
Space Subdivision for Fast Polygonization of Implicit Surfaces

Martin Cermak1, Vaclav Skala
Department of Computer Science and Engineering,

University of West Bohemia, Univerzitni 22, 306 14 Plzen, Czech Republic
E-mail: {cermakm|skala}@kiv.zcu.cz

Abstract

This paper presents the basic principles for the visualization of objects which are defined by implicit
functions and CSG trees. The basic principles (Marching cubes, Marching tetrahedra and Marching trian-
gles) for iso-surfaces rendering of such objects are compared. A new fast modification of the Marching tri-
angles algorithm is presented and compared with others algorithms. It is based on the space subdivision
technique that enabled a significant speed-up of the Marching triangles algorithm. The speed-up grows with
the grid resolution in which the object is represented. The presented algorithm is convenient for objects with
large smooth and complex surfaces. The method produces a triangular mesh that consists of well-shaped
triangles.

1 project supported by the Ministry of Education of Czech Republic – Project MSM 235200005

1. Introduction

Implicit surfaces seem to be one of the most
appealing concepts for building complex shapes
and surfaces. They have become widely used in
several applications in computer graphics and
visualization.

An implicit surface is mathematically
defined as a set of points in space x that satisfy
the equation f(x) = 0 [2, 3, 8, 9, 11]. Thus,
visualizing implicit surfaces typically consists in
finding the zero-set of f, which may be per-
formed either by polygonizing the surface or by
direct ray-tracing.

2. Related work

Iso-surface extraction is needed for the visuali-
zation purposes that have a set of triangles as a
result. Existing techniques may be classified
into three categories. Spatial sampling tech-
niques regularly or adaptively sample the space
to find the cells straddling the implicit surface,
and tessellate those cells to create overall poly-
gonization [2, 3, 10]. In general, cells are either
cubes or tetrahedra. Surface tracking ap-
proaches (also known as continuation method)
iteratively create a triangulation from a seed
element by marching along the surface
[1, 2, 5, 6, 7, 12].

Surface fitting techniques progressively adapt
and deform an initial mesh to converge to the
implicit surface.

3. Marching triangles

In this section, the basic principle of the origi-
nal Marching triangles algorithm, described in
[5], is introduced. Further, the acceleration
techniques, used in our implementation, are
interpreted.

3.1 Original algorithm

The idea of algorithm consists of five steps:
Step 0: Arbitrarily choose a starting point s in
the neighborhood of the surface and find the
point p1 that lies on the surface. Surround p1

with a regular hexagon q2,…,q7 in the tangent
plane. Determine the points p2,…,p7 corre-
sponding to the starting points q2,…,q7 that lie
on the surface (Figure 1a). The triangles
(p1, pi, pi+1) are the first six triangles of the
triangulation. The ordered array of points
p2,…,p7 form the first actual front polygon ∏0.

Step 1: For every point of the actual front
polygon ∏0, determine the angle of the area till
to be triangulated and form front angles
(Figure 1b).

ECI2002, conference proceedings, Univ.of Kosice, Kosice, Slovakia, ISBN 80�7099�879�2, pp.302-307, 2002

Figure 1: The first steps of the MTR algo-
rithm.

Step 2: Check if any point pi of the actual front
polygon is near:
a) to a point of ∏0 that is different from pi and

its neighbors. Then divide the actual front
polygon ∏0 into a smaller one and an addi-
tional front polygon (Figure 2a).

b) to a point of any other front polygon ∏m,
m>0. Then unite the polygons ∏0, ∏m to a
new and larger actual front polygon (Fig-
ure 2b). Delete ∏m.

Figure 2: (a) Dividing the actual front poly-
gon (step 2a of the MTR algorithm) and (b)
uniting two front polygons (step 2b of the MTR
algorithm).

Step 3: Determine a front point pi of the actual
front polygon ∏0 with a minimal front angle.
Surround pi with triangles with angles ≈ 600.
Delete pi from the actual front polygon ∏0 and
insert the new points into the actual front poly-
gon ∏0.

Step 4: Repeat steps 1-3 until the actual front
polygon ∏0 consists of only three points that
generate a new triangle. If there is another
(nonempty) front polygon left, it becomes the
new actual front polygon ∏0 and steps 1-3 are
repeated. If there are no more front polygons
then the triangulation is finished.

3.2 Acceleration

The MTR algorithm generates a well-shaped
triangle mesh, nevertheless, the computational
time of the original MTR algorithm was unac-
ceptable and therefore the need for acceleration
is obvious. There are three standard ways of
speeding-up the algorithms, namely:
- decreasing the algorithm complexity and

preprocessing,
- employing space subdivision techniques,
- effectively coding the linear speed-up.

The first two approaches in particular usually
lead to a significant speed-up.

Decreasing the algorithm complexity
The original algorithm described in [5] contains
few parts, which can be implemented more
effectively. The most time-consuming part is
the distances checking of the front polygons’
points (Step 2 of the MTR algorithm). Our
modification of the algorithm is directed pre-
cisely towards achieving this step.

The first distance check (FDC, step 2a
of the algorithm) is on the complexity of the
algorithm:

()() (),5 2
2
1 mOmmO ⇒−∗

where m is a number of points in the actual
front polygon.

The second distance check (SDC, step
2b of the algorithm) is on the complexity of the
algorithm:

(),umO ∗

ECI2002, conference proceedings, Univ.of Kosice, Kosice, Slovakia, ISBN 80�7099�879�2, pp.302-307, 2002

where u is a number of points in all the other
front polygons.

Both distance checks, FDC and SDC,
are evaluated at each step of the MTR algo-
rithm and, therefore, the final algorithm com-
plexity is:

()()
()() (),3

2

NOsummO

summO

≈∗+∗

⇒∗∗+

where s is a number of repetitions of the MTR
algorithm.

If we realize that the shape and struc-
ture of the only actual front polygon is modi-
fied during the polygonization process and that
all the others front polygons stand without any
changes. Thereinafter, the actual front poly-
gon’s shape is only modified in one location
where new points are included. The result of
those causes is: the main part of a scene is
static and only one local limited area is dynami-
cally modified. Therefore, the distance check-
ing need only be performed for new points and
Step 2 of the MTR algorithm can then be writ-
ten as:
Step 2: Check if only the new points pi of the
actual front polygon are near … (steps a and b
are without changes).

This means that the algorithm complex-
ity for one step and one inserted point is de-
creased and can be expressed for FDC as:

(),mO
where m is a number of points in the actual
front polygon, and for SDC as:

(),uO
where u is a number of points in all the other
front polygons.
Therefore, the final algorithm complexity is:

()() (),2NOsumO ≈∗+
where s is a number of repetitions of the MTR
algorithm.

The algorithm complexity of the MTR
method was reduced by one level. Therefore,
the usage of the algorithm for polygonization
of more detailed objects (with a large number
of polygons as its output) was significantly
increased. Nevertheless, our experiments
proved that the MC algorithm (the surface
tracking scheme [2]) is, for polygonization of
highly detailed objects, significantly speedier
than this modified MTR method. The reason is

that the distance checking is still using large
algorithm complexity for the growing number
of points in front polygons.

Space subdivision scheme
One possible solution is the subdivision of the
computing area into smaller sub-areas. Each
sub-area contains only one part of a set of front
polygons’ points. The average number of
points in sub-areas depends on the sub-areas’
size. The main of our requirements is to mini-
mize the number of distance checks, i.e. a se-
lection of the most restricted set of points into
which the actual front polygon can be divided
or united.

The actual front polygon is divided or
united only if the distance between two speci-
fied points is shorter than δ (more information
in [5]). Therefore, the most suitable choice for
the size of the sub-areas side is δ, i.e. the shape
of sub-areas is a cube. For this choice, the dis-
tance checks (FDC and SDC) can be made
only with front polygons’ points which lie in
the sub-areas in the neighborhood of the new
point’s sub-area. Figure 3 shows a distance
check for a new included point (for illustration
only the E2 example).

Figure 3: The space subdivision scheme for
distance checking.

Each sub-area contains a list of front polygons’
points which are located inside. The data struc-
ture, used for subdivision scheme, is shown in
Figure 4.

ECI2002, conference proceedings, Univ.of Kosice, Kosice, Slovakia, ISBN 80�7099�879�2, pp.302-307, 2002

Figure 4: The data structure for the space
subdivision scheme.

Each front polygon also has its own set
of points (similar as above) and each point con-
tains a pointer to its sub-area and a pointer to
its front polygon too.

Therefore, both distance checks can be
performed in one step. If both tested points lie
in the actual front polygon the FDC is evalu-
ated. In other ways, the SDC is evaluated.
It is obvious that both checks, FDC and SDC,
can be performed with complexity:

(),svO ∗
where v is the average number of points in the
actual sub-area and the neighbor’s sub-areas
together.
The relation between v, m and v, u is:

() (),uvmv <<∧<<
where m is the number of points in the actual
front polygon and u is the number of points in
all the other front polygons.

It is necessary to know that there is a
trade-off between computational time and
memory requirements. The memory require-
ment grows with the resolution of the space
subdivision for the given area (space, where the
surface should be extracted). In spite of this
effect it is necessary to see that available mem-
ory on today’s computers is growing much
faster than the processors speed. It means that
this kind of trade-off between runtime and
memory is acceptable.

Both improvements mentioned above
were implemented and verified. Experimental
results are presented in next section.

4. Results

At first, the original MTR algorithm is com-
pared to the accelerated one. The emphasis is
directed towards speed comparison, because
the polygonal mesh quality (the shape of trian-

gles) is preserved for both methods, see Fig-
ure 7.
Further, the accelerated MTR algorithm is
compared to the MC method (the surface
tracking scheme [2]). In this experiment, we
want to show that the MTR method’s compu-
tational time is now close to the MC algorithm.
The comparison of the output triangle mesh’s
quality for both the methods is illustrated in
Figure 10.

Figure 5: The implicit object Genus, 15 679
triangles, 7 835 vertices.

All the experiments described above
were accomplished on implicit object Genus,
Figure 5. The implicit function of the Genus
object is written as:

()()
()() ,0*

1

2
1

22
1

2
1

22
1

22
24

=−++

∗−+−∗

∗

−

−−∗

ryxx

ryxx

r
y

r
xzr

yx
z

where rx=6; ry=3,5; rz=4; r1=1,2; x1=3,9.

The Genus object is also introduced in [5] as
an example; therefore, we used it for illustra-
tion too.
Figure 6 shows the speed-up of the original
MTR algorithm and the new MTR algorithm.
It can be seen that speed-up grows with the
resolution linearly in the range of resolution
used for experiments. The experiments proved
that the proposed algorithm is especially con-
venient for cases where highly detailed objects
are to be generated. Nevertheless, even for
small resolution the proposed algorithm is sig-
nificantly faster than the original one [5].

ECI2002, conference proceedings, Univ.of Kosice, Kosice, Slovakia, ISBN 80�7099�879�2, pp.302-307, 2002

43

106

831

340

10

100

1000

160 240 400 630

N

S
p

ee
d

-u
p

Figure 6: Comparison of acceleration between
the original MTR algorithm and the modified
MTR method.

0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00

0-
10

20
-3

0
40

-5
0

60
-7

0
80

-9
0

10
0-

11
0

12
0-

13
0

140
-1

50

16
0-

17
0

Angle's intervals in degrees

Original

Accelerated

Number of angles [%]

Figure 7: Histogram of the triangle shape
quality for the MTR algorithms. Generated for
N=630, see Table 2.

The size of the computing area for all experi-
ments is shown in Table 1. The computing area
is a place in E3 where the polygonization proc-
ess runs.

Axis min max
x -16 16
y -16 16
z -16 16

Table 1: The computing area size.

Table 2 contains the list of values which were
obtained by the first experiment. It is obvious
that both modifications of the MTR algorithm
generate comparable values (number of trian-
gles and vertices) only the computational time
is significantly different.

Note, that the N values, used in tables
bellow, determine the number of sub-areas in
each axis of the computing area. Therefore, the

size of each sub-area (δ, see Figure 3) and also
the object detail (a number of generated trian-
gles and vertices) are proportional to the com-
puting area’s size.

N 160 240 400 630
a) Triangles 15535 34945 97785 244295

Vertices 7763 17468 48886 122143
t [ms] 5147 27600 340459 2263275

b) Triangles 15679 35067 97867 244103
Vertices 7835 17529 48929 122047
t [ms] 120 260 1001 2724

Table 2: Comparison between a) the original
MTR algorithm and b) the accelerated one.

The next our requirement was the computa-
tional time approximation of the MTR algo-
rithm to the MC method. Figure 8 illustrates
the time ratio between those algorithms. The
MC algorithm is still faster than the MTR
method but this drawback is balanced by the
output triangle shape quality, see Figure 9 and
Figure 10.

1,2
1,2

0,90,9

2,1

0,5

0,7

0,9

1,1

1,3

1,5

1,7

1,9

2,1

2,3

2,5

160 240 400 630 1000

N

T
im

e
ra

ti
o

M
T

R
/M

C

Figure 8: Time comparison between the accel-
erated MTR algorithm and the MC algorithm.

Figure 9: Sphere polygonization: a) by the
Marching triangles algorithm, b) by the
Marching cubes algorithm.

ECI2002, conference proceedings, Univ.of Kosice, Kosice, Slovakia, ISBN 80�7099�879�2, pp.302-307, 2002

0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00

0-
10

20
-3

0
40

-5
0

60-
70

80
-9

0

10
0-

11
0

12
0-

13
0

140
-1

50

16
0-

17
0

Angle's intervals in degrees

Marching triangles

Marching cubes

Number of angles [%]

Figure 10: Histogram of triangle shape qual-
ity between the new MTR algorithm and the
MC method. Generated for N=1000, see Ta-
ble 3.

Table 3 contains the values from the
second experiment, i.e. values which are used
in both figures above.

N 160 240 400 630 1000
a) Tr. 15679 35067 97867 244103 613699

Vert. 7835 17529 48929 122047 306845
t [ms] 120 271 1031 2714 15402

b) Tr. 17568 39520 109608 271344 684016
Vert. 8772 19756 54800 135668 342004
t [ms] 130 301 862 2273 7281

Table 3: Comparison between a) the modified
MTR algorithm and b) the MC algorithm.

5. Conclusion

The new approach for the MTR algorithm ac-
celeration was presented. The proposed algo-
rithm has been tested on many non-trivial
implicit surfaces and proved to have very good
properties including stability for smooth2 sur-
faces. Also angle distribution in the triangles
generated by the MTR is better than that of the
original algorithm as well. The main advantage
of this new algorithm is that speed-up grows as
the increases scene detail.

Acknowledgements

The authors would like to thank all those who
contributed to this work especially to col-
leagues - MSc. and PhD. students at the Uni-

2 C1 continuity in each point

versity of West Bohemia in Plzen - who have
stimulated the work and development of this
new approach [13]. We would also like to
thank Erich Hartmann for some illustrations.

References

[1] Akkouche, S., Galin, E.: Adaptive Im-
plicit Surface Polygonization using Marching
Triangles, Computer Graphic Forum, 20(2):
67-80, 2001.
[2] Bloomenthal, J.: Graphics Gems IV,
Academic Press, 1994.
[3] Bloomenthal, J.: Skeletal Design of
Natural Forms, Ph.D. Thesis, 1995.
[4] Bloomenthal, J., Bajaj, Ch., Blinn, J.,
Cani-Gascuel, M-P., Rockwood, A., Wy-
vill, B., Wyvill, G: Introduction to implicit sur-
faces, Morgan Kaufmann, 1997.
[5] Hartmann, E.: A marching method for
the triangulation of surfaces, The Visual Com-
puter (14), pp.95-108, 1998.
[6] Hilton, A., Stoddart, A.J., Illingworth, J.,
Windeatt, T.: Marching Triangles: Range Im-
age Fusion for Complex Object Modelling, Int.
Conf. on Image Processing, 1996.
[7] Hilton, A., Illingworth, J.: Marching Tri-
angles: Delaunay Implicit Surface Triangula-
tion.
[8] “Hyperfun: Language for F-Rep Geomet-
ric Modeling”, http://cis.k.hosei.ac.jp/~F-rep/
[9] Pasko, A., Adzhiev, V., Karakov, M.,
Savchenko,V.: Hybrid system architecture for
volume modeling, Computer & Graphics 24
(67-68), 2000.
[10] Ohraje, Y., Belyaev, A., Pasko, A.: Dy-
namic meshes for accurate polygonization of
implicit surfaces with sharp features, Shape
Modeling International 2001, IEEE, 74-81.
[11] Uhlir, K.,Skala, V.: Interactive system
for generating and modeling implicit functions,
submitted for publication.
[12] Triquet, F., Meseure, F., Chaillou, Ch.:
Fast Polygonization of Implicit Surfaces,
WSCG'2001 Int.Conf., pp. 162, University of
West Bohemia in Pilsen, 2001.
[13] Rousal, M., Skala, V.: Modular Visuali-
zation Environment - MVE, Int. Conf. ECI
2000, Herlany, Slovakia, pp.245-250, ISBN
80-88922-25-9.

ECI2002, conference proceedings, Univ.of Kosice, Kosice, Slovakia, ISBN 80�7099�879�2, pp.302-307, 2002

