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ABSTRACT 
 

We present an algorithm for creating a CAD model of an existing physical object from a scanned point cloud 
containing badly scanned regions. The algorithm has a linear complexity and can be applied to processing big clouds. 
For the triangulation of well-scanned regions, a method from the group of greedy triangulation algorithms is used. The 
possibility and efficiency of use of very simple and fast tests for this method are shown. Triangulation of badly scanned 
regions is done using a projection onto 2D surface. The projection surface is defined locally for each region on the 
basis of already triangulated well-scanned regions. The presented algorithm can reconstruct a surface when well-
scanned regions are represented by isolated “islands”. 
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1. INTRODUCTION 
 
The problem of creating a CAD model for an existing 
physical object from a given point set from object surface is 
important for many fields of science and industry. In most 
cases it is possible to receive the input point cloud having 
necessary properties (density, linear and angular isotropy). 
In this case a model can be successfully constructed by the 
application of existing algorithms. However, in some cases, 
obtaining of the initial point cloud with good enough 
characteristics can be complicated or impossible. Typical 
examples are architectural monuments, the objects explored 
from distance, e.g., objects in space. For the cloud of points 
obtained from these objects, there is a typical combination 
of regions having good allocation of points, and regions 
with unsatisfactory allocation of points, or without them. 
 
2. PREVIOUS WORK 
 
Generally, there are two types of surface reconstruction 
methods: interpolation and approximation. Among 
algorithms of the first type in this paper we cite several 
typical. The algorithm presented in [EM94] uses α-shapes. 
In this algorithm α-shape is a heuristic. It works well for 
uniform sampling. The major drawback of using α-shapes 
for surface reconstruction is that the optimal value of α
depends on the sampling density, which often varies over 
different parts of the surface. The ”crust” [ABK98] is 
provably correct if the sampling density is high enough 
everywhere. But the local topology may be changed and 
holes may appear due to undersampling. The algorithm 

[DG01] allows to reconstruct a surface from an input, that 
is not sufficiently sampled. But it is not suitable for clouds 
having serious problems. Among algorithms of the second 
type the typical examples are [HDD92], [HDD93], [CL96]. 
They exploited the fact that a surface can be reconstructed 
from its normal orientations because we can get tangent 
planes from normals and the area around the normal on a 
tangent plane is the first order approximation of the local 
surface. These algorithms need to estimate normals from 
the point set very accurately. One more way is 
approximating by radial-basis functions (RBF) for 
processing point clouds with local problems [CFB97]. But 
this and similarly methods are not suitable for processing of 
big clouds. 

 
3. FIELD OF USE 
 
A proper reconstruction of an actual surface is possible 
only if it is sufficiently sampled. There are three conditions 
we adduce about a sufficiently sampled surface [Att97, 
ABK98]. Firstly, the sampling of the data should be locally 
uniform, which means that the distance ratio of the farthest 
and closest neighbor of a sample in the given sampling of 
the object is less than a constant value. The second 
condition is to distinguish points from two close layers of 
the object. The closest distance between a point P in one 
layer and another layer is at least kη, where k is a constant 
and η is the shortest distance between P and another point 
in its layer. The third condition is about the smoothness of 
the underlying object. The normal deviation between any 
two triangles incident on a vertex should be less than 90°.
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For an estimation of a degree of local uniformity at a 
point P we use the factor αµ N , where α is an angular 
condition and N is a number of the nearest neighbors of P, 
which satisfy to the given angular condition. We calculate 
this factor using a below described algorithm (initially all 
the neighbors of P are unmarked, no one vector is 
admitted):  
 
do 
{
V = vector from P to the nearest unmarked neighbor Q; 

 
if (angle between V and any of the already admitted vectors 
< α) continue; 

 
admitting V and marking Q; 
}
while (number of the admitted vectors < N); 
 
L = the longest admitted vector length; 
S = the shortest admitted vector length; 
 

SLN /=αµ ;

Usually, we consider, that N = 6 (it is the most 
probable number of edges of a point), α = 30° (it is a 
typical boundary value in the majority of works in the field 
of a triangulation). In the given paper we shall denote 

30
6µ as µ.

Figure 1: Expected input 
 

As was mentioned above, the algorithm is intended for 
processing point clouds, which were obtained by physical 
scanning architectural objects and other objects explored 
from distance. Generally, point clouds from such objects 
have follows distinctive properties:  

• about 80% of points are contained in well-scanned 
regions, irrespective of a relation between total 
areas of well-scanned and problem regions; 

• typically, in well-scanned regions 3≤µ ,
µ2>k ;

• well-scanned regions generally are isolated from 
each other (let’s call such regions as islands), in 
more opportunity there is one coherent well-
scanned region with holes; 

• a point cloud can have a big size (more than 5 
million points). 

Schematically an expected kind of input is shown in 
Fig. 1. Thus, on the basis of the mentioned above properties 
of expected point clouds we shall call a region of a point 
cloud as sufficiently sampled region (SSR) if for any point 
of the region 3≤µ , µ2>k , and the region satisfies the 
mentioned above condition of smoothness.   
 
4. ALGORITHM OVERVIEW 
 
Outgoing from the mentioned above properties of input 
point clouds, for surface reconstruction a strategy of several 
consecutive steps was chosen.  
 

Figure 2 
 

Step 1. Making a draft mesh, that mainly is correct in 
SSRs only (Fig. 2).  
 

Figure 3 
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Step 2. Determination of correctly triangulated regions 
and their boundaries (Fig. 3).  
 

Step 3. Determination of the status (hole or island) of 
the boundaries obtained at the previous step. 
 

Figure 4 
 

Step 4. Making connections between the islands (let’s 
call them bridges) and then extracting new holes, which are 
made by fragments of the islands boundaries and the 
bridges (Fig. 4).  

 
Step 5. Decomposition of holes having the complex 

form. 
 

Figure 5 
 

Step 6. Triangulation of the region inside each detected 
hole (Fig. 5). 

 
Step 7. Postprocessing. 
 
Generally, this algorithm uses the ideas of greedy 

triangulation (GT) and belongs to the group of interpolating 
methods. The GT of a point set in the plane is the 
triangulation obtained by starting with the empty set and at 
each step adding the shortest compatible edge between two 
of the points [BE95]. In 2D a compatible edge is defined to 
be an edge that crosses none of the previously added edges. 

Step 1 is an extension of 2D GT-strategy for 3D, step 7 
uses classical 2D GT algorithm. Steps 3, 4, 5 which provide 
possibilities of processing problem point clouds, generally 
lie outside the field of usually considering triangulation 
problems. But step 4 partially can be also related to the 
group of GT algorithms. 
 
5. ALGORITHM REALIZATION 
 
Step 1. The basic goal of this step is a fast triangulation of 
SSRs to obtain the necessary information of a reconstructed 
surface behavior. As distribution of points and properties of 
a surface in these regions are good (see section 3), for a 
triangulation complex algorithms are not required. For 
using GT-strategy in 3D a special very simple and fast test 
was designed. This test analyzes a topology of a created 
mesh at the place of prospective inclusion of an edge, and 
can be formulated as follows: if insertion of the current 
tested edge leads to an appearance of the edges having 
more than two adjacent triangles or leads to appearance of a 
tetrahedron, the edge is considered as incompatible and 
compatible otherwise. The given test does not use any 
floating-point operations, and is passed fast.  

 

Figure 6: Edge without adjacent triangles 
 

This test can’t prevent appearance of edges having less 
than 2 adjacent triangles (edge AB in Fig. 6). Therefore, at 
the end of the step we eliminate all such edges. Naturally, 
process based on such simple test can’t provide 100% 
reliability for triangulation of even SSRs - typically we 
have about 95% correctly connected points of such regions. 
However, in a combination with the subsequent test 
revealing errors in triangulation (at the step 2), application 
of such test is justified, because: 

1) total expenses of the triangulation with the use of 
the given test and the subsequent step of a 
verification appear considerably lower, than 
expenses of triangulation with the use of more 
powerful tests; 

2) we very quickly obtain a correct triangulation of 
about 80% points, and as a consequence, we 
obtain a general behavior of the reconstructed 
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surface; correctly linked points can be excluded 
from the further consideration, it is especially 
important thing for the big clouds; 

3) additional 2-3% increment of the total area of 
problem regions by parts of SSRs that were 
incorrectly triangulated is not essential. 

It is necessary to note that the algorithm described 
above is optimized for processing point clouds having 
mentioned above properties. For other cases at the given 
step another algorithm can be used, that is more suitable for 
a given point cloud.  
 
Step 2. At this step the check of the work of the previous 
step and determination of boundaries of correctly 
triangulated regions is made. Also at this step we determine 
the points, which not belong to a correct triangulation (let’s 
call them lost points). For this step we use a variant of the 
well-known “umbrella” filtering [AGJ02].  

 

Figure 7: “Umbrella” test 
 

For a given tested point we consider all its edges, and 
for each edge we determine pair of triangles sharing this 
edge. In the Fig. 7 a point P with 5 outcoming edges is 
shown. Edge E1 has the pair of adjacent triangles (T1, T5), 
edge E2 has the pair (T1, T2) and so on. It can be proved 
that the point belongs to a correct triangulated area if and 
only if such pairs of triangles make a correct closed chain. 
The given condition can be applied also to border points if 
we put, that the absent triangle is a special kind of "empty“ 
triangle. 

 

Figure 8: Determination of the boundary vector of a point 
 

After detection of all correctly connected points the 
boundaries of correctly triangulated regions are found. For 
each point P (Fig. 8) of a boundary we determine a special 
boundary vector Ip. This vector is average of vectors from 
P to neighbor points, which are located closer than the 
given distance β (with exception of the boundary points). 
 

Figure 9: Determination of the status of a boundary 
 

Step 3. For determination of the status (hole or island) of 
an obtained boundary the test described below is used (Fig. 
9). Initially, some point P0 on the boundary is fixed. Then 
on the boundary the farthest from P0 point P1 is searched. 
We analyze dot products: between the vector P0P1 and the 
boundary vector of  P1 (Ip1), and also between the vector 
P1P0 and the boundary vector of  P0 (Ip0). If both dot 
products are positive - the boundary is considered a hole, if 
both are negative - the boundary is considered an island. If 
these scalar products have different signs, we fix a new 
point P0 and repeat the test. The testing stops when 3/4 or 
more dot products have the same sign. 
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Figure 10a: Set of all the created candidate bridges 
 

Step 4. At this step we make bridges between islands and 
then extract new holes made by fragments of the island 
boundaries and the bridges. Initially, for all islands, for all 
points of an island boundary we make set of the shortest 
candidate bridges to each of other island boundaries (Fig. 
10a). To avoid a quadratic complexity, a candidate bridge 
length is bounded by an upper limit λ and a spatial 
decomposition is applied.  

 

Figure 10b: Set of the admitted bridges 
 

Then all the created candidate bridges are ordered in 
ascending order of their lengths. After sorting we test 
bridge by bridge from the sorted list and admit only bridges 
(Fig. 10b), which meet the conditions given below:  

• the sphere circumscribed around a candidate 
bridge does not contain any other points of 
any boundary;  

• there is no already admitted bridge at the 
boundary points, connected by the tested 
candidate bridge. 

 

Figure 11: Bridge installation 
 

Then we install all the admitted bridges. Each installed 
bridge consists of two edges. At a bridge installation (Fig. 
11) between point A of a first island boundary and point B 
of a second island boundary each boundary is disconnected 
at the corresponding point. For it we insert additional points 
A’ and B’ having the same coordinates that points A and B. 
For determination of a connection order of these points, the 
auxiliary points laying on boundaries on some small 
distance from the points A,A’ (B,B’) are considered. If the 
angle between the vectors A0B0 and A1B1 is smaller than the 
angle between the vectors A0B1 and A1B0 then we install the 
edges pair  (AB, A’B’) and the pair (AB’, A’B) otherwise.  

After installation of all the admitted bridges the 
extraction of holes formed by fragments of the islands 
boundaries and  edges of the installed bridges is made. 
Thus, as a result of this step we have only some set of holes 
(holes obtained at the given step and internal holes of 
islands) and the set of lost points for consideration at 
subsequent steps. 
 
Step 5. At this step a recursive decomposition of complex 
holes is carried out until each hole has an unambiguous 
projection onto the average plane of the own boundary 
points (let's call this plane as hole’s average plane).  
 

Figure 12: Determination of auxiliary boundary points 
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For a determination, whether a hole has unambiguous 
projection onto its average plane or not, for each point of 
the hole boundary we define the auxiliary boundary point 
(Fig. 12). This point (featured by an empty circle) is the end 
of the point’s boundary vector, that is reduced to the length 
equal some small value ε.

Figure 13: Case of ambiguous projection of a hole 
 

Thus, if the line of hole’s boundary projection don't 
cross itself, and all the projections of auxiliary boundary 
points lie outside the region, restricted by this line, we 
consider, that the hole has unambiguous projection. In Fig. 
13 the case is shown, when a hole has ambiguous projection 
(when several projections of auxiliary boundary points are 
inside the hole projection area). 

If a given hole hasn't unambiguous projection, we 
make its recursive binary subdivision until each resulting 
hole has unambiguous projection onto own average plane. 
The subdivision is made by insertion a chord between two 
points of the hole boundary. The method of a chord 
insertion is similar to the method of the installation of a 
bridge between islands (we create two additional points and 
make two edges for each chord).  

 
Step 6. A triangulation of the region inside each hole is 
carried out by a projection of the hole boundary and the lost 
points located inside it onto the hole's average plane. For 
the triangulation, a variant of the classical GT-algorithm for 
2D is applied [BE95], but for determination of the current 
shortest edge the 3D distance between the points used.    

 
Step 7. At this step we remove auxiliary points and edges, 
which were added at the installing bridges and chords (steps 
4, 5).  
 

Figure 14a: Triangulation with auxiliary links 
 

For each bridge or chord we initially eliminate auxiliary 
points A' and B' and reconnect all their edges to the points 
A and B respectively (Fig. 14a). 
 

Figure 14b: Triangulation after auxiliary links removing 
 

If the edge AB is longer, than the distance between adjacent 
triangles vertices C and D, we replace edge AB by edge CD 
(Fig. 14b). 
 
6. RESULTS AND CONCLUSION 
 
The results of the algorithm application for several samples 
are shown in Table 1. All the timing measurements were 
made on a PC with 1500 MHz Athlon and 1GB main 
memory.  

“Bunny” (Fig. 15) and “Bone” (Fig. 16) are widely 
used for testing models. Also we use two artificially 
damaged variants of "Bunny" to test. In several regions 
points were removed and in several regions points density 
was decreased 10 times. Model “Bunny1” (Fig. 17a) is a 
little damaged, and model “Bunny'2” – heavy (Fig. 18a). In 
the Fig. 17b, 18b the same models are shown after surface 
reconstruction. The “Face” is a fragment of a distance 
scanned big sculpture. In the Fig. 19a the original point 
cloud and in the Fig. 19b the reconstructed and lighted 
surface are shown. 
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The obtained results allow to make the following 
conclusions: 

• The algorithm shows a better speed (in comparison 
with [ACD00, DG01]) at processing point clouds, 
which are almost completely represented by a SSR 
having a little µ (“Bunny”). 

• The algorithm shows results comparable to the 
[DG01] at processing point clouds, which are 
mainly represented by one continuous SSR, with a 
small amount of problem regions caused by 
breaking the conditions of SSR (“Bone”), or 
problems with sampling (“Bunny1”).    

• The algorithm can reconstruct the closed surface 
from point clouds having serious problems, when 
available algorithms show unsatisfactory results 
("Bunny2") or can't be applied ("Face"). However, 
in especially difficult cases (in Fig. 18b marked by 
a circle) the algorithm still is not capable to restore 
an original surface correctly.  

 
As further works we plan to increase abilities of steps 

3, 4, 5, which are crucial for processing problem point 
clouds. 
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Table 1 

Sample N
points 

Average 
µ in 

SSRs 

Area of 
SSRs 
(%) 

N points 
in SSRs 

(%) 

Used steps Time 
(sec) 

Speed 
(point/sec) 

Bunny 35947  98 98 1, 2, 6 3.6 9985 
Bone 68537 2.4 87 94 1, 2, 6 15.1 4539 
Bunny1 29491 1.9 82 94 1, 2, 6 14.2 2077 
Bunny2 26553 1.9 69 94 1, 2, 5, 6, 7 20.9 1270 
Face 232511 1.8 63 82 1, 2, 3, 4, 5, 6, 7 385.8 603 
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Figure 15 Figure 16 

Figure 17a Figure 17b 

Figure 18a Figure 18b 

Figure 19a Figure 19b 
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