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Abstract

An algorithm complexity is a very crucial issue in the
algorithm design, especially if large data sets are to be
processed. Data search is very often used in many
algorithms and hash function use gives us a possibility to
speed up the process significantly. Nevertheless, it is very
difficult do design a good hash function especially for
geometric applications. This paper describes a new hash
function, its behaviour and use for non-trivial problems.
Some problems can be solved effectively using the
principle of duality and the hash data structure. Also
some problems that cannot be solved in Euclidean space
can be solved if dual representation is used and some
examples are presented, too.

1. Introduction

Hash functions and their use are often used in computer
science. The hash function enables to convert the key value
to an address where the value is stored. This scheme
enables to reduce a complexity of the search operation to
O(1) complexity in general, if no collisions (two different
key values that are transformed to the same address) occur.
Data bucketing solves the collision problems, see fig.1.

This technique enables to speed up the searching
operation significantly especially for large data sets. One
typical use of this method is a triangular mesh
reconstruction from the given set of triangles. The
fundamental problem is to find all triangles, which share
the same vertex. The hash function use reduces the run-
time complexity from O(N lgN) to O(N) expected
complexity and offers a significant speed up.

It must be pointed out that the hash function use enables
us to decrease complexity of the search operation. Let us
imagine that we want to find whether the given point x is in

the set { }1
LL

[;
�== . The complexities for different

algorithms are shown in tab.1.
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Pre-processing Run-time
Linear search none O(N)
Binary search O(N lgN)* O(lgN)
Hash function + O(N) O(1)**

* x values in  the set  X must be sorted
** if ideal hash function is used - all buckets have the

length equal to 1
+ requires additional memory for the table TAB

7DEOH ��

It means that the hash function enables us to decrease
time needed to answer this query. It should be noted that
the Binary search algorithm with the O(lgN) complexity
cannot be used effectively if the set X is built incrementally
as the elements of the set X are not ordered.

A hash function can be used effectively for triangular
mesh reduction from the set of triangles, e.g. from the data
in the STL format as well.
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The STL format, which is often used in CAD
applications, is a data standard for polygonal mesh
exchanges. The STL format offers just a set of polygons,
mostly triangles, which represent a surface of the given
object. There is no information which triangles share the
given vertex etc.

For an effective manipulation with triangular surfaces
the triangular mesh representation is needed, especially for:
• computation of normal vectors in vertices, e.g. for

shading purposes,
• finding neighbours of  triangles and sharp edges

detection,
• effective triangular mesh reduction or decimation

[Franc00a],
• memory reduction as the co-ordinates of all points are

to be stored  just ones.
There have been several approaches to triangular mesh
reconstruction from the given set of triangles, one of those
uses a hash function to speed up the reconstruction process
significantly, see [Glass94a] for details.

2. The original hash function

The original hash function was introduced for triangular
mesh reconstruction [Glass94a] as:

Index =   3*x + 5*y + 7*z  mod size

where: x, y, z are co-ordinates of a point,
q decimal digits to be distinguished,
size is the size of the hash table.

This hash function uses a very simple formula
recommended for small or medium data sets. The
fundamental requirement for any hash function is that
maximal and average bucket's length should be as low as
possible.

File name
No

 Triangles
Vertices

No
Avg.

bucket
Max.

bucket
East EU 6 436 808 3 222 001 202.3 12 093
Karoserie1 2 264 544 1 213 783     2.2        12
Central EU 1 605 608 804 601 152.2   5 116
A4_unter 1 000 790 618 865     1.8      208

Typical characteristics of the original hash function for the
triangular mesh reconstruction

7DEOH ��

Nevertheless for the larger data sets this function generates
long buckets, see tab.2. It is necessary to point out that the
choice of q has a significant influence to the hash function
behaviour. The obtained results strongly depend on the
fractional part of co-ordinates vertices, see fig.3 - 5.
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Data set: East EU, q = 7
)LJXUH �� %XFNHW OHQJWK GLVWULEXWLRQ

The experiments proved, that q = 3 (used in
[Glass94a]) is not satisfactory because long buckets were
generated. Better results were obtained for q = 7 (see
fig.4), but there is no automatic option of that. Also the
bucket length distribution is not acceptable, see fig.3 - 5.

An obvious question is why those buckets are so long
and how the hash function for those geometric applications
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should be designed. The fig.6 shows a typical example of
the surface represented by a triangular mesh, which was
used for experiments, see [Skala00a] for details.

)LJXUH �� 3DUW RI WKH DXWR FKDVVLV GDWD VHW� $�BXQWHU

It can be seen that the data processing can be significantly
speeded up if the length of all buckets is as small as
possible. Tab.2 shows that there is a high potential for
additional speed up if there is a better bucket length
distribution.

This was the reason, why the exploration of the hash
coding principle started.

3. The proposed hash function

The hash function is a function that transforms a value to
an address where the value is stored, see fig.1. Data
analysis proved that:
• it is not reasonable to remove fractional part from co-

ordinate values as it helps us to distinguish co-
ordinates better,

• it is necessary to remove all coefficients or parameters
that somehow depend on the data set,

• to use available memory as much as possible to get
longer hash table, i.e. shorter buckets in general,

• the hash function should not be static - it should be
flexible according to the available memory and to the
data set to be processed, but generally the size of the
hash table can be fixed according to the number of
vertices to be stored.

When considering required properties of the hash function,
several functions have been derived. In general the hash
function is constructed as (similarly as in [Glass94a]):

ξ  =α*x + β*y + γ*z

Index =   ξ  * C  mod size

where:.� � a � are coefficients of the hash function; usually
values 3, 5 a 7 are taken,

size is the hash table length (size = 2k - 1),
mod operator is represented as logical operation

and ( A mod 8 ≡ A and '0111' ),
C coefficient is a scaling coefficient, which is set so

that the full range of DWORD type (4 Bytes
unsigned), i.e. range of the interval  <0, 232 – 1>,
is used,

In order to get maximal flexibility of the hash function we
must use the whole address space interval (in our case <0,
232 – 1>), influence of C1 coefficient, and maximum of
available memory, influence of C2 coefficient.

For simplicity let us assume that x ∈ < 0 , xmax >,
similarly for others co-ordinates. Then the maximal value
�max can be computed as

�max  . 
 Xmax � � 
 Ymax� � 
 Zmax

and the  C coefficient must be determined as:

C = min { C1 , C2 }

where: C1 
 � <=  232 – 1  &   C2 = 232 - 2k

as the overflow operation in the Index (address) �
computation must be avoided and the whole size of the
table should be used. The advantage of this approach is
that the hash function depends on the size of the data set
size, actual data range in the data set and available
memory.

It is known that the length of the table and estimated
length of a bucket (number of collisions per a bucket) is in
an empirical relation expressed by the load factor α, see
[Kofrh87a]. The load factor is generally the ratio of the
number of values to be stored and the length of the table
TAB. If we consider the load factor α = 0,5 we can expect
bucket length about 2,5 and the length of the hash table size
can be expressed as

1
1

VL]H �=≥
α

where: N  is the number of vertices,
load factor - α = 0,5 used; the lower value used
the better spread out, i.e. shorter buckets

In practice the value size is chosen as 2k in order to be able
to use the logical and operator instead of modulo as this
solution is much more faster. It means that

( ) 1N �OJ
�

≥
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4. Experimental Results

The proposed hash function has been tested on different
non-trivial data sets. Tab.3 presents the typical behaviour
on some selected data sets. The relation of the bucket
length and number of buckets are presented on fig.7-8.

File name Vertices No
Avg.

bucket
Max.

bucket
East EU 3 222 001 1.4608 22
Karoserie1 1 213 783 1.1524 7
Central EU     804 601 1.2336 7
A4_unter     618 865 1.3244 8

Typical behaviour of the proposed hash function
7DEOH ��
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It can be seen that the maximal bucket length is limited to
the length in the order of 10, that is a very good result.
Also the number of buckets decreases with the bucket
length and that is a very good property of the proposed
hash function.

Over 150 industrial files were examined and similar
results were obtained for all non-trivial data sets. The
proposed function was used to speed up triangular mesh
reconstruction from the given set of triangles, actually from
the STL format and experiments proved the expected
speed-up [Skala00a].

Nevertheless in some cases the co-ordinate range is not
known. In this case the hash function can be easily
modified so that co-ordinates are transformed by the
function [Pasko95a]:

���
�
 
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where: k is a parameter.
This function transforms the interval of x ∈ ( - ∞ , ∞ ) to
the interval x' ∈  ( 0 , 1 ). This transformation preserves the
stability of the hash function behaviour and it is applied for
the y and z co-ordinates as well. The hash function is then
constructed similarly as if xmax = 1, now.

5. Algorithm Analysis

The new hash function uses the advantage of large memory
and the known interval of co-ordinates of the points
processed. The function has a different sensitivity to each
co-ordinate.

Let us introduce the coefficient ν as

QHZ

RULJLQDO

OHQJWKFOXVWHU$YHUDJH

OHQJWKFOXVWHU$YHUDJH
=ν

that represents the expected speed-up (in average) for
answering a query, see tab.4.

File name Orig. function New function ν
East EU 202.30 1.46 202.30
Karoserie1      2.20  1.15      2.20
Central EU  152.20 1.23  152.20
A4_unter    1.80 1.32   1.80
Comparison of average bucket lengths of the original and

the proposed hash functions2

7DEOH �

Let us define the coefficient η as

QHZ

RULJLQDO

OHQJWKFOXVWHU0D[�

OHQJWKFOXVWHU0D[�
=η

It represents the ratio of the maximal bucket lengths of the
original and new hash functions., see tab.5.

The hash function has been tested on many data sets
and proved similar properties for all data sets. The sizes of
the tested files varied from 105 to 2.107 of vertices and the
proposed hash function proved its stability.  Tab.4 - 5 show

                                                          
2 The East EU and Central EU files were generated from

the Digital Terrain System (GTOPO30), the Karoserie1
and A4_unter files are “real life” data courtesy of  Skoda-
Auto Comp., Czech Republic
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the differences between original and proposed hash
functions.

It is obvious that we can obtain very high speed-up for
a simple query whether the given point x is in the set

{ }1
LL

[;
�== , see coefficients η in tab.5.

File name Orig. function New function η
East EU 12 093 22 549.69
Karoserie1       12   7     1.71
Central EU  5 116   7 730.86
A4_unter    208   8   26.00
7DEOH �� &RPSDULVRQ RI PD[LPDO EXFNHW OHQJWK RI WKH

RULJLQDO DQG WKH SURSRVHG KDVK IXQFWLRQV

The proposed hash function has the following
advantages:
• stable behaviour,
• short maximal bucket length,
• number of buckets decreases with the bucket length

nearly monotonically,
• does not significantly depend on:

� parameters defined by user (parameter q),
� actual co-ordinate values,

• is flexible according to the number of vertices
processed and co-ordinate values,

• gives us faster solution for triangular mesh
reconstruction, see coefficient ν in tab.4

The behaviour of the new hash function leads to the
question where the hash function and hash data structures
can be used in order to speed up solution of problems.  One
very simple and very often used is the test whether a given
point is in the given set of points.

{ N - number of points required }
X := ∅; { empty set }
k := 0; { actual number of points in the set X }
while k < N do
begin x := random; {random generator }

if  x ∉ X then
begin k := k + 1; X = x ∪ X end

end
$OJRULWKP �

6. Test Point-in-a Set

There are many applications where the point-in-a set test is
needed. As a simple example can be a random number
generator, where all generated numbers must be different.
Algorithms usually used are based on a sequential search

on the set already generated and if the value is not in the
set the generated value is added to this set, see alg.1.

This test is not necessarily restricted to the
one-dimensional space. There is a possibility to use also
the space subdivision technique using regular space
subdivision etc. but the hash function can be used as well.

It can be seen that the sequential algorithm is of O(N2)
complexity and it is a quite time consuming process for
large data sets generation. The test x ∈ X is of O(N)
complexity itself as the sequential search can be used only
because the set X is not ordered and cannot be kept ordered
effectively.

If the hash coding technique is used, the test x ∈ X is of
O(1) expected complexity only, see tab.5. Also the
X = x ∪ X operation is of O(1) complexity, if the hash
function is an ideal hash function with the bucket length
equal to 1. This is not true in general and therefore this
O(1) complexity is the expected complexity, only.
Nevertheless the experiments with the real and non-trivial
data, see chapter 2 and 3, proved that this behaviour can be
expected with high probability. It means that the whole
algorithm is of O(N)  expected complexity if the hash data
structure used with an ideal hash function.

It is necessary to know expected properties of the given
data set for the hash function design. If the random
generator produces values with the uniform distribution
from the interval < 0 , 1 > the hash function can be design
as

Index =   x * C  mod size

where: C is a scaling factor determined similarly as in the
chapter 3.

It can be seen that this approach is not restricted to the E1

case, but also can be used for En case generally, if handled
properly, see chapter 3.

As a direct consequence of this it is possible to answer
queries like:
• Is the point x ∈ En in the given set of points { xi }?
• Is the given circle k∈E2 in the given set of circles

 { ki }?
• Is the given sphere s∈E3 in the given set of spheres

 { si }?
Those queries can be answered with O(1) expected
complexity!
Last two queries can be answered as the query is based on
an equation:

( ) ( ) �
� =−−− 5

V

7
[[[[

V

where: xs is the centre of a circle or a sphere
R is the radius of it.
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It means that the hash function can give us a good
tool for object localisation in the set of scattered objects
in general.

If the random generator produces values with Gauss
distribution the situation is a little bit more complicated as
we have to handle an unlimited interval. In this case the
following transform function can be used (see chapter 4):

���
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
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+
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and Index =   x' * C  mod size
where: k is a parameter.
The general Gauss distribution function is defined as:

( )
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πσ
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where: µ  is the mean value,
σ  is the dispersion.

The data sets can be recomputed so that the mean value
µ =  0, easily.

For the Gauss distribution function with the dispersion
σ  = 1 is the optimal value kopt = 1,1 if the ratio of maximal
bucket length/average bucket length is used as the
optimality criterion. If the dispersion σ  ≠ 1, the value k 
should be taken as k = kopt * σ . Those results have been
obtained by numerical optimisation process.

7. Principle of Duality

It is well known that several problems can be solved easily
if a dual representation is used [Johns96a]. The principle of
duality is a general principle very often used in practice
and its usage can bring quite new solutions [Nielse95a],
[Stolfi89a], [Kolin94a]. Let us assume that the following
dualities can be defined according to the tab.6.

Euclidean space Dual space
point line

E2

line point
point plane

E3

plane point
7DEOH �� 3RVVLEOH GXDOLWLHV

It means that the queries such as:
• Is the given line p∈E2 in the given set of lines  { pi } ?
• Is the given plane ρ∈E3 in the given set of planes {ρi }?
can be answered with O(1) expected complexity!

It is necessary to note that some additional conditions
must be applied, e.g. coefficients of lines or planes must be
"normalised", as they form one parametric set actually.

Let us consider a line p∈E2 defined as

�

 =++ F\E[D

It can be seen that if this equation is multiplied by any
constant d ≠ 0, we get different equations that represent the
same line p. Now we can handle with lines similarly as
points with co-ordinates [a , b].

It is necessary to note that some queries based on
principle of duality cannot be answered directly in the
Euclidean space.

Nevertheless all those tests presented above can be
considered as "very academic" or "pure theoretical" ones
because the arithmetic precision is limited and test for
exact equality is not directly applicable.

8. Point-In-a Set as a Range Test

The range test or ε - test is very often used to find an
element close to the given value. This test is possible if
there is a monotonic dependency between the value and the
element position in the hash table. The hash function can
be also used if the hash function is designed so that the
operation mod is not used and the C constant is to be
properly chosen.

As a direct consequence of this is that it is possible to
answer queries like:
• Is there any point xi in the set X that is in

x ± ε ∈ { xi } = X ?
• What is the minimal circle ki from a set of circles { ki }

in which the given point x lies?
If we use the principle of duality, the following queries
might be answered (if we define properly what ε means) as
well:
• Is there any line pi in the set of lines { pi } that is  in

p ± ε ∈{ pi } ?
• Is there any plane ρi in the set of planes {ρi } that is in

ρ  ± ε ∈{ ρi  } ?
The principle is very simple indeed because the hash
function is monotonic. It is necessary to compute:

Addr1 =  F (x - ε) = F(x1)
Addr2 =  F (x + ε) = F(x2)

and then the hash table must be searched sequentially in the
interval < Addr1 , Addr2  >. It means that the higher ε is the
longer sequential search must be made if no element of
TAB is used, see fig.9, i.e. there is no pointer to the VAL
data structure.
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)LJXUH �� The ε-test with the hash function

9. Conclusion

The new approaches for hash function construction and the
hash data structure use have been developed. The proposed
hash function has been tested on many non-trivial data sets.
It proved very good properties and stability for large data
sets with quite different geometric characteristics.
Experiments also proved that the hash function is
convenient for the triangular mesh reconstruction and for
other purposes, too.

The main advantage of the hash data structure use for
geometric purposes is that it gives us a possibility to
answer non-trivial queries with O(1) expected complexity
and  answers for the ε-tests as well.

The authors believe that the proposed hash function use
gives higher flexibility than others techniques used, such as
space subdivision, decision trees etc.

In the nearest future it is expected that:
• those approaches will be examined with the existing

geometric algorithms using Euclidean space as well
different dual space representations,

• the influence of the hash function coefficients α, β, γ
to the bucket length will be studied,

• a comparison of the hash function and different space
subdivision properties will be made.

Acknowledgement

The author would like to thanks to all that contributed to
this work, especially to MSc. and PhD. students at the
University of West Bohemia in Plzen, who have stimulated
this thoughts and development of this new function and its
use. Special thanks belong to Martin Kuchar and Jan
Hradek for careful implementation.

References
[Franc00a] Franc,M., Skala,V.: Triangular Mesh Decimation in

Parallel Environment, EUROGRAPHICS Workshop on
Parallel Graphics and Visualization, Girona, Spain, pp.39-52,
ISBN 84-8458-025-3, 2000.

[Glass94a] Glassner,A.: Building Vertex Normals from an
Unstructured Polygon List, Graphics Gems IV, pp.60-73,
Academic Press,Inc., 1994.

[Johns96a] Johnson,M.: Proof by Duality: or the Discovery of
"New" Theorems, Mathematics Today, pp.171-174,
November/December, 1996.

[Kofrh87a] Kofrhage,R.R., Gibbs,N.E.: Principles of Data
Structures and Algorithms with Pascal, Wm.C.Brown Publ.,
1987.

[Kolin94a] Kolingerova,I.(supervisor V.Skala): Dual
Representation and its Use in Computer Graphics (in Czech),
PhD thesis, Univ.of West Bohemia, Plzen, Czech Republic,
1994.

[Nielse95a] Nielsen,H.P.: Line Clipping Using Semi-
Homogeneous Coordinates, Computer Graphics Forum,
Vol.14, No.1, pp.3-16, 1995.

[Pasko95a] Pasko,A., Adzhiev,V., Sourin,A., Savchenko,V.:
Function Represenatation in Geometric Modeling: Concepts,
Implementation and Applications, The Visual Computer,
Vol.11, pp.429-446, Springer Verlag, 1995.

[Skala96a] Skala,V.: Line Clipping in E2 with O(1) Processing
Complexity, Computers & Graphics, Vol.20, No.4, pp.523-
530, 1996.

[Skala00a] Skala,V., Kuchar,M.: Hash Function for Geometry
Reconstruction in Rapid Prototyping, Algoritmy2000
proceedings, Slovakia, pp.379-387, 2000

[Stolfi89a] Stolfi,J.: Primitives for Computational Geometry,
SRC DEC System Research Center, Research Report 36
(PhD. Thesis), 1989

Appendix

The Fig.A.1 shows the bucket length behaviour for the
proposed hash function for selected data files (numbers
present number of vertices of the triangles after triangular
mesh reconstruction). The length of the hash table was
taken as parameter.

It can be seen that the length of buckets do not change
significantly for the recommended or longer hash table
(chosen as 2-times or 4-times longer), but when table
length is shorten ( to 1/2 or to 1/4 of the recommended
length) the length of buckets starts to grow. The graph also
proofs the stability of the proposed hash function
properties for quite different triangular meshes.
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Parameters: ��������� Hπγβα = , T is the recommended table length
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