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SURFACE RECONSTRUCTION FROM ORTHOGONAL SLICES 

Abstract.  
This paper is concerned with the problem of reconstructing surfaces of 3D objects, given 
sets of planar parallel slices representing cross sections through the objects. We present 
a new approach, which is based on considering more than one mutually non-parallel sets 
of slices. This paper is an introduction to this problem and includes our proposal 
of solution for orthogonal sets of slices. The properties and sample results are discussed. 

keywords : surface reconstruction, orthogonal slices, polygonal contours, visualization. 

1 INTRODUCTION 

The problem of reconstructing a three dimensional surface from a set of planar contours 
is an important problem in many fields. For example in clinical medicine, the data generated 
by various imaging techniques such as computed axial tomography (CAT), ultrasound, and 
nuclear magnetic resonance (NMR) provide a series of slices through the object of study. 
Biologists try to understand the shape of microscopic objects from serial sections through the 
object. In Computed Aided Design (CAD), lofting techniques specify the geometry of an 
object by means of series of contours.  

One set of planar slices, where each slice contains several contours, is usually used as an 
input. It is possible to say that there are three basic approaches to the problem: volume based, 
surface based and implicit solid modeling. Volume based approaches [7], [9], [11], [18] 
require data available as a 3-D grid. Surface based approaches [1] - [6], [8], [14] - [16] 
assume the data define the intersection of a surface and a plane of sectioning. Quite a new 
approach is reconstruction using implicit modeling [10], [12], [19].  

Which approach is the most applicable depends on the nature of the data. When 
the available data are a dense 3-D lattice of values, a volume based approach such 
as the marching cubes algorithm of Lorensen and Cline [13] or the geometrically deformed 
models of Miller et al. [17] may be the best. If the available data are a set of closed contours 
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denoting the surfaces of the objects to be reconstructed then a surface-based or implicit 
modeling approach may be preferred. If the spacing between slices is comparable 
to the resolution within the plane of the contours, a volume-based approach can be used. 

A large set separation between the planes of adjacent sections causes problems 
for volume-based approaches, since their solution to the problem of the determining 
the adjacency topology of contours in the data set (i.e., which contours should be connected 
by a surface - the correspondence problem) rely on overlap of projected contours. If widely 
spaced sections slice obliquely through an object then the reconstruction is quite difficult and 
results of these methods have shortcomings, such as incorrect contour correspondence. If it is 
possible to use more than one set of planar slices (i.e., if the original object was scanned 
in more than one plane) then the reconstruction is easier and the quality of its results 
increases.  

We found the existing methods have problems solving contour correspondence. The aim 
of our work is to prove that the considering more information given as mutually non-parallel 
sets of slices can overcome these shortcomings. Our effort is to propose a new method 
handling such kinds of input. We have restricted to orthogonal sets of parallel slices (i.e. 3 
sets of slices parallel to xy, yz, zx in 3D) at this moment. 

2 ORTHOGONAL SETS OF SLICES 

If we slice an object by more then one set of parallel slices and especially when these sets 
are mutually orthogonal, we get orthogonal sets of parallel planar slices. See fig. 1 for 
illustration of the problem or [20] for more detailed definition. We suppose polygonal 
contours in each slice. 

 
Fig. 1: Orthogonal sets of slices.  In the middle contours of one set are filled by a unique color. 

On the right there is an example of obtained spatial polygons to be patched. 

2.1 Principle of the algorithm for the surface reconstruction from orthogonal slices 

The motivation for our algorithm was the study of the situations similar to the one 
on fig. 1. The planes of slices divide space into a set of spatial cells. We distinguish two kinds 
of cells, the active and the empty cells. On some sides of an active cell are located parts 
of contours, which means that the resultant surface intersects the cell, see fig. 2. 

The intersection of two orthogonal slices is a set of points. Such points we call node 
points, see fig. 2. Now we focus on an active cell. The important discovery is that parts 
of input contours and the node points form spatial polygons placed on the surface, see fig. 2.  
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We take a graph view on the contours. Each contour is a subgraph (or component) 
of graph G. Graph G is directed, its set of vertices VG is formed by contour vertices, the set 
of edges EG is formed by contour edges. Note that as long as we have one set of parallel 
slices, each contour represents one component of the graph and for each vertex vi 
is 1)()( == +−

ii vdvd , where d - is the input degree and d + is the output degree of a vertex. 

 
Figure 2: Active cells. Parts of contours on sides of the cell together with node points form spatial 

polygons to be patched. Node points are denoted as white circles. 

If we add a node point (node vertex) to graph G then the number of components 
decreases. Node vertex represents a connection of two components. Our aim is to show that 
if graph G is connected then we are able to get surface with the same structure of the sampled 
part of the input object. 

Our algorithm consists of 4 steps. In the first step we compute node vertices of each 
contour, in the second step we find all pairs of corresponding node vertices (each of the two 
points is a part of a different contour, which are orthogonal). These pairs are transformed 
to valid node vertices of graph G. In the third step we find (using a set of criteria) those parts 
of graph G (circles) that form spatial polygons lying on the object surface. In the last step we 
patch the polygons. 

2.2 Node points computation 

In this step node vertices of each contour are computed and added among current contour 
vertices to the right position. Our algorithm works on the same principle as the Cohen-
Sutherland�s line clipping algorithm. 

An intersection of a slice plane and all other orthogonal slice planes form a lattice with  
cells, see fig. 3. Each node point arises as the intersection of a contour and a side of a cell. 
Since the contour is supposed to be polygonal, a node point is computed as an intersection 
of two lines. Singular cases when a contour crosses a cell at its corner are handled separately.  

 
Figure 3. On the left there is an input contour, the lattice represents positions of orthogonal slices planes. 

On the right there is the contour formed by its node points (white circles). 

The algorithm starts at an arbitrary vertex vk of a contour and cell Bij containing this 
vertex is determined. Then it marches along the contour until it gets over the border of cell Bij. 
At this moment a new node point is computed and then added to the contour as a new vertex. 
The algorithm continues in this manner until it reaches the last vertex of the contour. The time 
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complexity is linear O(n+m), where n is the number of vertices of the contour and m is 
the number of intersections of the contour and the lattice, i.e. number of node vertices. 

2.3 Searching for node vertices correspondence 

As we said before a node vertex is an intersection of two mutually orthogonal contours. 
However, there is a problem that we have computed all node vertices, but we do not know the 
correspondence between them, since each vertex of a pair of corresponding vertices belongs 
to a different contour. Each pair of corresponding node vertices should be replaced with 
a single vertex. As soon as we connect both crossed contours through this vertex, its degree is 

2== +− dd . 
A simple algorithm searching for the pairs of corresponding node vertices works with 

quadratic complexity. For each node vertex wi is the corresponding slice s determined. Then 
all node vertices wj of s are searched until the pair (wi,wj) is found. We can use the space 
subdivision defined by the spatial cells to replace searching over all node vertices of s 
with searching among a set of vertices adjacent with one edge of a cell. It decreases the time 
complexity to linear. 

Now it is necessary to describe an important singular case. As we said above, it is 
possible that more than two contours cross at one point. This case can appear only when there 
are 3 mutually orthogonal sets of slices. Each of such contours belongs to a different set. It is 
obvious that they cross at a node point of the spatial lattice formed by the slice planes.  

 
Figure 4. Replacing one intersection of three contours with three intersections of two contours. 

An ideal solution would be to accept these cases and to deal with the two kinds of node 
vertices. Since the occurrence of such singular cases is not frequent, we handle them by 
moving the critical parts of the contours slightly. Thus we replace one intersection of three 
orthogonal contours by three intersections of two orthogonal contours, see fig. 4. 

2.4 Searching and patching spatial polygons  

In this step we assume graph G with correctly connected node vertices. From now on we 
define that one edge of graph G represents a part of a contour between two node vertices, see 
fig 3. The geometrical shape of the edges still corresponds to the real part of contours. The 
task is to find those spatial polygons that lie on the surface. From the graph view, we can 
regard these polygons as circles of the graph. 

We suppose each edge e is adjacent with cells B1 and B2, see fig. 2, on the right. Each cell 
from {B1, B2} includes one circle c, which is adjacent with e. The circle c represents the 
spatial polygon being searched.  

In the first step the algorithm finds adjacent cells B1 and B2 for each e. The following 
steps are then applied to each cell b from {B1, B2}. If e has not been used in b yet, we can start 
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to build polygon p. All the edges that can be appended to p must be adjacent with b and must 
not have been used yet. 

 Since we have obtained all polygons, we can start to patch them. We can use any 
arbitrary patching technique. Our algorithm linearly approximates each edge of p.  

3 RESULTS 

First we have created slices of a scene containing oblique pipes (their axes are 
significantly leaned from z-axis); see fig. 6a. Then we have used a usual algorithm 
reconstructing the surface from parallel slices. The part of the algorithm responsible 
for determining the correspondence of contours is based on contour overlapping. 
The correspondence has been determined incorrectly and so the resulting surface does not 
resemble the original; see fig 6c. Our algorithm processing orthogonal sets of slices (fig. 6d) 
has produced surface with the expected structure, fig. 6e. 

   
 

a) b) c) d) e) 

Figure 6a-e. a) the initial scene, b) set of parallel slices, c) surface reconstruction from parallel set of slices  
(contour overlapping correspondence), d) orthogonal slices, e) surface reconstruction from orthogonal sets 

of slices 

   
a) b) c) 

Figure 7a-c. Orthogonal slices (a) as a source of reconstruction (b), c) another experimental result 

In order to prove the capabilities of proposed algorithm we have verified it for more 
complicated data sets as well; see fig. 7a-c. The artifacts on the surface such as holes or 
overlaying triangles are caused by incorrect graph G, which, in fact, is the most problematic 
part of the algorithm. Linear approximation of the graph edges causes loss of details of the 
original surface. 

4 CONCLUSION 

We have presented a new approach for surface reconstruction using orthogonal sets 
of slices. The experiments have proven that the presented algorithm reconstructs typical and 
also more complex data sets while more applicable results than the other methods. In further 
research we would like to remove incorrectness in the graph construction and to propose 
a robust volume-based algorithm. 
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