
Adaptive Edge Spinning Algorithm for Polygonization of Implicit Surfaces

Martin ermák
1
 and Václav Skala

2

University of West Bohemia, Pilsen

Department of Computer Science and Engineering

 Czech Republic

{cermakm|skala}@kiv.zcu.cz

This work was supported by the Ministry of Education of the Czech Republic – projects
1
MSM 235200002 and

2
LA 240

Abstract

This paper presents an adaptive method for

polygonization of implicit surfaces. The method insists

on the shape of triangles and the accuracy of resulting

approximation as well. The main advantages of the

triangulation presented are simplicity and the stable

features that can be used for next expanding. The

implementation is not complicated and only the

standard data structures are used. The presented

algorithm is based on the surface tracking scheme and

it is compared with the other algorithms based on the

similar principle, such as the Marching cubes and the

Marching triangles algorithms.

1. Introduction

Implicit surfaces seem to be one of the most

appealing concepts for building complex shapes and

surfaces. They have become widely used in several

applications in computer graphics and visualization.

An implicit surface is mathematically defined as a

set of points in space x that satisfy the equation

f(x) = 0. Thus, visualizing implicit surfaces typically

consists in finding the zero set of f, which may be

performed either by polygonizing the surface or by

direct ray tracing.

There are two different definitions of implicit

surfaces. The first one [4], [5] defines an implicit

object as f(x) < 0 and the second one, F-rep [14], [17],

[18], defines it as f(x) 0. In our implementation, we

use the F-rep definition of implicit objects. If f is an

arbitrary procedural method (i.e. a ‘black box’ function

that evaluates x) then the geometric properties of the

surface can be deduced only through numerical

evaluation of the function. The value of f is often a

measure of distance between x and the surface. The

measure is Euclidean if it is ordinary (physical)

distance. For an algebraic surface, f measures the

algebraic distance.

Existing polygonization techniques may be

classified into several categories. Spatial sampling

techniques (exhaustive enumeration of a given region)

that regularly or adaptively sample the space to find

the cells that straddle the implicit surface [2], [4], [6].

Surface tracking approaches (also known as

continuation methods) iteratively create a triangulation

from a seed element by marching along the surface [1],

[4], [7], [12], [15], [22]. Surface fitting techniques

progressively adapt and deform an initial mesh to

converge to the implicit surface, [17]. Particle systems

(physically based techniques) start from initial

positions in space and seek their equilibrium positions,

i.e. positions where a potential function | f | is minimal

– on an implicit surface, [10], [11]. The desired

polygonal approximation is then obtained by

computing the Delaunay triangulation associated with

the points.

2. Data structures

The presented algorithm uses only the standard data

structures used in computer graphics. The main data

structure is a winding edge that is used as a basic

building block for polygonization.

If a triangle’s edge lies on the triangulation border,

it is contained in the active edges list (AEL) and it is

called as an active edge. Each point, which is

contained in an active edge, contains two pointers to its

left and right active edge (left and right directions are

in active edges’ orientation)

For faster evaluation of detection of global overlap

(see section 6.2), we use the space subdivision

acceleration technique, introduced in [8]. Therefore,

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Computer Graphics International 2004 conference proccedings, IEEE, ISSN 1530-1052, 2004

each point in AEL also contains the index of sub-area

in which it lies. Each sub-area has its own dynamically

allocated list of points located inside. The sub-areas

are implemented as an array and each of them has its

unique index.

3. Principle of the algorithm

Our algorithm is based on the surface tracking

scheme and therefore, there are several limitations. A

starting point must be determined and only one

separated implicit surface can by polygonized for such

point. Several disjoint surfaces can be polygonized

from a starting point for each of them.

The whole algorithm consists of the following steps:

1. Initialize the polygonization:

a. Find the starting point p0 and create the first

triangle T0.

b. Include the edges (e0,e1,e2,) of the first triangle

T0 into the active edges list, see Figure 1.

2. Polygonize the first active edge e from the active

edges list.

3. Update the AEL; delete the currently polygonized

active edge e and include the new generated active

edge/s at the end of the list.

4. If the active edges list is not empty return to step 2.

4. Initializing the polygonization

4.1. Starting point

There are several methods for finding a starting

point on an implicit surface. These algorithms can be

based on some random search method as in [4] or on

more sophisticated approach. In [22], searching in

constant direction from an interior of an implicit object

is used.

In our approach, we use a simple algorithm for

finding a starting point. A starting point is sought in a

defined area by following of a gradient vector f of an

implicit function f. The algorithm looks for a point p0

that satisfies the equation f(p0) = 0.

4.2. The First triangle

The first triangle in polygonization is assumed to lie

near a tangent plane of the starting point p0 that is on

the implicit surface. Let such point p0 exists then the

algorithm is as follows.

1. Determine the normal vector n = (nx,ny,nz) in the

starting point p0, see Figure 1.

2. Determine the tangent vector t as in [12].

If (nx > 0.5) or (ny > 0.5) then t = (ny,-nx,0);

else t = (-nz,0,nx).

3. Use the tangent vector t as a fictive active edge and

use the edge spinning algorithm (described below)

for computation coordinates of the second point p1.

The pair of points (p0,p1) forms the first edge e0.

Figure 1. The first triangle.

4. Polygonize the first edge e0 by the edge spinning

algorithm for getting the third point p2. Points

(p0,p1,p2) and edges (e0,e1,e2) form the first

triangle T0.

5. Edge spinning

The main goal of this work is a numerical stability

of a surface point coordinates’ computation for objects

defined by implicit functions. Differential properties

for each implicit function are different in dependence

on the modeling techniques [14], [15], [17], [18], [20],

[21] and the accurate determination of a position of a

surface vertex depends on them. In general, a surface

vertex position is searched in direction of a gradient

vector f of an implicit function f, as in [12]. In many

cases, the computation of gradient of the function f is

influenced by a major error. Because of these reasons,

in our approach, we have defined these restrictions for

finding a new surface point pnew:

- The new point pnew is sought in a constant distance,

i.e. on a circle; then each new generated triangle

preserves the desired accuracy of polygonization.

The circle radius is proportional to the estimated

surface curvature.

- The circle lies in the plane that is defined by the

normal vector of triangle Told and axis o of the

current edge e, see Figure 3; this guarantees that

the new generated triangle is well shaped

(isosceles).

5.1. Determination of the circle radius

The circle radius is proportional to the estimated

surface curvature. The surface curvature in front of

current active edge is determined in according to angle

 between the surface normals n1, n2, see Figure 2.

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Computer Graphics International 2004 conference proccedings, IEEE, ISSN 1530-1052, 2004

The normal vector n1 is computed at point s that lies in

the middle of the current active edge e and the vector

n2 is taken at initial point pinit that is a point of

intersection of the circle c1 with the plane defined by

the triangle Told.

Figure 2. The circle radius estimation.

Note that the initial radius r1 of the circle c1 is

always the same and it is set at beginning of

polygonization as the lowest desired level of detail

(LOD). The new circle radius r2 is computed as

follows.

,

;1,0,

lim

lim

12

c
k

kkrr

where lim is a limit angle and the constant c represents

a speed of “shrinking” of the radius according to the

angle . To preserve well shaped triangles, we use a

constant kmin that represents a minimal multiplier. In

our implementation we used min = /2, kmin = 0.2 and

c = 1.2.

Correction notes:

if (> min) then k = kmin

if (k < kmin) then k = kmin

These parameters affect a shape of triangles of the

polygonal mesh generated.

5.2. Root finding

If the algorithm knows the circle radius, the process

continues as follows.

1. Set the point pnew to its initial position; the initial

position is on the triangle’s Told plane on the other

side of the edge e, see Figure 3. Let the angle of the

initial position be =0.

2. Compute the function values f(pnew) = f(),

f(p’new) = f(+) – initial position rotated by the

angle + , f(p”new) = f(-) - initial position

rotated by the angle - ; Note that the rotation axis

is the edge e.

3. Determine the right direction of rotation;

if |f(+)| < |f()| then + else - .

Figure 3. The principle of root finding algorithm.

4. Let the function values f1 = f() and f2 = f(±);

update the angle = ± .

5. Check which of following case appeared:

a) If (f1 f2)<0 then compute the accurate

coordinates of the new point pnew by the binary

subdivision between the last two points which

correspond to the function values f1 and f2;

b) If the angle | | is less than safe (see safe angle

area in Figure 2) return to step 4.

c) If the angle | | is greater than safe then there is

a possibility that both triangles Told and Tnew

could cross each other; the point pnew is rejected

and it is marked as not found.

5.3. Root finding of sharp edge

Let us assume that the standard edge spinning root

finding algorithm presented above has found the point

pnew. The algorithm then determines the surface normal

vector nnew at this point and computes the angle

between normal vectors nnew and ns. The vector ns is

measured at mid-point s of the active edge e, see

Figure 4. If the angle is greater then some user-

specified threshold lim_edge (limit edge angle) then the

algorithm will look for a new edge point as follows.

1. Compute coordinates of the point pinit as an

intersection of the three planes, tangent planes t1

and t2, and the plane in which the seeking circle c

lies, see Figure 4.

2. Apply the straight root finding algorithm described

in section 5.4 and find the new point p’new.

Note that the algorithm needs an accurate

determination of surface normal vectors, i.e. accurate

computation of a function gradient.

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Computer Graphics International 2004 conference proccedings, IEEE, ISSN 1530-1052, 2004

Figure 4. The principle of root finding algorithm for
sharp edges.

Therefore, implicit objects should be modeled by F-

Rep, [19], because objects defined by min/max

operations are not good differentiable, [17], [20].

Figure 5. A square modeled as intersection of four half-
spaces; left: by min/max operations; right: by the F-Rep
operations; taken from [17].

The gradient array of a square, modeled by min/max

and F-Rep operations, is illustrated in Figure 5. The

picture shows that the min/max operations create

objects with poor differential properties.

5.4. Straight root finding algorithm

The algorithm starts from an initial point pinit (see

Figure 6) and supposes that the implicit surface is at

least C0 continuity.

The algorithm continues as follows.

1. At point pinit, compute the surface normal vector

ninit that defines the seeking axis o.

2. Compute coordinates of point p’init with distance

from point pinit in direction ninit * sign(f(pinit));

where is the length of step and the function sign

returns “1” if (f > 0) or “0” if (f < 0).

3. Determine function values f, f’ at points pinit, p’init.

4. Check next two cases.

a. If these points lie on opposite sides of implicit

surface, i.e. (f *f’) < 0; compute the exact

coordinates of the point pnew by binary

subdivision between these points.

b. If the points pinit, p’init lie on the same side of

the surface then pinit = p’init and return to step 2.

Figure 6. Principle of root-finding in straight direction.

6. Polygonization of an active edge

Polygonization of an active edge e consists of

several steps. In step 1, the process will use the root

finding algorithm (see section 5.2) to find a new point

pnew in front of the edge e. If pnew exists, there are two

cases illustrated in Figure 7.

6.1. Neighborhood test

Decision between cases a) and b) depends on

relation among angles 1, 2, n, see Figure 7; let the

angle be min(1, 2).

If (< shape) then case a) else case b), see Figure 7;

The limit shape angle is determined as shape = k* n,

k 1, shape < , where the constant k has effect to

shape of generated triangles and in our implementation

is chosen k = 1.7. If the point pnew is not found, angle

n is not defined and the limit shape angle should be

just less then ; we have chosen shape = *0.8.

a) In this case, a new triangle tnew is created by

connecting the edge e with one of its neighbors,

see step 2a.

b) The new triangle tnew is created by joining the

active edge e and the new point pnew, see step 2b.

Figure 7. Polygonization of the active edge e.

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Computer Graphics International 2004 conference proccedings, IEEE, ISSN 1530-1052, 2004

In both cases, a bounding sphere is determined for

the new triangle tnew. The bounding sphere is the

minimal sphere that contains all three points of the

triangle, i.e. the centre of the sphere lies in the plane

defined by these three points.

If there is not a new triangle (the point pnew does not

exist and case a) has not appeared) the bounding

sphere of the active edge e is used. The next procedure

is analogical for all cases.

6.2. Distance test

To preserve the correct topology, it is necessary to

check each new generated triangle if it does not cross

any other triangles generated before. It is sufficient to

perform this test between the new triangle and a border

of already triangulated area (i.e. active edges in AEL).

Figure 8. Solving of distance test.

The algorithm will make the nearest active edges

list (NAEL) to the new triangle tnew. Each active edge

that is not adjacent to the current active edge e and

crosses the bounding sphere of the new triangle (or the

edge e), is included to the list, see Figure 8, step 2. The

extended bounding sphere is used for the new triangle

created by the new point pnew (case b) because the

algorithm should detect a collision in order to preserve

well-shaped triangles. The new radius of the bounding

sphere is computed as r2 = c*r1 and we used the

constant c = 1.5.

If the NAEL list is empty then the new triangle tnew

is finally created and the active edges list is updated.

In case a), Figure 7 step 2, the current active edge e

and its neighbor edge er are deleted from the list and

one new edge enew is added at the end of the list. The

new edge should be tested if it satisfies the condition

of the surface curvature. If it does not then the new

triangle will be split along the edge enew, see

section 6.3.

In case b), Figure 7 step 2, the current active edge e

is deleted from the list and two new edges enew1, enew2

are added at the end of the list.

Note that if there is no new triangle to be created

(the point pnew does not exist and case a) in Figure 7

has not appeared) the current active edge e is moved at

the end of the AEL list and the whole algorithm will

return back to step 2, see section 3.

If the NAEL list is not empty then the situation has

to be solved. The point pmin with minimal distance

from the centre of the bounding sphere is chosen from

the NAEL list, see Figure 8, step 3.

This point has to satisfy a condition of thin objects

as well. The current active edge e and the point pmin

should not lie on the opposite sides of the implicit

surface. Figure 9 illustrates the wrong situation.

Figure 9. A problem of thin implicit objects.

If the correct point pmin is found, the new triangle

tnew has to be changed and will be formed by the edge e

and the point pmin, i.e. by points (pe1,pmin,pe2); the

situation is described in Figure 8, step 3. The point pmin

is owned by four active edges enew1, enew2, emin1, emin2

and the border of already triangulated area intersects

itself on it. This is not correct because each point that

lies on the triangulation border should has only two

neighborhood edges (left and right).

Solution of the problem is to triangulate two of four

edges first. Let the four active edges be divided into

pairs; the left pair be (emin1, enew2) and the right pair be

(enew1, emin2). One of these pairs will be polygonized

and the second one will be cached in memory for later

use. The solution depends on angles m1, m2, see

Figure 8, step 3. If (m1 < m2) then the left pair is

polygonized; else the right pair is polygonized.

In both cases, the recently polygonized pair is

automatically removed from the list and the previously

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Computer Graphics International 2004 conference proccedings, IEEE, ISSN 1530-1052, 2004

Figure 11. The Genus 3 object generated by the a) Adaptive Edge Spinning algorithm; b) Marching triangles
algorithm; and c) Marching cubes algorithm.

cached pair of edges is returned into the list. The point

pmin is contained only in one pair of active edges and

the border of the triangulated area is correct,

see Figure 8, step 4.

Note that the polygonization of one pair of edges

consists just of joining its end points by the edge and

this second new triangle has to fulfill the empty NAEL

list as well; otherwise the current active edge e is

moved at the end of AEL list.

6.3. Splitting the new triangle

This process is evaluated only in cases when the

new triangle has been created by connecting of two

adjacent edges, i.e. situation illustrated in Figure 7,

step 2a. If the new edge does not comply a condition of

surface curvature the new triangle should be split. That

means, see Figure 10; if the angle between surface

normal vectors n1, n2 at points pe1, per2 is greater then

some limit split_lim then the new triangle will be split

into two new triangles, see Figure 10, step 2.

Figure 10. Splitting of the new triangle.

The point pnew is a midpoint of edge enew and it does

not lie on the implicit surface. Its correct coordinates

are additionally computed by the straight root finding

algorithm described in section 5.4.

7. Experimental results

The Adaptive Edge spinning algorithm (AES) is

based on the surface tracking scheme (also known as

the continuation scheme). Therefore, we have

compared it with other methods based on the same

principle – the Marching triangles algorithm (MTR,

introduced in [12]) and the Marching cubes method

(MC, Bloomenthal’s polygonizer, introduced in [4]).

As a testing function, we have chosen the implicit

object Genus 3 that is defined as follows.

0

1,,

2
1

22
1

2
1

22
1

2224

ryxxryxx

ryrxzrzyxf yxz

where the parameters are: rx=6, ry=3.5, rz=4, r1=1.2,

x1=3.9.

The measured values from our experiment are in

Table 1. The values have been achieved with the

desired lowest level of detail (LOD) equal 0.8. It

means that maximal length of triangles’ edges is 0.8.

Note that there is not defined a unit of length, so that

number could be for example in centimeters as well as

the parameters of the function Genus 3 described

above.

Table 1. Values of the object Genus 3 with the desired
lowest level of detail LOD = 0.8.

AES MTR MC

Triangles 4886 947 1056

Vertices 2439 473 516

Avg dev. 10,99 56,80 73,28

Angle crit. 0,65 0,67 0,38

Elength crit. 0,77 0,78 0,54

The table contains the number of triangles and

vertices generated. The value Avg dev. means the

average deviation of each triangle from the real

implicit surface. It is measured as algebraic distance of

a gravity centre of a triangle from an implicit surface,

i.e. the function value at the centre of gravity of the

triangle. Note that the algebraic distance strongly

depends on the given implicit function; in our test, the

Genus 3 object is used for all methods, so the value has

its usefulness. The value Angle crit. means the

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Computer Graphics International 2004 conference proccedings, IEEE, ISSN 1530-1052, 2004

Figure 12. The Genus 3 object generated by the a) Adaptive Edge Spinning algorithm; b) Marching triangles
algorithm; and c) Marching cubes algorithm.

criterion of the ratio of the smallest angle to the largest

angle in a triangle and the value Elength crit. means

the criterion of the ratio of the shortest edge to the

longest edge of a triangle. The value Avg dev. shows

the accuracy of an implicit object approximation and

therefore, the Adaptive Edge spinning algorithm is

logically the best of tested methods. The criterions of

angles and length of edges in triangles are similar for

the AES and the MTR algorithms, so the both

approaches generate well-shaped triangular meshes.

For visual comparison, the resulting pictures of the

Genus 3 object generated in the test are in Figure 11.

Figure 11a shows the object generated by the adaptive

algorithm, so the number of triangles generated is

higher in dependence on the surface curvature. In

Figure 11b some parts of the object are lost because

the algorithm just connects nearest parts by large

triangles depending of the lowest level of detail. The

resulting image generated by the Marching cubes

algorithm is shown in Figure 11c This algorithm

produces badly-shaped triangles but it is fast and also

stable for complex implicit surfaces with C0 continuity,

only.

Table 2 contains values generated by all three

methods with the variable desired level of detail

(LOD) because we want the number of generated

triangles to be similar.

Table 2. Values of the object Genus 3 with the variable
lowest level of detail.

AES MTR acc. MC

LOD 0,26 0,21 0,23

Triangles 13802 13695 13552

Vertices 6897 6843 6756

Avg dev. 3,79 3,89 5,25

Angle crit. 0,69 0,73 0,36

Elength crit. 0,81 0,83 0,52

Time [ms] 861 101 150

TimeA [ms] 62,38 7,37 11,07

In this case, the value Avg dev. is similar for the

AES and the MTR algorithms, because next shrinking

of triangles is not necessary for achieving a better

approximation. All other measured values are similar

like in Table 1. The value Time in Table 2 shows the

measured computational time of each algorithm and

the value TimeA represents an average time needed for

creating of one thousand triangles.

Note that the time values are included only for a

better illustration about the algorithms because the

presented method is primarily aimed at quality of

approximation, not at speed. Speed-up and next

improving of the algorithm will be our future work.

Comparison of speed is more suitable to perform on

the original non-adaptive Edge spinning method and it

has been introduced in [8]. In our test, the accelerated

version of the MTR method, [9], has been used and

therefore, its results are better. All tests were measured

on a machine AMD Athlon XP 1500+, 1GB DDR.

Figure 13. Intersection of two spheres generated by the
Adaptive Edge spinning algorithm; with and without
edge detection.

Figure 13 shows an object modeled as intersection

of two spheres. The implicit object complies the C0

continuity only and it is correctly polygonized by the

proposed method. The picture a) is polygonized

without the edge detection, i.e. the limit edge angle

lim_edge is equal to and the picture b) is polygonized

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Computer Graphics International 2004 conference proccedings, IEEE, ISSN 1530-1052, 2004

with limit edge angle equal to /4, see section 5.3 for

details. For visual comparison, the resulting pictures of

the Genus 3 object generated according to values in

Table 2 are in Figure 12.

8. Conclusion

This paper presents the new adaptive approach for

polygonization of implicit surfaces. The algorithm

marches over the object’s surface and computes the

accurate coordinates of new points by spinning the

edges of already generated triangles. Coordinates of

the new points depend on surface curvature estimation.

We used the estimation by deviation of angles of

adjacent points because it is simple and fast for

computation. The similar measurement has been used

as curvature estimation in [23] as well. Our

experiments also proved its functionality. Other

estimation techniques can be found in [3], [15].

The algorithm can polygonize implicit surfaces

which comply C1 continuity, thin objects and some

non-complex objects of C0 continuity (an object should

have only sharp edges, no sharp corners or more

complex shapes). In future work, we want to modify

the current algorithm for more complex implicit

functions of the C0 continuity, only.

Acknowledgements

The authors of this paper would like to thank all

those who contributed to development of this new

approach, especially to colleagues MSc. and PhD.

students at the University of West Bohemia in Plzen.

Presented project has been implemented as a part of

the MVE (Modular Visualization Environment), [16].

References

[1] Akkouche, S., Galin, E.: Adaptive Implicit Surface

Polygonization using Marching Triangles, Computer

Graphic Forum, 20(2): 67-80, 2001.

[2] Allgower, E.L., Gnutzmann, S.: An algorithm for

piecewise linear approximation of implicitly defined two-

dimensional surfaces. SIAM Journal of Numerical

Analysis, 24, 452-469, April 1987.

[3] Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B.,

Desbrun, M.: Anisotropic Polygonal Remeshing,

Siggraph 2003, ACM TOG, Volume 22 , Issue 3, 2003.

[4] Bloomenthal, J.: Graphics Gems IV, Academic Press,

1994.

[5] Bloomenthal, J.: Skeletal Design of Natural Forms,

Ph.D. Thesis, 1995.

[6] Bloomenthal, J., Bajaj, Ch., Blinn, J., Cani-

Gascuel, M-P., Rockwood, A., Wyvill, B., Wyvill, G.:

Introduction to implicit surfaces, Morgan Kaufmann,

1997.

[7] ermák, M., Skala, V.: Polygonization by the Edge

Spinning, Int. Conf. Algoritmy 2002, Slovakia, 2002.

[8] ermák, M., Skala, V.: Accelerated Edge Spinning

algorithm for Implicit Surfaces, Int. Conf. ICCVG 2002,

Zakopane, Poland, 2002.

[9] ermák, M., Skala, V.: Space Subdivision for Fast

Polygonization of Implicit Surfaces, Int. Conf. ECI 2002,

Slovakia, 2002.

[10] Figueiredo, L.H.: Computational Morphology of

Implicit Curves, doctoral thesis, IMPA, 1992.

[11] Figueiredo L.H., Gomes J.M., Terzopoulos D., Velho

L.: Physically-based methods for polygonization of

implicit surfaces, In Proceedings of Graphics Interface

92, 1992.

[12] Hartmann, E.: A Marching Method for the

Triangulation of Surfaces, The Visual Computer (14),

pp.95-108, 1998.

[13] Hilton, A., Stoddart, A.J., Illingworth, J., Windeatt, T.:

Marching Triangles: Range Image Fusion for Complex

Object Modelling, Int. Conf. on Image Processing,

1996.

[14] “Hyperfun: Language for F-Rep Geometric Modeling”,

http://cis.k.hosei.ac.jp/~F-rep/

[15] Karkanis, T., Stewart, A.J.: Curvature-Dependent

Triangulation of Implicit Surfaces, IEEE Computer

Graphics and Applications, Volume 21, Issue 2, March

2001.

[16] MVE – Modular Visualization Environment project,

http://herakles.zcu.cz/research.php, 2001.

[17] Ohtake, Y., Belyaev, A., Pasko, A.: Dynamic Mesh

Optimization for Polygonized Implicit Surfaces with

Sharp Features, The Visual Computer, 2002.

[18] Pasko, A., Adzhiev, V., Karakov, M., Savchenko,V.:

Hybrid system architecture for volume modeling,

Computer & Graphics 24 (67-68), 2000.

[19] Rvachov, A.M.: Definition of R-functions,

http://www.mit.edu/~maratr/rvachev/p1.htm

[20] Shapiro, V., Tsukanov, I.: Implicit Functions with

Guaranteed Differential Properties, Solid Modeling,

Ann Arbor, Michigan, 1999.

[21] Taubin, G.: Distance Approximations for Rasterizing

Implicit Curves, ACM Transactions on Graphics,

January 1994.

[22] Triquet, F., Meseure, F., Chaillou, Ch.: Fast

Polygonization of Implicit Surfaces, Int. Conf. WSCG

2001.

[23] Velho,L.: Simple and Efficient Polygonization of

Implicit Surfaces, Journal of Graphics Tools, 1(2):5-25,

1996.

Proceedings of the Computer Graphics International (CGI’04)

1530-1052/04 $20.00 © 2004 IEEE

Computer Graphics International 2004 conference proccedings, IEEE, ISSN 1530-1052, 2004

