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Abstract 

This paper presents an adaptive method for 

polygonization of implicit surfaces. The method insists 

on the shape of triangles and the accuracy of resulting 

approximation as well. The main advantages of the 

triangulation presented are simplicity and the stable 

features that can be used for next expanding. The 

implementation is not complicated and only the 

standard data structures are used. The presented 

algorithm is based on the surface tracking scheme and 

it is compared with the other algorithms based on the 

similar principle, such as the Marching cubes and the 

Marching triangles algorithms.  

1. Introduction 

Implicit surfaces seem to be one of the most 

appealing concepts for building complex shapes and 

surfaces. They have become widely used in several 

applications in computer graphics and visualization.  

An implicit surface is mathematically defined as a 

set of points in space x that satisfy the equation  

f(x) = 0. Thus, visualizing implicit surfaces typically 

consists in finding the zero set of f, which may be 

performed either by polygonizing the surface or by 

direct ray tracing. 

There are two different definitions of implicit 

surfaces. The first one [4], [5] defines an implicit 

object as f(x) < 0 and the second one, F-rep [14], [17], 

[18], defines it as f(x)  0. In our implementation, we 

use the F-rep definition of implicit objects. If f is an 

arbitrary procedural method (i.e. a ‘black box’ function 

that evaluates x) then the geometric properties of the 

surface can be deduced only through numerical 

evaluation of the function. The value of f is often a 

measure of distance between x and the surface. The 

measure is Euclidean if it is ordinary (physical) 

distance. For an algebraic surface, f measures the 

algebraic distance. 

Existing polygonization techniques may be 

classified into several categories. Spatial sampling 

techniques (exhaustive enumeration of a given region) 

that regularly or adaptively sample the space to find 

the cells that straddle the implicit surface [2], [4], [6]. 

Surface tracking approaches (also known as 

continuation methods) iteratively create a triangulation 

from a seed element by marching along the surface [1],

[4], [7], [12], [15], [22]. Surface fitting techniques 

progressively adapt and deform an initial mesh to 

converge to the implicit surface, [17]. Particle systems 

(physically based techniques) start from initial 

positions in space and seek their equilibrium positions, 

i.e. positions where a potential function | f | is minimal 

– on an implicit surface, [10], [11]. The desired 

polygonal approximation is then obtained by 

computing the Delaunay triangulation associated with 

the points. 

2. Data structures 

The presented algorithm uses only the standard data 

structures used in computer graphics. The main data 

structure is a winding edge that is used as a basic 

building block for polygonization.  

If a triangle’s edge lies on the triangulation border, 

it is contained in the active edges list (AEL) and it is 

called as an active edge. Each point, which is 

contained in an active edge, contains two pointers to its 

left and right active edge (left and right directions are 

in active edges’ orientation)  

For faster evaluation of detection of global overlap 

(see section 6.2), we use the space subdivision 

acceleration technique, introduced in [8]. Therefore, 
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each point in AEL also contains the index of sub-area 

in which it lies. Each sub-area has its own dynamically 

allocated list of points located inside. The sub-areas 

are implemented as an array and each of them has its 

unique index. 

3. Principle of the algorithm 

Our algorithm is based on the surface tracking 

scheme and therefore, there are several limitations. A 

starting point must be determined and only one 

separated implicit surface can by polygonized for such 

point. Several disjoint surfaces can be polygonized 

from a starting point for each of them.  

The whole algorithm consists of the following steps: 

1. Initialize the polygonization: 

a. Find the starting point p0 and create the first 

triangle T0.

b. Include the edges (e0,e1,e2,) of the first triangle 

T0 into the active edges list, see Figure 1. 

2. Polygonize the first active edge e from the active 

edges list. 

3. Update the AEL; delete the currently polygonized 

active edge e and include the new generated active 

edge/s at the end of the list. 

4. If the active edges list is not empty return to step 2. 

4. Initializing the polygonization 

4.1. Starting point 

There are several methods for finding a starting 

point on an implicit surface. These algorithms can be 

based on some random search method as in [4] or on 

more sophisticated approach. In [22], searching in 

constant direction from an interior of an implicit object 

is used.

In our approach, we use a simple algorithm for 

finding a starting point. A starting point is sought in a 

defined area by following of a gradient vector f of an 

implicit function f. The algorithm looks for a point p0

that satisfies the equation f(p0) = 0. 

4.2. The First triangle 

The first triangle in polygonization is assumed to lie 

near a tangent plane of the starting point p0 that is on 

the implicit surface. Let such point p0 exists then the 

algorithm is as follows. 

1. Determine the normal vector n = (nx,ny,nz) in the 

starting point p0, see Figure 1.  

2. Determine the tangent vector t as in [12].  

If (nx > 0.5) or (ny > 0.5) then t = (ny,-nx,0);  

else t = (-nz,0,nx). 

3. Use the tangent vector t as a fictive active edge and 

use the edge spinning algorithm (described below) 

for computation coordinates of the second point p1.

The pair of points (p0,p1) forms the first edge e0.

Figure 1. The first triangle.

4. Polygonize the first edge e0 by the edge spinning 

algorithm for getting the third point p2. Points 

(p0,p1,p2) and edges (e0,e1,e2) form the first  

triangle T0.

5. Edge spinning 

The main goal of this work is a numerical stability 

of a surface point coordinates’ computation for objects 

defined by implicit functions.  Differential properties 

for each implicit function are different in dependence 

on the modeling techniques [14], [15], [17], [18], [20], 

[21] and the accurate determination of a position of a 

surface vertex depends on them. In general, a surface 

vertex position is searched in direction of a gradient 

vector f of an implicit function f, as in [12]. In many 

cases, the computation of gradient of the function f is 

influenced by a major error. Because of these reasons, 

in our approach, we have defined these restrictions for 

finding a new surface point pnew:

- The new point pnew is sought in a constant distance, 

i.e. on a circle; then each new generated triangle 

preserves the desired accuracy of polygonization. 

The circle radius is proportional to the estimated 

surface curvature. 

- The circle lies in the plane that is defined by the 

normal vector of triangle Told and axis o of the 

current edge e, see Figure 3; this guarantees that 

the new generated triangle is well shaped 

(isosceles). 

5.1. Determination of the circle radius 

The circle radius is proportional to the estimated 

surface curvature. The surface curvature in front of 

current active edge is determined in according to angle 

 between the surface normals n1, n2, see Figure 2. 
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The normal vector n1 is computed at point s that lies in 

the middle of the current active edge e and the vector 

n2 is taken at initial point pinit that is a point of 

intersection of the circle c1 with the plane defined by 

the triangle Told.

Figure 2. The circle radius estimation. 

Note that the initial radius r1 of the circle c1 is 

always the same and it is set at beginning of 

polygonization as the lowest desired level of detail 

(LOD). The new circle radius r2 is computed as 

follows. 

,

;1,0,

lim

lim

12

c
k

kkrr

where lim is a limit angle and the constant c represents 

a speed of “shrinking” of the radius according to the 

angle . To preserve well shaped triangles, we use a 

constant kmin that represents a minimal multiplier. In 

our implementation we used min = /2, kmin = 0.2 and 

c = 1.2.  

Correction notes:   

if (  > min)  then k = kmin

if (k < kmin)  then k = kmin

These parameters affect a shape of triangles of the 

polygonal mesh generated. 

5.2. Root finding 

If the algorithm knows the circle radius, the process 

continues as follows. 

1. Set the point pnew to its initial position; the initial 

position is on the triangle’s Told plane on the other 

side of the edge e, see Figure 3. Let the angle of the 

initial position be =0.

2. Compute the function values f(pnew) = f( ),

f(p’new) = f(  + ) – initial position rotated by the 

angle + , f(p”new ) = f(  - ) - initial position 

rotated by the angle - ; Note that the rotation axis 

is the edge e.

3. Determine the right direction of rotation;  

if |f(  + )| < |f( )| then +  else - .

Figure 3. The principle of root finding algorithm. 

4. Let the function values f1 = f( ) and f2 = f(  ± ); 

update the angle  =  ± .

5. Check which of following case appeared: 

a) If (f1 f2)<0 then compute the accurate 

coordinates of the new point pnew by the binary 

subdivision between the last two points which 

correspond to the function values f1 and f2;

b) If the angle | | is less than safe (see safe angle 

area in Figure 2) return to step 4.  

c) If the angle | | is greater than safe then there is 

a possibility that both triangles Told and Tnew

could cross each other; the point pnew is rejected 

and it is marked as not found.

5.3. Root finding of sharp edge 

Let us assume that the standard edge spinning root 

finding algorithm presented above has found the point 

pnew. The algorithm then determines the surface normal 

vector nnew at this point and computes the angle 

between normal vectors nnew and ns. The vector ns is 

measured at mid-point s of the active edge e, see 

Figure 4. If the angle  is greater then some user-

specified threshold lim_edge (limit edge angle) then the 

algorithm will look for a new edge point as follows. 

1. Compute coordinates of the point pinit as an 

intersection of the three planes, tangent planes t1

and t2, and the plane in which the seeking circle c

lies, see Figure 4. 

2. Apply the straight root finding algorithm described 

in section 5.4 and find the new point p’new.

Note that the algorithm needs an accurate 

determination of surface normal vectors, i.e. accurate 

computation of a function gradient. 
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Figure 4. The principle of root finding algorithm for 
sharp edges. 

Therefore, implicit objects should be modeled by F-

Rep, [19], because objects defined by min/max 

operations are not good differentiable, [17], [20]. 

Figure 5. A square modeled as intersection of four half-
spaces; left: by min/max operations; right: by the F-Rep 
operations; taken from [17]. 

The gradient array of a square, modeled by min/max 

and F-Rep operations, is illustrated in Figure 5. The 

picture shows that the min/max operations create 

objects with poor differential properties. 

5.4. Straight root finding algorithm 

The algorithm starts from an initial point pinit (see 

Figure 6) and supposes that the implicit surface is at 

least C0 continuity. 

The algorithm continues as follows. 

1. At point pinit, compute the surface normal vector 

ninit that defines the seeking axis o.

2. Compute coordinates of point p’init with distance 

from point pinit in direction ninit * sign( f(pinit) ); 

where  is the length of step and the function sign 

returns “1” if (f > 0) or “0” if (f < 0). 

3. Determine function values f, f’ at points pinit, p’init.

4. Check next two cases. 

a. If these points lie on opposite sides of implicit 

surface, i.e. (f *f’) < 0; compute the exact 

coordinates of the point pnew by binary 

subdivision between these points.  

b. If the points pinit, p’init lie on the same side of 

the surface then pinit = p’init and return to step 2. 

Figure 6. Principle of root-finding in straight direction. 

6. Polygonization of an active edge 

Polygonization of an active edge e consists of 

several steps. In step 1, the process will use the root 

finding algorithm (see section 5.2) to find a new point 

pnew in front of the edge e. If pnew exists, there are two 

cases illustrated in Figure 7. 

6.1. Neighborhood test 

Decision between cases a) and b) depends on 

relation among angles 1, 2, n, see Figure 7; let the 

angle  be min( 1, 2).

If (  < shape) then case a) else case b), see Figure 7; 

The limit shape angle is determined as shape = k* n,

k  1, shape < , where the constant k has effect to 

shape of generated triangles and in our implementation 

is chosen k = 1.7. If the point pnew is not found, angle 

n is not defined and the limit shape angle should be 

just less then ; we have chosen shape = *0.8. 

a) In this case, a new triangle tnew is created by 

connecting the edge e with one of its neighbors, 

see step 2a. 

b) The new triangle tnew is created by joining the 

active edge e and the new point pnew, see step 2b. 

Figure 7. Polygonization of the active edge e.
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In both cases, a bounding sphere is determined for 

the new triangle tnew. The bounding sphere is the 

minimal sphere that contains all three points of the 

triangle, i.e. the centre of the sphere lies in the plane 

defined by these three points.  

If there is not a new triangle (the point pnew does not 

exist and case a) has not appeared) the bounding 

sphere of the active edge e is used. The next procedure 

is analogical for all cases. 

6.2. Distance test 

To preserve the correct topology, it is necessary to 

check each new generated triangle if it does not cross 

any other triangles generated before. It is sufficient to 

perform this test between the new triangle and a border 

of already triangulated area (i.e. active edges in AEL).

Figure 8. Solving of distance test. 

The algorithm will make the nearest active edges 

list (NAEL) to the new triangle tnew. Each active edge 

that is not adjacent to the current active edge e and 

crosses the bounding sphere of the new triangle (or the 

edge e), is included to the list, see Figure 8, step 2. The 

extended bounding sphere is used for the new triangle 

created by the new point pnew (case b) because the 

algorithm should detect a collision in order to preserve 

well-shaped triangles. The new radius of the bounding 

sphere is computed as r2 = c*r1 and we used the 

constant c = 1.5. 

If the NAEL list is empty then the new triangle tnew

is finally created and the active edges list is updated.  

In case a), Figure 7 step 2, the current active edge e

and its neighbor edge er are deleted from the list and 

one new edge enew is added at the end of the list. The 

new edge should be tested if it satisfies the condition 

of the surface curvature. If it does not then the new 

triangle will be split along the edge enew, see 

section 6.3. 

In case b), Figure 7 step 2, the current active edge e

is deleted from the list and two new edges enew1, enew2

are added at the end of the list.  

Note that if there is no new triangle to be created 

(the point pnew does not exist and case a) in Figure 7 

has not appeared) the current active edge e is moved at 

the end of the AEL list and the whole algorithm will 

return back to step 2, see section 3. 

If the NAEL list is not empty then the situation has 

to be solved. The point pmin with minimal distance 

from the centre of the bounding sphere is chosen from 

the NAEL list, see Figure 8, step 3. 

This point has to satisfy a condition of thin objects 

as well. The current active edge e and the point pmin

should not lie on the opposite sides of the implicit 

surface. Figure 9 illustrates the wrong situation. 

Figure 9. A problem of thin implicit objects. 

If the correct point pmin is found, the new triangle 

tnew has to be changed and will be formed by the edge e

and the point pmin, i.e. by points (pe1,pmin,pe2); the 

situation is described in Figure 8, step 3. The point pmin

is owned by four active edges enew1, enew2, emin1, emin2

and the border of already triangulated area intersects 

itself on it. This is not correct because each point that 

lies on the triangulation border should has only two 

neighborhood edges (left and right).  

Solution of the problem is to triangulate two of four 

edges first. Let the four active edges be divided into 

pairs; the left pair be (emin1, enew2) and the right pair be 

(enew1, emin2). One of these pairs will be polygonized 

and the second one will be cached in memory for later 

use. The solution depends on angles m1, m2, see 

Figure 8, step 3. If ( m1 < m2) then the left pair is 

polygonized; else the right pair is polygonized.  

In both cases, the recently polygonized pair is 

automatically removed from the list and the previously 
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Figure 11. The Genus 3 object generated by the a) Adaptive Edge Spinning algorithm; b) Marching triangles 
algorithm; and c) Marching cubes algorithm. 

cached pair of edges is returned into the list. The point 

pmin is contained only in one pair of active edges and 

the border of the triangulated area is correct,  

see Figure 8, step 4. 

Note that the polygonization of one pair of edges 

consists just of joining its end points by the edge and 

this second new triangle has to fulfill the empty NAEL

list as well; otherwise the current active edge e is 

moved at the end of AEL list. 

6.3. Splitting the new triangle 

This process is evaluated only in cases when the 

new triangle has been created by connecting of two 

adjacent edges, i.e. situation illustrated in Figure 7, 

step 2a. If the new edge does not comply a condition of 

surface curvature the new triangle should be split. That 

means, see Figure 10; if the angle between surface 

normal vectors n1, n2 at points pe1, per2 is greater then 

some limit split_lim then the new triangle will be split 

into two new triangles, see Figure 10, step 2. 

Figure 10. Splitting of the new triangle. 

The point pnew is a midpoint of edge enew and it does 

not lie on the implicit surface. Its correct coordinates 

are additionally computed by the straight root finding 

algorithm described in section 5.4. 

7. Experimental results 

The Adaptive Edge spinning algorithm (AES) is 

based on the surface tracking scheme (also known as 

the continuation scheme). Therefore, we have 

compared it with other methods based on the same 

principle – the Marching triangles algorithm (MTR, 

introduced in [12]) and the Marching cubes method 

(MC, Bloomenthal’s polygonizer, introduced in [4]). 

As a testing function, we have chosen the implicit 

object Genus 3 that is defined as follows. 

0
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ryrxzrzyxf yxz

where the parameters are: rx=6, ry=3.5, rz=4, r1=1.2, 

x1=3.9. 

The measured values from our experiment are in 

Table 1. The values have been achieved with the 

desired lowest level of detail (LOD) equal 0.8. It 

means that maximal length of triangles’ edges is 0.8. 

Note that there is not defined a unit of length, so that 

number could be for example in centimeters as well as 

the parameters of the function Genus 3 described 

above. 

Table 1. Values of the object Genus 3 with the desired 
lowest level of detail LOD = 0.8. 

AES MTR MC

# Triangles 4886 947 1056

# Vertices 2439 473 516

Avg dev. 10,99 56,80 73,28

Angle crit. 0,65 0,67 0,38

Elength crit. 0,77 0,78 0,54

The table contains the number of triangles and 

vertices generated. The value Avg dev. means the 

average deviation of each triangle from the real 

implicit surface. It is measured as algebraic distance of 

a gravity centre of a triangle from an implicit surface, 

i.e. the function value at the centre of gravity of the 

triangle. Note that the algebraic distance strongly 

depends on the given implicit function; in our test, the 

Genus 3 object is used for all methods, so the value has 

its usefulness. The value Angle crit. means the 
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Figure 12. The Genus 3 object generated by the a) Adaptive Edge Spinning algorithm; b) Marching triangles 
algorithm; and c) Marching cubes algorithm. 

criterion of the ratio of the smallest angle to the largest 

angle in a triangle and the value Elength crit. means 

the criterion of the ratio of the shortest edge to the 

longest edge of a triangle. The value Avg dev. shows 

the accuracy of an implicit object approximation and 

therefore, the Adaptive Edge spinning algorithm is 

logically the best of tested methods. The criterions of 

angles and length of edges in triangles are similar for 

the AES and the MTR algorithms, so the both 

approaches generate well-shaped triangular meshes.  

For visual comparison, the resulting pictures of the 

Genus 3 object generated in the test are in Figure 11. 

Figure 11a shows the object generated by the adaptive 

algorithm, so the number of triangles generated is 

higher in dependence on the surface curvature. In 

Figure 11b some parts of the object are lost because 

the algorithm just connects nearest parts by large 

triangles depending of the lowest level of detail. The 

resulting image generated by the Marching cubes 

algorithm is shown in Figure 11c This algorithm 

produces badly-shaped triangles but it is fast and also 

stable for complex implicit surfaces with C0 continuity, 

only.  

Table 2 contains values generated by all three 

methods with the variable desired level of detail 

(LOD) because we want the number of generated 

triangles to be similar.  

Table 2. Values of the object Genus 3 with the variable 
lowest level of detail. 

AES MTR acc. MC

LOD 0,26 0,21 0,23

# Triangles 13802 13695 13552

# Vertices 6897 6843 6756

Avg dev. 3,79 3,89 5,25

Angle crit. 0,69 0,73 0,36

Elength crit. 0,81 0,83 0,52

Time [ms] 861 101 150

TimeA [ms] 62,38 7,37 11,07

In this case, the value Avg dev. is similar for the 

AES and the MTR algorithms, because next shrinking 

of triangles is not necessary for achieving a better 

approximation. All other measured values are similar 

like in Table 1. The value Time in Table 2 shows the 

measured computational time of each algorithm and 

the value TimeA represents an average time needed for 

creating of one thousand triangles.  

Note that the time values are included only for a 

better illustration about the algorithms because the 

presented method is primarily aimed at quality of 

approximation, not at speed. Speed-up and next 

improving of the algorithm will be our future work. 

Comparison of speed is more suitable to perform on 

the original non-adaptive Edge spinning method and it 

has been introduced in [8]. In our test, the accelerated 

version of the MTR method, [9], has been used and 

therefore, its results are better. All tests were measured 

on a machine AMD Athlon XP 1500+, 1GB DDR.  

Figure 13. Intersection of two spheres generated by the 
Adaptive Edge spinning algorithm; with and without 
edge detection.  

Figure 13 shows an object modeled as intersection 

of two spheres. The implicit object complies the C0

continuity only and it is correctly polygonized by the 

proposed method. The picture a) is polygonized 

without the edge detection, i.e. the limit edge angle 

lim_edge is equal to  and the picture b) is polygonized 
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with limit edge angle equal to /4, see section 5.3 for 

details. For visual comparison, the resulting pictures of 

the Genus 3 object generated according to values in 

Table 2 are in Figure 12. 

8. Conclusion 

This paper presents the new adaptive approach for 

polygonization of implicit surfaces. The algorithm 

marches over the object’s surface and computes the 

accurate coordinates of new points by spinning the 

edges of already generated triangles. Coordinates of 

the new points depend on surface curvature estimation. 

We used the estimation by deviation of angles of 

adjacent points because it is simple and fast for 

computation. The similar measurement has been used 

as curvature estimation in [23] as well. Our 

experiments also proved its functionality. Other 

estimation techniques can be found in [3], [15]. 

The algorithm can polygonize implicit surfaces 

which comply C1 continuity, thin objects and some 

non-complex objects of C0 continuity (an object should 

have only sharp edges, no sharp corners or more 

complex shapes). In future work, we want to modify 

the current algorithm for more complex implicit 

functions of the C0 continuity, only.  
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