
DRAFT version 08/31/01 1:05 A8/P81

Non-linear co-ordinates and their application in Computer
Graphics
Vaclav Skalai

Center of Computer Graphics and Visualization
Department of Computer Science and Engineering

University of West Bohemia, Univerzitní 8, Box 314
306 14 Plzen, Czech Republic

skala@kiv.zcu.cz http://iason.zcu.cz/~skala

ABSTRACT

There are many applications that are not naturally based on the orthogonal co-ordinate systems, like
ultrasound imaging, astronomy, mechanical computations etc. In those cases it is necessary to transform
the problem formulation to the orthogonal co-ordinate system, where the problem is solved, transform
the solution back and visualize the solution. The polar, spherical or cylindrical co-ordinate systems are
natural to many problems and sometime also used for computations. Some properties of those systems
are discussed including geometric transformation in the polar, cylindrical and spherical co-ordinate
systems. The geometric transformations can be expressed by matrix operations in considered co-ordinate
systems. As the memory capacity and hardware graphics accelerator grow fast it can be reasonable to
reconsider fundamental functionality of it, as it is limited generally to the vector dot multiplication. Also
use of non-linear co-ordinate systems and the influence on design of algorithms with lower algorithm
complexity is presented, too.

Keywords: algorithm complexity, computer graphics, geometric transformation, non-linear co-ordinate
system, point-in-polygon, line clipping, convex polygon.

1. INTRODUCTION

There are some applications, where the polar,
cylindrical or spherical co-ordinate systems can be
used for finding a solution of the given problem.
Especially some technical problems [Lio97a], like
sonar and radar applications, where the distance
from an object is measured under known angles,
flow computation, radiation, medical imaging and
ultrasound imaging etc. could benefit from their use.

It is a usual practice that all the data from those
applications are transformed to the Cartesian
orthogonal co-ordinate system, where all data are
processed. The data are then displayed directly or
transform back to the original co-ordinate system.
Nevertheless it is well known that representation of a
point in E2 is different from a line representation and
therefore the processing pipeline have to respect this
fact. The polar, cylindrical and spherical co-ordinate
systems offer some possibilities how to handle
graphical information in an unambiguous way and
also make an effective processing. On the other
hand, it is necessary to say that in usual practical
graphical applications the direct use of non-linear

co-ordinates can be quite complicated can hopefully
lead to new understanding of some fundamental
algorithms and developing of new more effective
methods.

2. CARTESIAN CO-ORDINATE SYSTEM

Cartesian co-ordinates and point representations are
used nearly exclusively. In the majority of
applications the homogeneous co-ordinates are used
and a point is represented as

[x , y , w]T

where: w is the homogeneous co-ordinate.

This representation enables us to represent all
geometric transformations by matrix multiplication.
On the other side a line p can be represented by an
implicit function as

a x + b y + c = 0

or by an explicit functions as

y = k x + q if k ≠ ∞

ECIC 2002 Conference, Slovakia, 2002

DRAFT version 2

or
x = m y + p if m ≠ ∞

or parametrically as

x(t) = xA + s t t ∈ (-∞ , +∞)

where: xA is a point on the line p and s is directional
vector of this line.

The problem arises when we need to manipulate with
the lines. How can we handle them easily? Let us
consider a point x and its co-ordinates in the polar
co-ordinate system

x = [ρ , ϕ] T

This representation enables us to represent a point
unambiguously and define operations like 'move' and
'rotate'. There is a problem with concatenation of
several geometric transformations, indeed. Also if
we want to display geometric primitives, e.g. points,
in the Cartesian co-ordinate space, it will lead to
expensive cos and sin function computations.

It can be seen that every point A defines also
unambiguously a line p that is orthogonal to the line
defined by this point and by the origin of the polar
co-ordinate system, see fig.1.

x

y

p

p '

ϕ

A

A '

ρ

ρ’

Figure 1

It is well known, that the geometric transformations
in the homogeneous co-ordinates can be represented
by matrices generally, i.e. for the translation we get:

=

1100

10

01

1

'

'

y

x

b

a

y

x

i.e. x' = T (a ,b) x

and for the rotation we get

 −
=

����

�FRVVLQ

�VLQFRV

�

\

[

\

[

ϕϕ
ϕϕ

i.e. x' = R (ϕ) x

But what does these geometric transformations mean
for applications in the field of radar signal
processing where the polar representation is native?

Of course there are unambiguous transformations to
the polar and from the polar to the Cartesian
co-ordinate systems. Therefore the question whether
similar operations for geometric transformations can
be defined for the polar co-ordinate system, what
would be properties and possible use should be
answered.

3. POLAR CO-ORDINATE SYSTEM

It is well known that the transform from the
Cartesian to the polar co-ordinate system can be
defined as

x = ρ cos ϕ y = ρ sin ϕ

where: ϕ ∈ < 0 , 2π) , ρ ∈ < 0 , ∞)

Inverse transformation is a little bit more
complicated and it is defined as:

22 yx +=ρ

ρ
ϕ x=cos

ρ
ϕ y=sin

These transformations are often used for a circle or
an ellipse (with small modification) generation. It is
necessary to have an efficiency of all operations in
mind in all computer graphics and data visualization
system, as the volume of processed data is very high.

Therefore we must avoid all cos and sin function
computations as much as possible. Also we will
require that all geometric transformation will be
possible to represent by matrices and the
composition of the geometric transformation should
be represented by matrix multiplication.

Let us suppose that the point x = (x , y) can be
represented by a vector in polar co-ordinates as

[ρ , cos ϕ , sin ϕ] T

and we will avoid divisions needed in the Cartesian
co-ordinates (X, Y) computation from the Cartesian
homogeneous co-ordinates, where:

ECIC 2002 Conference, Slovakia, 2002

DRAFT version 3

X = x /w and Y = y /w

Of course that there are different representations for
the polar co-ordinate system but there is a hope that
this is the effective one.

This polar co-ordinates representation enables us to
represent not only the given point but also the given
line in the polar co-ordinate system unambiguously
without the need of sin and cos function
computations.

x

y

p

p '

ϕ

A
A '

ρ
∆ϕ

ρ'

O

Figure 2

It can be seen that the point A is unambiguously
represented by the vector [ρ , cos ϕ , sin ϕ] T as
well as the line p. The line p is defined as a line
passing the point A that is orthogonal to the line OA,
where O stands for the origin of the polar
co-ordinate system. To be able to represent
geometric transformations by matrix operations we
introduce "polar homogeneous co-ordinates" of the
point as

[ρ , 1 , cos ϕ , sin ϕ] T

As the "1" stays for homogeneous co-ordinate.

Note that it is possible to introduce an alternative
representation for the polar system

[ρ2 , ρ , ρ cos ϕ , ρ sin ϕ] T

and therefore we can write

[ρ2 , ρ , x , y]T

We will use slightly different notation for
homogeneous representation of this representation
and will see that some additional properties that can
be expected from this alternative representation latter
on.

In the polar co-ordinate system the radial
displacement, analogue to the translation, the matrix
is defined as

=

ϕ
ϕ

ρ

ϕ
ϕ

ρ

sin

cos

1

1000

0100

0010

00r1

'sin

'cos

1

'

i.e. x' = D (r) x

where: r is the translation parameter. There is also an
alternative definition that enables to move points
λ times, e.g. relatively to the original distance from
the origin. It is actually the scaling transformation
and it can be described as:

=

ϕ
ϕ

ρλ

ϕ
ϕ

ρ

sin

cos

1

1000

0100

0010

000

'sin

'cos

1

'

i.e. x' = S (λ) x

It should be noted, that the translation operation in
polar co-ordinate system is something "strange" as if
we move points, let us say the end-points of the line
segment A1 A2 , we will get a line segment A'1A'2, see
fig.3.

We can imagine the radial displacement as
a translation operation in some sense because it is
the operation when objects move forward to or
backward from an observer in the origin of the polar
system.

Figure 3

The rotation operation is defined in a similar way as
the rotation in the Cartesian co-ordinate system. Let
us suppose that we want to rotate the point about the
origin with an angle ∆ϕ. It is well known that
[Rek96a]

sin(ϕ + ∆ϕ) = sinϕ cos ∆ϕ + cosϕ sin ∆ϕ

cos(ϕ + ∆ϕ) = cosϕ cos∆ϕ - sinϕ sin∆ϕ

These formulas enable us to avoid cos and sin
functions computations for each graphics primitive
as we need to compute only cos∆ϕ and sin∆ϕ
functions once for the transformation matrix.

ECIC 2002 Conference, Slovakia, 2002

DRAFT version 4

Considering this entity we can write a matrix for
a rotation in the form

∆∆
∆−∆

=

ϕ
ϕ

ρ

ϕϕ
ϕϕ

ϕ
ϕ

ρ

sin

cos

1

cossin00

sincos00

0010

0001

'sin

'cos

1

'

i.e. x' = R (∆ϕ) x

It can be seen, that the operations shown above, can
handle with points as well as with lines because the
line is unambiguously defined as dual primitive to
the given point.

Then the general transformation matrix in case is
defined as:

∆∆
∆−∆

=

ϕ
ϕ

ρ

ϕϕ
ϕϕ

λ

ϕ
ϕ

ρ

sin

cos

1

cossin00

sincos00

0010

00r

'sin

'cos

1

'

i.e. x' = Q (r , λ , ∆ϕ) x

If we compare the structure of the matrix Q with the
structure of a matrix for a transformation in
homogeneous co-ordinate system we can see that the
matrix Q has a simple structure. A user can easily
recognize single transformation parameters, that is
not so easy in the homogeneous co-ordinate system
representation. We can see that each transformation
parameter has a 2 x 2 block of values in the
matrix Q.

In case that we need the translation operation known
from the Cartesian homogeneous co-ordinate
representation in E2 we can use a different
representation for a point x as

[ρ cos ϕ , ρ sin ϕ , 1 , ρ2 , ρ] T

and translation vector x1 is given as

[ρ1 cos ϕ1 , ρ1 sin ϕ1 , 1 , ρ1
2 , ρ1]

T

then the final vector can be determined as

ρ' 2 = ρ1
2 + ρ2 - 2ρ ρ1 cos(ϕ - ϕ1)

whrere:

cos(ϕ - ϕ1) = cosϕ cosϕ1+ sinϕ sinϕ1

This operation can be expressed by the matrix
operation that must be completed by the computation
of the ρ' as the ρ' =√ρ'2 cannot be expressed by
matrix multiplication.

Nevertheless all previous transformations like
rotation, mirror, scaling can be expressed in a similar
manner as

x' = Q * x

where: x = [ρ cos ϕ , ρ sin ϕ , 1 , ρ2 , ρ] T

x' = [ρ' cos ϕ' , ρ' sin ϕ' , 1 , ρ'2 , ρ'] T

=

����

��VLQ�FRV�

�����

���VLQ��

���FRV��

�

�����

��

��

ρϕρϕρ

ϕρ
ϕρ

4

* means generalized matrix multiplication
in the sense that the value of ρ' = √ ρ for all
transformed points.

4. CYLINDRICAL CO-ORDINATE SYSTEM

Let us consider the cylindrical co-ordinate system,
that can be described, see fig.4, as:

 x = ρ cos ϕ y = ρ sin ϕ z = ξ

where: ϕ ∈ < 0 , 2π), ρ ∈ < 0 , ∞), ξ ∈ (-∞ , ∞)

It can be seen the point unambiguously represents
a plane in E3 space, too. We can describe a point x in
the cylindrical co-ordinate system by a vector:

[ρ , 1 , cos ϕ , sin ϕ , ξ , 1]T

and the rotation transformation by a matrix Rz as

∆∆
∆−∆

������

������

��FRVVLQ��

��VLQFRV��

������

������

ϕϕ
ϕϕ

i.e. x' = Rz (∆ϕ) x

ECIC 2002 Conference, Slovakia, 2002

DRAFT version 5

Figure 4

Radial displacement (translation) r in the x-y plane
as

100000

010000

001000

000100

000010

0000r1

i.e. x' = Txy (r) x

Translation ξ in the z-axis direction as

100000

10000

001000

000100

000010

000001

ξ

i.e. x' = Tz (ξ) x

Scaling by a factor λ in the x-y plane as:

100000

010000

001000

000100

000010

00000λ

i.e. x' = Sxy (λ) x

Scaling by a factor η in the direction of z-axis as:

100000

00000

001000

000100

000010

000001

η

i.e. x' = Sz (η) x

All transformations can be easily described by

∆∆
∆−∆

100000

0000

00cossin00

00sincos00

000010

0000r

ξη
ϕϕ
ϕϕ

λ

i.e. x' = Q (r , λ , ∆ϕ , ξ , η) x

where: r is the translation coefficient in x-y plane,
λ is the scaling factor, ∆ϕ is rotation angle around
z axis, ξ is the translation and η is the scaling factor
in the direction of z axis. The matrix Q consists of
2 x 2 blocks of transformation parameters again. It
can be seen that others geometric transformations
can be defined as follows.

5. SPHERICAL CO-ORDINATE SYSTEM

The second system very often used in E3 is the
spherical co-ordinate system, where

x = ρ cos ϕ cos ϑ y = ρ sin ϕ cos ϑ

z = ρ sin ϑ

where: ϕ ∈ < 0 , 2π), ϑ ∈ < -π/2 , π/2 > , see fig.5.

Figure 5

ECIC 2002 Conference, Slovakia, 2002

DRAFT version 6

It can be seen the point unambiguously represents
a plane in E3 space, too.

We can describe a point by a vector:

[ρ , 1 , cos ϕ , sin ϕ , cos ϑ , sin ϑ] T

and rotation transformation by a matrix R as

∆∆
∆−∆

∆∆
∆−∆

ϑϑ
ϑϑ

ϕϕ
ϕϕ

cossin0000

sincos0000

00cossin00

00sincos00

000010

000001

i.e. x' = R (∆ϕ , ∆ϑ) x

It can be seen that the result of the transformation
does not depend on the order of rotation that is not
true in the Cartesian homogeneous co-ordinate
system representation.

Now we can also define general transformation
matrix with others transformations like displacement,
scaling etc.

∆∆
∆−∆

∆∆
∆−∆

ϑϑ
ϑϑ

ϕϕ
ϕϕ

λ

cossin0000

sincos0000

00cossin00

00sincos00

000010

0000r

i.e. x' = Q (r , λ , ∆ϕ , ∆ϑ) x

where: r is the displacement coefficient in direction
of OA, λ is the scaling factor, ∆ϕ is the rotation
angle around z axis, ∆ϑ is the rotation angle as
defined in the spherical co-ordinate system.

6. TRANFORMATION CONCATENATION

In general, very complex transformation might be
needed. It is desirable to represent the geometric
transformations by the corresponding matrix
multiplication, preferably.

Let's consider a non-trivial case, when the point A
should be moved with the given offset ∆∆x, see fig.6.

x

y

p

p '

A
A '

ρ1
∆ϕρ2

∆x

Figure 6

Of course, non-trivial computation is needed if this
operation should be performed by using the
Cartesian co-ordinate system or by deriving the
transformation formula directly. Nevertheless this
operation can be generally split into the following
elementary transformations:

1. Move the point A to the origin distance ρ1.
2. Make a rotation by the angle ∆ϕ.
3. Move the point A from the origin to the

distance ρ2.

So we get the following simple steps:

 −

=

ϕ
ϕ

ρρ

ϕ
ϕ

ρ

sin

cos

1

1000

0100

0010

001

'sin

'cos

1

' 1

∆∆
∆−∆

=

'sin

'cos

1

'

cossin00

sincos00

0010

0001

''sin

''cos

1

''

ϕ
ϕ

ρ

ϕϕ
ϕϕ

ϕ
ϕ

ρ

=

''sin

''cos

1

''

1000

0100

0010

001

'''sin

'''cos

1

''' 2

ϕ
ϕ

ρρ

ϕ
ϕ

ρ

where: r is the distance of the point from the origin
and ∆ϕ is the angle that defines the rotation. So we
get the following sequence of transformations:

x' = T (-r1) x x'' = R (∆ϕ) x'

x''' = T (r2) x''

It means that the whole transformation can be
defined as:

x''' = Q (r1, ∆ϕ, r2) x

ECIC 2002 Conference, Slovakia, 2002

DRAFT version 7

where:

Q (r1, ∆ϕ, r2) = T (r2) R (∆ϕ) T (-r1)
= T (r2 - r1) R (∆ϕ)

Nevertheless this transformation can be realized also
as a rotation by ∆ϕ angle and by translation with ρ2
- ρ1.

We have dealt with geometric transformations for
points till now. It can be seen that the representation
of the point A is unambiguous. We can now define
the point A as a reference point, which lies on the
oriented line perpendicular to the line p and that
passes the origin the O, see fig.6. It means that we
are able to handle lines in a similar manner as points.

7. OTHER USEFUL TRANSFORMATIONS

So far, we have dealt with simple geometric
transformations but there are other very useful
transformations like scale, mirror, sheering etc. The
scaling transformation is a simple one as it was
actually defined above as relative translation, i.e.
scaling by a parameter λ.

Let us consider others transformations, now. It can
be proved that

−
=

ϕ
ϕ

ρ

ϕ
ϕ

ρ

sin

cos

1

1000

0100

0010

0001

'sin

'cos

1

'

represents mirroring according to y-axis, while

=

ϕ
ϕ

ρ

ϕ
ϕ

ρ

sin

cos

1

0100

1000

0010

0001

'sin

'cos

1

'

represents mirroring according to x = y axis. Others
transformations can be derived easily, too.

8. PROJECTIONS

All graphics packages do need an operation for the
projection from E3 to E2 space. It is well known that
only a planar projection is used within the standard
graphics packages. Nevertheless there are

applications that could benefit from non-planar
projections like cylindrical and spherical.

The software that enables that use standard
homogeneous co-ordinate system and compute
appropriate projection transformations, mostly
computationally expensive. The polar representation
can be considered actually as a special kind of E2 to
E1 projection when the observer is in the origin of
the polar co-ordinate system with some additional
information how far every object is from the
observer. So we can represent a wedge ∆ϕ wide
easily. This idea can be directly extended to E3 case.

So far we have dealt with the representation of
geometric transformations using non-linear
co-ordinate systems. From the equations it can be
seen that if the co-ordinate ρ is not considered, we
get the projection of geometric primitives directly,
actually without computation. There is a condition
that we will use the spherical projection, see fig.7, or
cylindrical projection, see fig.8, for geometric
primitives represented in spherical or cylindrical
co-ordinate systems.

The spherical co-ordinate system enable us to define
actually the perspective viewing pyramid in a very
simple way as we have to only define ∆ϕ and ∆ϑ
appropriately if an observer is in the origin.

Figure 7

The similar properties are valid for cylindrical
co-ordinate system, see fig. 8.

Figure 8

ECIC 2002 Conference, Slovakia, 2002

DRAFT version 8

9. SPACE SUBDIVISION

The space subdivision can speed-up the processing.
This approach is well known from the ray-tracing
applications where the space is split to orthogonal
subspaces and all objects interfering with this sub-
space are registered. When a ray is shot, all objects
in the sub-spaces intersected by this ray are tested for
the intersection. Usually the 3DDA algorithm is used
to find those sub-spaces in the order of growing
distance from the point the ray was shot from. It can
be seen that the considered non-linear co-ordinate
system have naturally this property as if we
subdivide the space by ∆ϕ and ∆ϑ we get
rectangular mesh in the ϕ, ϑ space, that is actually
a viewing pyramid if the observer is the origin of
the spherical co-ordinate system. Naturally the value
of ρ gives us the distance of the object from the
origin.

10. APPLICATIONS OF THE NON-LINEAR
CO-ORDINATE SYSTEMS

There are some possible applications that could use
an advantage of the polar, cylindrical or spherical
representations in some extent. Nevertheless these
models seem to be useful especially for
non-traditional approach to the algorithm design.

Let us imagine two simple problems like:

• the point-in-convex polygon test, usually solved
in O(N) [Ska93a], resp. O(lg N) steps,

• the line clipping by convex polygon often
solved by the Cyrus-Beck's algorithm that has
O(N) complexity, see [Ska94b], [Bui97a], or
O(lg N) algorithm can be considered [Ska94a],
[Bui99a]

where: N is a number of edges of the given polygon.
It can be seen that the both problems are dual in
some sense, see [Kol94a]. The principle of duality is
well known and used often used [Joh96a].

Figure 9

The test point-in-convex polygon is naturally of
O(lg N) complexity. We can seek in the array with ϕ
values and because of the known order we can make
it in O(lg N) steps, see fig.10. We have to only check
on which side of the corresponding edges the point A
lies.

Figure 10

This algorithm can be even speed up in order to
avoid the search with the O(lg N) complexity. This
leads to the algorithm with the run-time complexity
bellow O(lg N).

Figure 11

Let us imagine that we split the whole interval for
the ϕ values to M very small subintervals
equidistantly, see fig.11.

Let us suppose that each wedge is represented by an
array element. The i-th element contains an
information about the actual edge of the given
polygon intersected by the i-th wedge that is ∆ϕ wide
and has a vertex in the origin of the co-ordinate
system. The value of the index i can be determined
as

Mi
π

ϕ
2

:=

where: M is number of intervals.

ECIC 2002 Conference, Slovakia, 2002

DRAFT version 9

It can be seen, that if we have a point with (ρ,ϕ)
co-ordinates, we can determine directly the index of
the wedge in which the point lies, see fig.12.

Figure 12

Now it is necessary to determine only on which side
of the polygon edge the point lies. Therefore the
above mentioned algorithm is of O(1) run-time
complexity while the pre-processing complexity is of
O(N M).

Generally, this algorithm cannot be made to run in
O(1) time, as it would require an infinite memory,
due to the fact that we presumed that ∆ϕ → 0, i.e. M
→ ∞ . It is possible to determine max.∆ϕ, i.e. the
maximal angle of the wedge, for the given polygon
from geometrical properties of the given polygon.
In every case the algorithm must expect that two
edges will be tested as some wedge can contain two
edges, see fig.11.

A similar algorithm to this was recently developed
for the Cartesian co-ordinate system, verified and
tested. It proved the O(1) expected run-time
complexity and detailed description can be found in
[Ska94d].

Nevertheless the polar co-ordinate system gives us
even faster solution for point-in-polygon test as we
can also pre-compute ρ min and ρ max values and
store those values with each wedge and possible
situations are as follows:

• ρ ≤ ρmin point is inside
• ρmax ≤ ρ point is outside
• otherwise the relevant edge must be tested.

The whole algorithm can be briefly described by
following steps:

• Mi
minmax

min:
ϕϕ

ϕϕ
−

−=

where: M is number of wedges used to split the given
polygon and ϕ max = 2π and ϕ min = 0.

if ρ min ≥ ρ then begin INSIDE; EXIT; end
else if ρ ≥ ρ max then begin OUTSIDE; EXIT; end

 else test the point (ρ,ϕ) with the i-th edge

It means that we will need a detailed computation
only for those cases when the point lies inside of the
hatch area, see fig.13.

Figure 13

It can be shown that due to the duality principle that
a line is dual to a point and vice versa, see [Kol94a]
for details, and the point-in-convex polygon test is
dual to the test whether a line intersects the given
convex polygon. Therefore a similar approach could
be taken for a line clipping problem and develop an
algorithm with O(1) complexity in polar co-ordinate
system. A similar algorithm to this was recently
developed for the cartesian co-ordinate system,
verified and tested. It proved the O(1) expected
run-time complexity and detailed description can be
found in [Ska96b]. It is necessary to note that if ∆ϕ
is actual angle of a wedge and

∆ϕmax < ∆ϕ

we get the O(N) complexity in the worst case as we
have broken the presumption of the algorithm.

The line clipping by convex polygon in E2, see
fig.14, is a problem when we want to find a part of
the line p that is inside of the given polygon if any. If
we transform the convex polygon to the polar
co-ordinate system representation we get
representation in (ρ,ϕ) co-ordinates, see fig.15,
where each region represents the a set of (ρ,ϕ) values
of the clipped line that intersect the same edges, in
our case edges e1 and e4.

It can be seen that if the space subdivision technique
is used we can directly determine edges that are
intersected by the given line p regardless to the
number of edges of the given polygon for infinite
subdivision in (ρ,ϕ) space. It means that if the
subdivision is coarser we will have to test more than
two edges, see fig.15. Similar approach has been
recently developed in the cartesian co-ordinate
space, verified and tested, see [Ska94c], [Ska96b],
[Ska96e], and extended to E3 case [Ska96d], too.

ECIC 2002 Conference, Slovakia, 2002

DRAFT version 10

Figure 14

Figure 15

Figure 16

The line clipping by convex polyhedron in E3, see
fig.16, is a problem when we want to find again
a part of the given line that is inside of the given
convex polyhedron. It is known that this problem can

be easily solved by the Cyrus-Beck algorithm or
others with O(N) complexity, see [Ska97a] or if
some additional information is given, like
neighbours of each facets, we can get a faster
algorithm with O(√N) expected complexity, see
[Ska97a]. There have been several attempts to find
an algorithm similar to the O(1) algorithm for E3

case [Ska96c], but only expected O(1) complex have
been reached.

It can be seen that any line p unambiguously defines
a plane Σ that passes the origin and on which the
line p lies. So it is possible to pre-compute sets of all
triangles of the given convex polyhedron intersected
by the plane Σ . They are unambiguously defined by
parameters (ϕ, ϑ). The parameter ϕ is defined as an
angle between the axis x and a line p' that is the
intersection of the plane Σ and x-y plane. The
ϑ parameter defines the angle between the
plane Σ and the axis z. Let us assume that we will
split the space of (ϕ, ϑ) to (∆ϕ,∆ϑ) intervals, i.e.
rectangle in the parameter space, assuming that
∆ϕ → 0 and ∆ϑ → 0. Now, we have received lists of
triangles for each (∆ϕ,∆ϑ) that are intersected by the
set of related planes Σ. Nevertheless there are many
lines p that lie on the plane Σ, but each such a line is
unambiguously defined by the polar co-ordinates
(ρ,ϕ') on the plane Σ. We can use a similar approach
the O(1) line clipping algorithm in E2 and again pre-
compute a list of triangles intersected by the line p
with co-ordinates (ρ,ϕ') . It can be seen that if
∆ρ → 0 and ∆ϕ' → 0 the list will contain only two
triangles that are intersected by the line p.

It can be seen that this algorithm is of O(1) run-time
complexity, but the pre-processing is probably of
O(N2M4) complexity. Nevertheless this is a limit case
as this complexity requires an infinite memory
because ∆ϕ → 0, ∆ϑ → 0, ∆ρ → 0 and ∆ϕ' → 0.

11. CONCLUSION AND FUTURE WORK

In the previous sections we discussed properties of
the polar co-ordinate system in E2, of the cylindrical
and spherical co-ordinate systems in E3,
representation of points, geometric transformations,
representation of concatenated geometric
transformations and some possible applications of
the proposed representations.

The advantage of the proposed approach is that
geometric transformations are handled in a unique
way using matrix multiplication. This representation
gives also a very simple way how to handle widgets
or cones that might be very useful in some cases.

ECIC 2002 Conference, Slovakia, 2002

DRAFT version 11

The most important result is that this approach gives
a quite different view on some problems to be
solved. It is expected that non-linear co-ordinate
systems with application of dual representation
principles can lead to new, more simple, more robust
and faster algorithms.

There are two direct results for N-sided convex
polygon:

• The test point-in-convex polygon is of O(lg N)
complexity. It was shown that we can reach
O(1) run-time complexity, if we use
a pre-processing of O(N M) complexity, where:
M defines number of wedges to be
pre-computed and depends on geometric
properties of the given polygon M → ∞ . This
is in correlation with previously obtained
results.

• The line clipping against convex polygon is of
O(lg N) complexity, see [Ska94a], [Ska94b],
[Bui99a]. It was shown that it is possible to
reach O(1) run-time complexity, if we use
a pre-processing of O(N2 M R) complexity
where: M, resp. R define number of subdivision
for ∆ϕ, resp. ∆ρ to be pre-computed and
depend on geometric properties of the given
polygon M → ∞ , R → ∞ . This is in
correlation with previously obtained results, see
[Ska96b], [Ska96c], [Ska96e] and with
extensions to E3 case, too.

There are some very important questions from the
algorithm complexity field.

• What is the relation between the complexity of
optimal algorithm and pre-processing and
run-time complexities?

• What is the lowest bound for the run-time
complexity for a given problem and what will be
the lowest pre-processing complexity for this?

• Can be the above-mentioned approach extended
to E3 case?

There is a hope that the above shown principles can
be used especially for problems in E3 [Ska96a],
[Ska97a] and problems connected to line clipping,
intersection computation, ray tracing methods and
others.

As the memory capacity and speed of hardware
graphics accelerator grow fast it can be reasonable to
reconsider fundamental functionality of geometric
engines, too. Formulation of new functionality for
the graphics and visualization pipeline might be
useful, as it is limited generally to the dot vector
multiplication nowadays.

ACKNOWLEDEMENTS

The author would like to thanks to all who
contributed to this work, especially to MSc. and
PhD. students at the University of West Bohemia in
Plzen that have stimulated this thoughts and
development of new algorithms based on it. This
paper benefited from several discussions with them
a lot. Special thanks belong to Dr.A.Kolcun, to
anonymous reviewers of this paper and recent
reports as they shared some valuable insights on this
problem solution. Theirs invaluable critical
comments and suggestions improved the manuscript
significantly.

REFERENCES

[Bui97a] Bui,D.H., Skala,V.: Fast Algorithms for
Line Segment and Line Clipping in E2, The
Visual Computer, Springer Verlag, 1997.

[Bui99a] Bui,D.H., Skala,V.: New Fast Line
Clipping Algorithm in E2 with O(lg N)
Complexity, Int.Conf. SCCG'99, Budmerice,
Slovak Republic, pp.221-228, 1999.

[Joh96a] Johnson,M.: Proof by Duality: or the
Discovery of "New" Theorems, Mathematics
Today, November/December 1996.

[Kol94a] Kolingerova, I.: Dual Representation and
its Use in Computer Graphics, PhD Thesis,
University of West Bohemia, Plzen, 1994.

[Lio97a] Lionello,R.: Three Dimensional Imaging
for Magnetohydrodynamic Computations,
WSCG'97 Int.Conf.Proceedings, Univ.of West
Bohemia, Plzen pp.282-289, 1997

[Rek69a] Rektorys,K. & others: Survey of
Applicable Mathematics, Illife Books Ltd.,
Dorset House, Stamford Street, London SE1,
ISBN 592 03927 7, U.K.

[Ska93a] Skala,V.: An Efficient Algorithm for Line
Clipping by Convex polygon,
Computers & Graphics, Vol.17, No.4,
pp.417-421, 1993.

[Ska94a] Skala,V.: O(lg N) Line Clipping Algorithm
in E2, WSCG´94 Int.Conf. Proceedings, Univ.of
West Bohemia, Plzen, pp.174-191, 1994.

[Ska94b] Skala,V.: O(lg N) Line Clipping Algorithm
in E2, Computers & Graphics, Pergamon Press,
Vol.18, No.4., 1994.

[Ska94c] Skala,V., Kolingerova,I., Blaha,P.:
A Comparison of 2D Line Clipping Algorithms,
Machine Graphics & Vision, Vol.3, No.4,
pp.625-633, 1994.

[Ska94d] Skala,V.: Point-in-Polygon with O(1)
Complexity, TR 68/94, University of West
Bohemia, Plzen, 1996.

[Ska96a] Skala,V.: An Efficient Algorithm for Line
Clipping by Convex and Non-Convex Polyhedra

ECIC 2002 Conference, Slovakia, 2002

DRAFT version 12

in E3, Computer Graphics Forum, Vol.15, No.1,
pp.61-68, 1996.

[Ska96b] Skala,V.: Line Clipping in E2 with O(1)
Processing Complexity, Computers & Graphics,
Vol.20, No.4, pp.523-530, 1996.

[Ska96c] Skala,V., Lederbuch,P. ,Sup,B.: A Compar
ison of O(1) and Cyrus-Beck Line Clipping
Algorithm in E2 and E3, SCCG96 Conference
proceedings, Comenius Univ. Bratislava, Slovak
Republic, pp.27-44, 1996.

[Ska96d] Skala,V.: Line Clipping in E3 with
Expected Complexity O(1), Machine Graphics

and Vision, Poland Academy of Sciences, Vol.5,
No.4, pp.551-562, 1996.

[Ska96e] Skala,V., Lederbuch,P.: A Comparison of a
New O(1) and the Cyrus-Beck Line Clipping
Algorithms in E2, in COMPUGRAPHICS'96
Int.Conf., Paris, 1996.

[Ska97a] Skala,V.: A Fast Algorithm for Line
Clipping by Convex polyhedron in E3,
Computers & Graphics, No.2, Vol.21,
pp.209-214, 1997.

i This work was supported by the Ministry of Education of the Czech Republic - projects A2030801and
VS 97155

ECIC 2002 Conference, Slovakia, 2002

