

A new approach to the line clipping by convex polygon
in E2 based on “function of separation” is presented
here. Main advantages of the proposed algorithm are:

• robustness and stability,
• significant speed up,
• it works in homogeneous coordinates natively.

�
�

�
���

�
�

�
�

�
�

�
��

�

�
�

������

������

�
	

Figure 2

Let us assume a convex polygon P, see Figure 2, and
a line p given as F(x) = ax + by + c = 0. The line p
splits space into two half spaces, i.e. F(x) < 0 and
F(x) ≥ 0

It can be seen that the function F(x) can be
evaluated for each vertex of the given clipping convex
polygon and for the i-th vertex the value ci is obtained
as follows:



 ≥

=
������	
��

��
	��
�

�

��
�

It means that each vertex is classified whether it is on
the “left” or the “right” side of the clipped line p.
 For simplicity of explanation, let us assume
a rectangular window, i.e. a polygon with 4 edges, see
Figure 3.

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Computer Graphics International 2004 conference proceedings, IEEE, ISSN 1530-1052, pp. 270-273, 2004

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

������

������

Figure 3

In this case the vector c consists of bits
c = [c4 , c3 , c2 , c1]

T

Let us construct a table TAB of all possible values of
the vector c, see Table 1. If all the combinations are
interpreted geometrically, it can be seen that for each
line of the table the indices of the intersected edges can
be pre-computed. It means that the function F(x) can be
evaluated for each vertex of the clipping polygon and
indices of intersected edges are stored in vectors TAB1
and TAB2, see Table 1. Some combinations are
impossible, like [0, 1, 0 , 1]T, and these combinations
are signed as N/A. Also it can be seen that the
vectors TAB1 and TAB2 are “symmetrical”, i.e. the
orientation of the clipping polygon P is not needed.

The extension for a general case when the
given line p is clipped by the convex polygon P is
straightforward, i.e. the vector c has N bits in this case
and similar vectors TAB1 and TAB2 can be generated
for general case as well. Of course, it is necessary to
determine which edges are intersected for each possible
combination of the vector c.

� �� �� �� �� ���� ���� ����

� � � � � ���� ���� ����

� � � � � � � ����

� � � � � � � ����

� � � � � � � ����

	 � � � � � � ����

 � � � � ��� ��� � � �

� � � � � � � ����

� � � � � � � ����

	 � � � � � � ����

 � � � � � � ����

�� � � � � ��� ��� � � �

�� � � � � � � ����

�� � � � � � � ����

�� � � � � � � ����

�� � � � � � � ����

�� � � � � �
�� �
�� �
��

Table 1

A reader can find out that those indices of intersected
edges can be determined easily. When the two
following bits in the vector c are different, i.e. ci ≠ ci+1

(+ means with mod N) the edge xixi+1 will be
intersected. Of course there will be more impossible
cases, assigned recently as N/A, because in the case of
convex clipping polygon the edges are actually split to:

• one segment of edges on the “right” side of
the line p,

• one segment of edges on the “left” side of the
line p,

• edges intersected by the line p.

It can be seen that the table construction can be made
once for all clipped lines if the clipping polygon P is
not changed. In case of necessity the vectors TAB1 and
TAB2 can be interpreted by if statements “on the fly”.
The Algorithm 1 describes the proposed algorithm.

procedure CLIP_L;
{ xA , xB – can be in homogeneous coordinates }
{ The EXIT statement ends the procedure }
{ input: xA , xB }
begin { xA=[xA,yA,1]T }
{1} p := xA x xB; { ax+by+c = 0; p = [a,b,c]T }
{2} for k:=0 to N-1 do { xk=[xk,yk,1]T }
{3} if pTxk ≥ 0 then ck:=1 else ck:=0;
{4} if c = [0000]T or c = [1111]T then EXIT;
{5} i:= TAB1[c]; j:= TAB2[c];
{6} xA := p x ei ; xB := p x ej ;
{7} DRAW (xA; xB)
end {CLIP_L};

Algorithm 1

It can be seen that the algorithm is very simple. The
N/A cases will be never used.

Because all operations in the Algorithm 1 are
valid in homogeneous coordinates, this algorithm can
be used if input and output points are in homogeneous
coordinates. Note that cross-product processor can
perform steps {1,6} and steps {2,3} can be made in
parallel. The cross-product can be replaced by dot
product with matrix multiplication

��
��� �= , where x = [x , y , w]T

Then

��

���

���

���

��

















−
=�

��

���

���

���

��
















−=�

��

���

���

���

��















 −
=�

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Computer Graphics International 2004 conference proceedings, IEEE, ISSN 1530-1052, pp. 270-273, 2004

4. Experimental results

Both, the CB and the proposed CLIP_L algorithms
were implemented in Pascal (Delphi) and C++. Their
efficiency compared on PC 750 MHz. All experiments
were made with w = 1. Let us define the speed-up as

�����

��

�

�

�

=ν

where: TCB, resp. TCLIP_L is time spent by CB, resp. by
the new proposed CLIP_L algorithm.

The experiments proved that
ν ≥ 1,9

and it slightly grows with value N, where N is the
number of edges of the given convex clipping polygon.
For very high N the value ν reached value

ν = 2,1
Several aspects, e.g. caching, additional instructions,
cycles etc., cause some differences between theoretical
estimation and experimental results.

The main advantages of the proposed CLIP_L
algorithm are:

• robustness of the algorithm,
• ability to work with homogeneous

representation,
• the vector-vector and parallel processing (the

cycle can be made in parallel) speed up the
processing significantly,

• simple implementation in hardware.

5. Conclusion

This paper describes a new approach to the line
clipping problem using projective space and
homogeneous coordinates. The new proposed
algorithm is robust and fast. It uses separation function
that ensures very high robustness.

The proposed algorithm CLIP_L for line clipping
by a convex polygon is significantly faster than the
original Cyrus-Beck algorithm and does not need
predefined clipping polygon orientation. Additional
speed-up has been obtained for general case, when
w ≠ 1. It can be used for cases when a line is given by
end-points in homogeneous coordinates. The CLIP_L
algorithm seems to be convenient for hardware
implementation, too.

The proposed algorithm will benefit in speeding up
if vector-vector operations or parallel processing can
be used. It can be seen that the cross-product processor
will increase the performance as well. Also the

algorithms increases performance if the clipping
window is will be < 0 , 1 > x < 0 , 1 >.

6. Acknowledgments

The author would like to express his thanks to
students and colleagues at the University of West
Bohemia for recommendations, constructive
discussions and hints that helped to finish the work and
improve this manuscript a lot. Thanks especially
belong to Jana Hajkova and Petr Cizek for
implementation verification in C++ and Delphi
(Pascal), to Ivo Hanak for some feature evaluation in
HLSL and Cg using ATI X1 card as well.

7. References

[1] Bui,D.H., Skala,V.: Fast Algorithms for Clipping Lines
and Line Segments in E2, The Visual Computer , Vol.14,
No.l , pp.31-37 , 1998.

[2] Coxeter,H.S.M.: Introduction to Geometry, Jihn Wiley,
1961.

[3] Cyrus,M., Beck,J.: Generalized Two- and
Three_Dimensional Clipping, Computers&Graphics,
Vol.2., No.1, pp.23-28, 1978.

[4] Foley,D.J., van Dam,A., Feiner,S.K., Hughes,J,F.:
Computer Graphics -Principles and Practice, Addison
Wesley, 2nd ed., 1990.

[5] Hartley,R., Zisserman,A.: MultiView Geometry in
Computer Vision, Cambridge University Press, 2000.

[6] Johnson,M.: Proof by Duality: or the Discovery of
“New” Theorems, Mathematics Today, December 1996.

[7] Liang,Y., Barsky,B.: A New concept and Method for
Line Clipping, ACM Trans.on Graphics, Vol.3., No.1.,
pp.1-22, 1984

[8] Nicholl,T.M., Lee D.T., Nicholl R.A.: An Efficient New
Algorithm for 2-D Line Clipping: Its Development and
Analysis, SIGGRAPH Proceedings, Vol.21, No.4,
pp.253-262, 1987.

[9] Rappaport,A.: An Efficient Algorithm for Line and
Polygon Clipping, The Visual Computer, Vol.7., No.1,
pp.19-28, 1991.

[10] Skala,V., Bui,D.H.: Extension of the Nicholls - Lee -
Nichols Algorithm to Three Dimensions, The Visual
Computer, Springer Verlag, Vol. 17, pp.236 - 242,
2001

[11] Bui,D.H., Skala,V.: Fast Algorithms for Line Segment
and Line Clipping in E2, The Visual Computer, No.1,
Vol.14, Springer Verlag, pp. 31-37, 1998.

[12] Skala,,V.: Algorithms for 2D Line Clipping,
Eurographics 89 conference proceedings, pp.355-366,
1989.

[13] Stolfi,J,: Oriented Projective Geometry, Academic
Press, 2001

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Computer Graphics International 2004 conference proceedings, IEEE, ISSN 1530-1052, pp. 270-273, 2004

