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Abstract

Some applications use data formats (e.g. STL file format), where a set of triangles is used to represent the surface of a

3D object and it is necessary to reconstruct the triangular mesh with adjacency information. It is a lengthy process for

large data sets as the time complexity of this process is O(N log N), where N is number of triangles. Triangular mesh

reconstruction is a general problem and relevant algorithms can be used in GIS and DTM systems as well as in CAD/

CAM systems. Many algorithms rely on space subdivision techniques while hash functions offer a more effective

solution to the reconstruction problem. Hash data structures are widely used throughout the field of computer science.

The hash table can be used to speed up the process of triangular mesh reconstruction but the speed strongly depends on

hash function properties. Nevertheless the design or selection of the hash function for data sets with unknown

properties is a serious problem. This paper describes a new hash function, presents the properties obtained for large

data sets, and discusses validity of the reconstructed surface. Experimental results proved theoretical considerations and

advantages of hash function use for mesh reconstruction.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There are several problems related to the properties of

the triangular mesh representation that describes a

surface of an object. Sometimes, the surface is repre-

sented just as a set of triangles without any other

information and the STL file format, which is used for

data exchanges, is a typical example of this situation.

The STL format is simple because all object surfaces

are represented by polygons. More precisely, polygonal

facets represent the surface and the surface is repre-

sented as a set of triangles as described in Foley et al.

(1997). Each polygon (triangle) contains information on

its normal and coordinates of all its vertices, see Fig. 1.

The STL format is often used in CAD applications, e.g.

in the rapid prototyping (RP) systems.

The main drawback of the STL format is that it does

not contain any information on the structure and

topology of the surface. Also the coordinates of each

vertex shared by the given triangle are generally stored

in the STL format several times. If the triangular mesh

with the adjacency information is required, information

on the neighbours of a triangle or triangles, shared by

the given vertex, is needed.

One possibility is to reconstruct the triangular mesh

from the given set of triangles. It enables us to compute

normal vectors in vertices for Gouraud or Phong

shading, triangular mesh reduction (see e.g. Franc,

2000) and compute slices for the efficient and rapid

prototyping of systems. The main problem of tri-

angular mesh reconstruction is to find the adjacent

triangles for each vertex. The reconstruction of the

triangular mesh from the given set of triangles is a

critical operation because of its complexity, especially

for large data sets.
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To be able to reconstruct the triangular mesh, it is

necessary to read all the vertices, sort them according to

the one coordinate, remove duplicates (the same

vertex is stored several times if it is shared by more

triangles) and create the regular triangular mesh with

information on neighbouring triangles, etc. In the

triangular mesh a vertex is shared by the triangles and

the coordinates are stored only once. This is a process

of O(N log N) complexity, where N is the number of

triangles. This is a time consuming process if the

considered objects are represented by 106–107 triangles.

Typical data sets to be processed are presented in Fig. 2

with typical CAD data and in Fig. 3 with typical GIS

data (triangular mesh).

In order to speedup the mesh reconstruction, space

subdivision techniques were mostly used. Nevertheless,

the results obtained depended heavily on the data sets

used, especially, the way in which the vertices are

scattered in the space.

Some approaches aimed at overcoming the complex-

ity of using the hash function have been published

recently and have resulted in an algorithm with expected

O(Np) complexity, in general (Formaggia, 2001; Glass-

ner, 1994; Kuchar, 2000; Wolfson and Rigoutsos, 1997;

Yao, 1985), where p is an average cluster length, see

later.

The hash function transforms a value (or a key value)

into an index (or an address) that points to the hash

table (or a file) where the pointer to a vertex is stored.

Fundamental requirements on the hash function are

computational simplicity and collision elimination, i.e.

indices should be different for different values.

It is impossible to avoid collisions in practice. There-

fore, different values with equal indices to the hash table

are stored in clusters. The expected number of collisions

depends also on the load factor f (Korfhage and Gibbs,

1987). The load factor f is a ratio of the number of

values stored and the total length of the hash table,

fp0:5 is the recommended value.

The basic idea of this approach is to obtain Oð1Þ
expected complexity for a query ‘‘find all triangles

having the given vertex coordinates equal to y’’. This

type of query is to be answered for all the vertices of the

given set of triangles. It can be seen that an efficient

solution is critical for large triangular meshes.

In the following sections a new hash function for

triangular mesh reconstruction will be described, theo-

retical and experimental properties compared and non-

trivial applications will be illustrated.

2. Hash function design and properties

2.1. Recent solution

Hash functions have several properties (Knuth, 1998)

and the most important of these are:

* to be able to use the cells of the hash table as much as

possible,
* maximal and average cluster lengths should be as low

as possible (cluster is usually implemented as a list of

primitives for which the hash function gives the same

index for different values),
* the hash function should be simple in order to obtain

fast evaluation.

The hash function for triangular mesh reconstruction

was introduced recently by Glassner (1994) as

Index ¼ ððintÞ ððaððintÞðfabsðX ÞQÞÞ=Q

þ bððintÞðfabsðY ÞQÞÞ=Q

þ gððintÞðfabsðZÞQÞÞ=QÞ

� SIZEÞÞ%SIZE; ð1Þ

where (int) is the conversion to integer—the fractional

part of the float is removed (in current implementation

4–bytes unsigned integers are used), a; b; g are

coefficients of the hash function (originally 3, 5 and 7

were used), fabs is an absolute value, Q defines the

insensitivity—number of valid decimal digits, e.g. for

3 decimal digits set Q ¼ 1000:0; % represents modulo
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solid
facet normal 0.00 0.00 1.00
outer loop
vertex 1.00 2.00 0.00
vertex -1.00 2.00 0.00
vertex 0.00 -1.00 0.00

endloop
endfacet
facet … end facet

endsolid

Fig. 1. An example of STL file.

Fig. 2. Part of an auto chassis. Data set: A4 unterbau1.stl,

Data courtesy of Skoda-Auto.
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operation, SIZE is the size of the hash table that is

determined as described later, but generally it is

implemented as 2k for the fast evaluation of the

modulo operation, and X ; Y ; Z are coordinates of a

vertex.

Experiments described later proved that setting

Q ¼ 103 (used by Glassner, 1994) was not satisfactory

because very long clusters were generated. Better results

were obtained for Q ¼ 107: Nevertheless, the properties

of this hash function strongly depend not only on the

fractional part of the coordinates of the vertices, but

also on the data sets used for experiments, see Figs. 4–6

with histograms of the cluster lengths for different types

of data.

Due to very long clusters, see Fig. 4, the original

hash function was analysed with the aim of finding a

significant improvement.

2.2. Proposed solution

The analysis of the hash function proved that

* it is not reasonable to remove the fractional part

from coordinate values, as it helps to distinguish the

coordinates of the vertices better,
* it is necessary to remove all the hash function

parameters that depend on the data set, or should

be given by a user,
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Fig. 3. Earth’s surface reconstructed from satellite data. In rectangle is detail of mesh.
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Fig. 4. Histogram of cluster lengths for recent hash function.

Coefficients used: Q ¼ 103; a ¼ 3; b ¼ 5; g ¼ 7:
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Fig. 5. Histogram of cluster lengths for recent hash function.

Coefficients used: case 1: Q ¼ 107; a ¼ 3; b ¼ 5; g ¼ 7; case 2:

Q ¼ 107; a ¼ p; b ¼ e; g ¼ O2:
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* it is reasonable to use all available memory as much

as possible in order to get a longer hash table, and

therefore shorter clusters,
* the hash table should not be a static one—it should

be dynamic according to the available memory, but

generally the size of the hash table must be

determined by some rules.

Considering the required properties, the hash function

was defined as

Index ¼ðintÞððaX þ bY þ gZÞ C þ 0:5Þ&T ; ð2Þ

where X, Y, Z are vertex coordinates (see below), a; b; g
are coefficients of the hash function, C is a scaling

coefficient set so that the full range of a 4–byte unsigned

integer is used, i.e. range of the interval /0, 232�1S is

fully used, T þ 1 is the table size (T ¼ 2k � 1), &

represents a modulo that is implemented as a logical

operation and with the DWORD type (for a fast

computation), 0.5 is a constant that actually represents

the rounding operation and according to our experi-

ments gives a little better distribution of coordinates.

For simplicity we will assume that all coordinates x

are from the /0, XmaxS interval, similarly for coordi-

nates y and z. Then we can compute maximal value xmax

by the formula

xmax ¼ aXmax þ bYmax þ gZmax: ð3Þ

Because we want to use the whole range of DWORD

ð02232 � 1Þ we have to find an appropriate scaling

coefficient C: The C coefficient is determined as:

C ¼ minfC1;C2g; ð4Þ

where

C1xmaxp232 � 1; C2 ¼ 232 � 2k ð5Þ

because an overflow operation must be avoided and the

whole size of the hash table should be used. It means

that the whole interval /0, 232�1S is used before

applying the operator modulo.

If the range of the vertex coordinates is known, then

these coordinates can be converted to the interval /0,1S
using the formula

X 0 ¼
X � Xmin

Xmax � Xmin
: ð6Þ

This situation is rare because the range of vertex

coordinates is generally not known. For an unknown

range of coordinates the following formula can be used:

X 0 ¼ 1 þ
X

jX j þ K

� �
1

2
; ð7Þ

where K is a parameter which determines the non-

linearity of this transformation, K > 0:
It transforms the interval ð�N;NÞ into the interval

(0, 1) without the need to parse the whole data set in

order to find the minimal and maximal values of the

coordinates. This formula must be applied to Y and Z

coordinates as well.

The proposed hash function has two parts. In the first

part the coordinates are transformed to (0, 1) and in the

second part the hash function is evaluated using those

transformed values. The index to the hash table is

therefore obtained.

2.3. Hash table length determination

The length of the hash table depends on the size of the

data set we want to process. It is necessary to point out

that there are approximately three times more vertices

than triangles in the STL format.

The load factor f defined by Korfhage and Gibbs

(1987) expresses an empirical relationship between the

length of the hash table and the expected cluster length.

If the load factor f ¼ 0:5 is considered then the expected

cluster length is about 2.5.

The required minimal hash table length T can be

expressed as

TX
Nv

qavg

1

f
¼ NT ; ð8Þ

where NT is the number of triangles in the STL file,

Nv ¼ 3NT is the number of vertices in the STL file, qavg

is the average number of triangles sharing the same

vertex (approx. 6) load factor–f ¼ 0:5 used1 if the lower

value f is used a better spread can be achieved.

In practice the hash table length T is chosen as a

power of 2 in order to use the logical ‘and’ operator

instead of the modulo operator because it is faster.

2.4. Evaluation of the hash functions properties

Experimental tests involved several types of hash

functions with different parameters. The following
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Fig. 6. Histogram of cluster lengths for recent hash function.

Coefficients used: case 1: Q ¼ 107; a ¼ 3; b ¼ 5; g ¼ 7; case 2:

Q ¼ 107; a ¼ p; b ¼ e; g ¼ O2:

1 fA(0.25, 0.5) due to rounding to power of 2.
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criteria for the hash function quality assessment were

used:

1. Average cluster length.

2. Maximum cluster length.

3. The search complexity criterion—total number of

checked items in clusters while processing all the

vertices in the data set.

It can be seen that a hash function with good

properties should minimize values of those three criteria.

A hash function with better properties is one that

provides fewer items in the clusters.

In order to compare the properties of the hash

function given by Glassner (1994) (referred to here as

recent) and a new proposed hash function the following

relative criteria are used:

Average cluster length evaluation: Let us introduce the

coefficient n as

n ¼
Average cluster lengthrecent

Average cluster lengthproposed

: ð9Þ

Coefficient n represents the expected relative speed-up

of the proposed approach (on average) for answering the

query (it gives a pointer to the list of triangles): ‘‘Which

triangles share the given vertex?’’.

Maximum cluster length evaluation: Let us define the

coefficient Z as

Z ¼
Max: cluster lengthrecent

Max: cluster lengthproposed

: ð10Þ

It presents the ratio of the maximal cluster lengths of

both hash functions.

Search complexity criterion: This criterion is based on

the following idea. If the cluster length is equal to i then

we access this cluster i-times, if all the vertices are

checked. Because the number of clusters with the length

i is Ni; the whole number of accesses to these clusters is

equal to iNi:
There are three possible cases in referring a vertex

from a cluster (after the index to the hash table has been

determined):

1. The cluster is empty: The vertex is not stored in the

data structure thus the cost of this operation is

considered as Q1 ¼ 0:
2. The cluster is not empty and the vertex is not stored in

this cluster: The whole cluster of the length i must be

searched thus the cost of this operation is considered

as Q2 ¼ i:
3. The cluster is not empty and the vertex is stored in this

cluster: To find this vertex only one-half of the cluster

needs to be searched on average. The cost of this

operation is considered as Q3 ¼ i=2:

Then the third criterion can be expressed as

R ¼
1

DV

X
i

Q1 þ Q2 þ Q3ð ÞiNi

¼
1

DV

X
i

0 þ i þ i=2
� �

iNi

¼
1

DV

X
i

3

2
i2Ni : ð11Þ

Therefore

R ¼
3

2DV

Ximax

i¼1

i2Ni; ð12Þ

where imax is the maximal cluster length, i the cluster

length, Ni the number of clusters with the length i; and

DV the number of vertices in the data set. This criterion

is better for the evaluation of the hash function

properties than the first two recently mentioned (average

and maximum cluster length evaluations).

To compare the recent and proposed hash functions

the following comparison ratio is used:

d ¼
Rrecent

Rproposed
; ð13Þ

where Rrecent is the value of the criterion for the recent

hash function, Rproposed is the value of the criterion for

the proposed hash function.

Fig. 11 presents this ratio for different data sets.

3. Experimental results

The hash functions have been tested on many data

sets containing up to 107 vertices. Figs. 2 and 3 present

some of the typical data sets used for the testing and

evaluation of both methods (recent and proposed). The

size of the data sets varied from 3� 106 to 1.9� 107

vertices.2 It is necessary to point out, that the Central

Europe.stl file was generated from the Digital Terrain

System (GTOPO30) with regular triangular mesh

(Fornous, 2000), while the A4 unterbau1.stl file was

‘‘real life’’ CAD data from the automobile industry.

Tables 1 and 2 present the differences between the recent

and proposed hash functions.

Experiments proved that the hash function is insensi-

tive to the choice of the parameter K for the interval

/p; 200S. The coefficient K ¼ 10 was used for experi-

mental results presented here. Table 2 presents the

typical behaviour on some selected data sets. Figs. 9 and

10 presents the relation of the cluster length and the

number of triangles.
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It can be seen that the maximal cluster length is lower

than 10. It is a good result if compared to the recent

solution, see Tables 1–3 and Figs. 4–6. Also the number

of clusters decreases with cluster length and this is

another good property of the proposed hash function.

During all tests both (recent and proposed) hash

functions used the same length of hash table for each

data set.

Cluster length distribution of the recent hash function:

Table 1 and Figs. 4–6 present behaviour of the recent

hash function for different parameters and typical data

sets. It can be seen that the maximal and average cluster

lengths are not acceptable for practical use, because they

cause high overheads during the search operation.

Figs. 4–6 present typical histograms of cluster length

for different parameters and data sets.

Cluster length distribution of the proposed hash

function: Table 2 presents typical behaviour of the

proposed hash function for the same data sets. Figs. 7

and 8 show typical histograms of cluster length for

different parameters and data sets.

The above-presented experimental results are similar

for all the data sets tested and prove that the proposed

hash function has better and more stable behaviour than

the recent approach.

Results for representative data sets: Our experiments

proved that the proposed approach is better for all data

sets used and Fig. 9 presents results for the both hash

functions with the best-selected parameters.

Table 3 presents typical behaviour for a different

choice of parameters a; b; g: It can be seen that the

proposed hash function is not very sensitive to the

choice of those parameters. It shows the ratio for

maximum and average cluster sizes for the recent and

the proposed hash functions, and for two typical data

sets.

Fig. 10 presents experimental results for both hash

functions but with the best-known coefficients for

different data sets. It can be seen that the proposed

hash function is better in nearly all cases.

Fig. 11 presents the ratio of the criterion for the recent

and the proposed hash functions for data sets used in
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Table 1

Typical characteristics of recent hash function for selected STL data

File Number of

triangles

Number of

vertices in STL

Number of

unique vertices

a b g Q Average

cluster length

Maximal

cluster length

Figure

3 5 7 103 202.3 12 093 4

A4 unterbau1.stl 1 000 790 3 002 370 618 865 3 5 7 107 1.8 208

p e O2 107 1.6 9 5

Central Europe.stl 1 605 608 4 816 824 804 601 3 5 7 107 152.2 5 116

p e O2 107 1.2 7 6

Table 3

Comparison of average and maximal cluster lengths of recent and proposed hash functions

Coefficient case Average cluster length Maximal cluster length

File Recent Proposed n Recent Proposed Z

A4 unterbau1.stl 1.8 1.3 1.4 208 7 29.7

1 Central Europe.stl 152.3 1.2 126.5 5116 6 852.7

A4 unterbau1.stl 1.6 1.3 1.2 10 7 1.4

2 Central Europe.stl 1.2 1.2 1.0 6 7 0.9

Coefficients used: case 1: a ¼ 3; b ¼ 5; g ¼ 7; Q ¼ 107; K ¼ 10; Case 2: a ¼ p , b ¼ e; g ¼ O2; Q ¼ 107; K ¼ 10:

Table 2

Typical characteristics of proposed hash function for selected STL data

File Number of

triangles

Number of

vertices in STL

Number of

unique vertices

a b g K Average

cluster length

Maximal

cluster length

Figure

3 5 7 10 1.3 7

A4 unterbau1.stl 1 000 790 3 002 370 618 865 p e O2 10 1.3 7 7

3 5 7 10 1.2 6

Central Europe.stl 1 605 608 4 816 824 804 601 p e O2 10 1.2 7 8

J. Hr !adek et al. / Computers & Geosciences 29 (2003) 741–751746



our experiments. It can be seen that the proposed hash

function is better than the recent one, and also its

stability was experimentally demonstrated. The average

value of this ratio is 1.127.

4. Hash function use for reconstruction

Triangular mesh reconstruction creates a triangular

mesh from a set of individual triangles, i.e. it computes

all neighbours for every triangle in the mesh and

triangles that share the given vertex. As a vertex is

stored several times in the original data set it is necessary

to eliminate those duplicates, as each triangle in the

original data set is processed. The elimination can be

described by the algorithm in Fig. 12.

Fig. 13 is the structure of vertices and triangles along

with the structure of hash table. Now it is necessary to

take the final step in triangular mesh reconstruction and

check the validity of the surface.

5. The validity of the reconstructed surface

While vertex duplicate, reduction is made ‘‘bucket-

sorting’’ is used to create information about adjacency

between triangles. The bucket sort takes advantage of

the fact that each vertex coordinates are stored only

once. For each vertex v in the triangular mesh a bucket is

created, where the remaining two vertices ui for each

triangle that shares the vertex v are stored, see Fig. 14.

The vertices inside the bucket are sorted to obtain the

vertices ui which are in the same order as they appear

around the vertex v. Then those two triangles whose

vertices are beside each other in the bucket are

determined as adjacent. The complexity of this part is

OðNk log kÞ; where N is the number of vertices in the

final triangular mesh and k is the average number of

vertices in the bucket.

5.1. Checking the validity

It is possible that there are some inconsistencies in the

final triangular mesh after the vertex duplicate elimina-

tion, e.g. coordinates can differ a little due to the num-

erical precision. In this case, long and thin disruptions in
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the final triangular mesh can occur and have to be

corrected.

There are several methods for checking errors in the

triangular mesh:

* Vertex-to-vertex rule.
* Checking the number of edges and triangles in the

mesh.
* Euler’s rules.

Vertex-to-vertex rule: This rule reflects a fact that all

inner edges must be shared by two triangles and each

triangle must have two common vertices with its

neighbours see Fig. 15.

Checking the number of edges and triangles: From the

validity of the vertex-to-vertex rule can be seen that the

number of edges of a solid closed surface is equal to 3
2

of

the number of triangles. Therefore the following three

rules for checking surfaces are:

* Number of triangles must be even;
* Number of edges must be a multiple of 3;
* 2�number of edges must be equal to 3� number of

triangles.
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If at least one rule fails it means that there is a

disruption in the surface. This validity check can be

derived from Euler’s rule, for the case when each face is

triangular, and the surface is closed.

Euler’s rule: Euler’s rule (also described by Fornous,

2000) for simple closed surfaces, i.e. a simple polyhedron,

is defined as

T þ V � E ¼ 2; ð14Þ

where T is the total number of triangles, V the

total number of vertices, and E the total number

of edges. A generalization of Euler’s formula that

applies to 2-manifolds which have faces with holes is

defined as

T þ V � E � H ¼ 2ðC � GÞ; ð15Þ

where H is the number of holes in the faces, G the

number of holes that pass through the object (also

known as genus), and C the number of separate

components.

For the opened surfaces Euler’s formula is stated as

T þ V � E ¼ 1: ð16Þ

In each case of the surface, Euler’s formula must be

valid. If there is any inconsistency within the triangular

mesh then the long thin holes are ‘‘sewed’’ or have to be

corrected interactively by the user.

The proposed hash function was used for data

duplicate elimination for large data sets in other

modular visualization environments (MVE) (MVE Final

Report, 2001; MVE User’s Manual, 2001; MVE

Programmer’s Manual, 2001) modules and for a

triangular mesh decimation module (Franc, 2000). The

mesh reduction algorithm complexity was reduced from

OðN log NÞ to OðNÞ:

ARTICLE IN PRESS

For each triangle: 

a) For each vertex in the triangle perform the
following steps: 
1. Evaluate an index to the hash table for the 

given vertex coordinates.
2. Check the appropriate cluster for the

presence of this vertex (the given vertex
coordinates are checked with the vertex
coordinates stored in the vertex array for
all the cluster elements) 

If the given vertex is already stored in
the vertex array, its position stored in
the cluster is returned. 

  Otherwise the vertex is not stored and
therefore the vertex is inserted to the
vertex array and the cluster is changed
appropriately. The vertex position is
returned. 

3. Insert returned position in the vertex array
for the given vertex to the triangle array.

b) When three vertex positions are inserted, the
given triangle is stored in the data structure
and all duplicates are eliminated. 

Fig. 12. Algorithm of triangular mesh reconstruction.

index

i-th triangle j-th triangle 

hash table vertex coordinates 

cluster

(x,y,z)

Index = f(x) 

x 

triangle_array

vertex_array

pointers to the 
vertex_array

free triangle 

free vertex

Fig. 13. Data structure of vertices and triangles.
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6. Conclusion

A new hash function was designed and experimentally

verified for geometric purposes. It was used for

triangular mesh reconstruction and reduction purposes.

It uses the advantage of the full-addressability available

with AI32 processors.

The proposed hash function has the following

advantages:

* There are no parameters related to the data set

properties, like the parameter Q in the recent hash

function.
* It has stable behaviour for all data sets used in

experiments.
* There are no additional memory requirements in

comparison with the recent hash function.
* It provides high speedup especially for cases where

the parameter Q of the recent hash function is not

known or is selected ‘‘randomly’’. It provides better

performance even if the parameter Q is chosen

carefully (‘‘tuned for the given data set’’), i.e. average

cluster length ratio is 89.1%, maximum cluster length

ratio is 87.1% and ratio of the search criterion is

88.7% of the recent hash function.
* The proposed hash function will be at least 12.7%

faster for data sets with unknown properties. The

recent hash function is sensitive to the choice of

the parameters a; b; g and also to the choice of the

parameter Q; that is critical, see Fig. 4, when very

long clusters are generated.
* The number of clusters decreases with the cluster

length almost monotonically.

Experiments have demonstrated that the proposed

measurement of hash function quality gives exactly

the same results as the measurement proposed in

Jenkins (2001) if empty cells in the hash table are not

considered.

The proposed hash function was used in a module of

triangular mesh reconstruction for the modular visuali-

zation environment (MVE) system developed at the

University of West Bohemia, see http://herakles.zcu.cz

for details.
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