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Gradient Vector Estimation 

1. Introduction 

In the following paragraphs, three methods for the scalar irregularly distributed volumetric 
data gradient vector (see Fig. 1) estimation will be presented. First, it is the 4D linear 
regression method using linear approximation function as proposed in [4]. Then its extension 
consisting in using quadratic regression function developed with the aim to reach higher 
estimation accuracy will be described as a second method. Third, it will be the approach based 
on generalization of the finite differences method presented in [3]. The performance of all the 
three methods will be examined from different points of view, compared and evaluated. 
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Figure 1: Illustration of a gradient vector in a vertex of an irregular scalar field, upon which a 
tetrahedral mesh has been constructed. 

2. Theoretical Background 

In the following paragraphs, the principles of 4D linear regression method for gradient 
estimation will be described and the approach utilizing quadratic approximation function for 
the linear regression will be proposed. Then the 3D version of the approach generalizing the 
finite differences methods will be outlined. 

2.1 4D Linear Regression using Linear Approximation Function 

This method for gradient estimation from regular as well as irregular volumetric data 
proposed in [4] tries to find a 4D regression hyper plane DzCyBxAzyxf +⋅+⋅+⋅≈),,(  with 
minimal error. The error function is represented as the summed squares of the difference 
between the original values in the interpolated vertices and the values that the solution of the 
hyper plane equation would give in these points. Mathematically: 

 ∑
=

−+⋅+⋅+⋅=
n

k
kkkkk fDzCyBxAwDCBAE

0

2)(),,,( , (1) 
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where xk, yk and zk are the coordinates of the vertices involved in the approximation (the 
computed vertex being considered as the origin of the coordinate system) and fk are the values 
in these points. A, B and C make up the vertex gradient that we search for and D is the filtered 
value in the computed vertex. The wk symbol represents the weighting function, which should 
be spherically symmetric and monotonically decreasing as the distance from the origin (i.e. 
the computed vertex) grows. 

To minimize the error function E from (1), its partial derivatives along A, B, C and D 
must be equal to zero: 

∑ =⋅−+⋅+⋅+⋅⋅⋅=
∂
∂

k
kkkkkk xfDzCyBxAw

A
E 0)(2 , 

∑ =⋅−+⋅+⋅+⋅⋅⋅=
∂
∂

k
kkkkkk yfDzCyBxAw

B
E 0)(2 , 

∑ =⋅−+⋅+⋅+⋅⋅⋅=
∂
∂

k
kkkkkk zfDzCyBxAw

C
E 0)(2 , 

∑ =−+⋅+⋅+⋅⋅⋅=
∂
∂

k
kkkkk fDzCyBxAw

D
E 0)(2 . 

This system of simultaneous linear equations can be rewritten in a matrix notation in the 
following way: 

 





















=



















⋅





















∑
∑
∑
∑

∑∑∑∑
∑∑∑∑
∑∑∑∑
∑∑∑∑

kk

kkk

kkk

kkk

kkkkkkk

kkkkkkkkkk

kkkkkkkkkk

kkkkkkkkkk

fw
zfw
yfw
xfw

D
C
B
A

wzwywxw
zwzwzywzxw
ywzywywyxw
xwzxwyxwxw

2

2

2

. (2) 

Solving the system for A, B, C and D gives the hyper plane normal vector ),,( CBAnr , which is 

considered to be the estimation of the gradient ),,(
z
f

y
f

x
ff

∂
∂

∂
∂

∂
∂=∇ . 

2.2 4D Linear Regression using Quadratic Approximation Function 

In order to reach higher accuracy of estimated gradient vectors, it is necessary to apply a 
nonlinear approximation function. In our approach we use a general quadratic function of the 
following form 



















⋅



















⋅=
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]1,,,[),,(

44

3433

242322

14131211

z
y
x

A
AA
AAA
AAAA

zyxzyxg  

instead of the original linear function DzCyBxAzyxf +⋅+⋅+⋅≈),,( . For the further 
description, the non-matrix notation will be more illustrative: 
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4434
2

332423
2

22141312
2

11),,( AzAzAyAyzAyAxAxzAxyAxAzyxg +++++++++= . 

Now we need to express the error function: 

∑ −+++++++++=
k

kk fAzAzAyAyzAyAxAxzAxyAxAwAAE 2
4434

2
332423

2
22141312

2
114411 )(),...,(  

and find the partial derivatives according to all the ten unknown parameters A11 through A44: 
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∂
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∂
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∑ ⋅−+++++++++⋅=
∂
∂

k
kkkkkkkkkkkkkk fAzAzAyAzyAyAxAzxAyxAxAw

A
E 1)(2 4434

2
332423

2
22141312

2
11

44

. 

These partial derivatives must be equal to zero, thus we get a 10 x 10 matrix describing the set 
of simultaneous equations, which are linear in respect to the A11 through A44 parameters. 
The gradient of the function can be described by the following formula: 

)2;2;2(),,(),,( 342313332423122214131211 AyAxAzAAzAxAyAAzAyAxA
z
g

y
g

x
gzyxg +++⋅+++⋅+++⋅=

∂
∂

∂
∂

∂
∂=∇ . 

As the active vertex is always translated to the origin of the coordinate system, the x, y and z 
coordinates equal to zero. Thus having computed the A11 through A44 parameters, the gradient 
vector can be obtained from the simple formula: 

).,,()0,0,0( 342414 AAAg =∇  

2.3 Finite Difference Method 

In [3] a generalization of the finite differences method is proposed. According to the 
authors, the finite differences methods can only be used for rectangular (although not 
necessarily regular) grids. These methods are based on the Taylor�s series: 

 )()(
)!1(

...)(
!2

)()()( )1(

)1(1

2

22

ξnn

nn

r
dx

aFd
n

x
dx

aFdx
dx

adFxaFxaF +
−

∆++∆+∆+=∆+ −

−−

, (3) 

where )(ξnr  is a remainder term. Solving the equation obtained as )()( xaFxaF ∆−−∆+  with 
3=n  for dxadF /)(  then gives the central difference equation: 

x
xaFxaF

x
rr

x
xaFxaF

dx
adF nn

∆
∆−−∆+≈

∆
+

+
∆

∆−−∆+=
2

)()(
2

)()(
2

)()()( ζξ . 
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The equations above describe a 1D case, where we search for the gradient of function 
F(x), which is supposed to be smooth. For computing gradients of a smooth function ),( yxS , 
the Taylor�s series from (3) can be generalized to R2: 

 ∑
−

=
+

∂
∂∆+

∂
∂∆=∆+∆+

1

0
),(),()(

!
1),(

n

i
n

i rbaS
y

y
x

x
i

ybxaS ζξ . (4) 

Similarly an R3 extension can be used for estimating gradients of a scalar field defined by a 
smooth function ),,( zyxV . The Taylor�s series, however, relies on partial derivatives that are 
aligned to curves parallel to the coordinate axis thus restricting the finite differences methods 
to be applicable for rectangular grids only. However, x∆  may not be uniform as shown on 
Fig 2. 

∆x

∆y

 

Figure 2: Irregular rectangular grid 

To make the finite differences method suitable for irregularly distributed data as well, 
the authors generalize it using directional derivatives instead of partial derivatives. They first 
state the problem the following way: 

• Let ℜ  be an open, bounded, simply connected subset of the two-dimensional, 
Euclidean real space R2. 

• Let ),( yxS  be a smooth, real-valued function over ℜ . 
• Let ),(, yx pppp =ℜ∈  be a sample point of interest. 
• Let },|,...,,...,{ 1 pppppps jjmj ≠ℜ∈=  be a set of distinct sample points forming a 

neighborhood around p (see Fig 3). At least one point in s must not be collinear with 
the others. 

• Find an approximation of the gradient of S at p. 

Obviously, the authors describe the R2 case. For scalar field gradient estimation the R3 version 
would have to be used. We will, however, describe the R2 case as described in [3] because it is 
easier to follow and the modification of the algorithm for use in R3 is straightforward.  
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Figure 3: The neighborhood of the point of interest 

The authors start to derive their method by expressing the difference in the value of S between 
p and pj using equation (4) as 

),(... ζξnyx rySxSS ++∆+∆=∆ , 

with Sx and Sy denoting xppS yx ∂∂ /),(  and yppS yx ∂∂ /),(  respectively. They describe the 
directional vector jvr  from p to some other point pj, its magnitude jv  and the unit vector in the 
same direction jv) : 

 ppyjxiv jj −=∆+∆=
))r ,  jj vv r= ,  

j

j

jj
j v

v
v

yj
v

xiv
r

))) =∆+∆= , 

kji
v))

,,  being unit vectors in the directions of the x, y and z Cartesian axis, respectively. The 
ratio between the value change S∆  between two points p and pj and their distance vj can be 
expressed as 

 
j

n
j

j

n
y

j
x

jj v
r

Sv
v

r
S

v
yS

v
x

v
S ),(

...
),(

...
ζξζξ

++∇⋅=++∆+∆=∆ )  (5) 

and for 0→jv  and ∞→n , equation (5) leads to the directional derivative of S in the direction 

jvr : 

Sv
vd

dS
v

S
j

jjnv j

∇⋅=≡∆
∞→→

)
r

,0
lim , 

which shows the desired relationship between the directional derivative and the gradient of S. 
Knowing this relation, the approximation can then be done for 2=n : 

 Sv
v

r
Sv

v
S

j
j

j
j

∇⋅≈+∇⋅=∆ )) ),(2 ζξ  (6) 
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where 

 )2(
!2
1),( 222

yyxyxx
jj

SyySxSx
vv

r
∆+∆∆+∆=

ζξ  (7) 

and xxS  stands for 22 /),( xS ∂∂ ζξ , xyS  for yxS ∂∂∂ /),(2 ζξ and yyS  for 22 /),( yS ∂∂ ζξ , where 

R∈),( ζξ . Since yxv j ∆≈∆≈ , the truncation error represented by equation (7) is )( 2xO ∆  as 
well as in case of the central difference method. 

Applying (6) to each point sp j ∈  results in an over-determined system of simultaneous 
equations, whose solution gives an estimation of xS ∂∂ /  and yS ∂∂ / . Marking the matrix 
containing the sample vectors� x and y components vx,j and vy,j as V, the vector of the partial 
derivative approximations as t and the vector of the slope estimates jj vS /∆  as σ , the system 
of equations can be rewritten as 

 tV ⋅=σ  (8) 









∂∂
∂∂

⋅
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∆
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yS
xS

vv

vv
vv
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Then, t can be found from (8) in the following way: 

σ
σ

σ
σ

tt

tttt

tt

VVVt
VVVVtVVV

VVtV
Vt

1

11

)(
)()(

−

−−

=
=
=
=

 

1)( −VV t  always exists because of the assumption of non-collinearity. The authors also 
note that � )( VV t  is a 2 x 2 matrix and therefore finding its inverse is not computationally 
demanding." 

3. Implementation & Testing 

All the above-described approaches were implemented within one application for the purpose 
of comparison. All the implementations were done in the Borland Delphi environment and the 
tests were run on a system with the Intel Pentium III @ 448MHz CPU and 1024MB RAM. 

3.1 Testing Data 

The application requires the volumetric data to be structured to constitute a tetrahedra 
mesh whether regular or not. The tetrahedra structure only serves to determine each vertex�s 
surrounding, which should be involved in the computation, and is not necessary for the 
approach itself. 
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Our tests have been performed on meshes constructed upon the sets of 5000, 10000, 
15000 and 20000 vertices using Delaunay approach, maximal number of tetrahedra and 
minimal number of tetrahedra. To show, how the mesh structure influences the results, 
estimations from meshes constructed upon clusters of vertices have also been tested. 

To be able to make comparisons and evaluations we need the exact gradient vectors. 
Thus it is necessary to use some known function to generate the scalar field values. However, 
the estimation methods are meant to search for gradients of general data with no common 
characteristic known in advance (e.g. empirically measured data). Therefore there was no 
definite criterion for choosing the testing function. The strategy was chosen to test the 
methods on some simple function (i.e. f1 � see below), then on some simple function (i.e. f2) 
with higher order then the order of the approximation functions used in the estimation method 
and eventually on a relatively complex function (i.e. f3), which would be rather distant to 
those approximation functions thus at least partially substituting the empirically obtained data: 

• 222
1 ),,( zyxzyxf ++= , 

• 333
2 ),,( zyxzyxf ++= , 

• 524
3 16583),,( zexyeyxzyxf yz ⋅+⋅⋅+⋅+⋅⋅⋅= . 

 These functions will be referenced as f1,  f2 and f3. 

3.2 Error Measurement 

For the testing purposes, the boundary vertices of the mesh were filtered out from the 
statistics. The main measure of accuracy was the average error angle computed the following 
way. For each vertex, the angle in degrees between the exact gradient and the estimated one 
was found. Their arithmetic average then determined the average error: 

 ∑
−

=
=

1

0
/)(

N

i
i NE αα . (9) 

 The secondary measure was the error of the vector length. In this case, the error 
computation consisted of the following steps. First, the difference in the length of both the 
vectors was enumerated for each mesh vertex. The ratio of this distance and the length of the 
exact gradient vector in that vertex was then expressed. Finally, the arithmetic average of such 
ratios was computed: 

 N
v

vu
E

N

i i

ii
l /

1

0
∑

−

=

−
= r

rr

 (10) 

where E is the average error, ui and vi are the estimated and the exact gradient vectors 
respectively and N is the number of evaluated vertices. 

Instead of (9) and (10), it would also be possible to measure the error as the length of the 
error vector (11), which would be the distance between the end points of the exact and the 
computed vector. Symbolically written:  

 
N

v
vu

E

N

i i

ii∑
−

=

−

=

1

0
r

rr

, (11) 
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where E is again the average error, ui and vi are the estimated and the exact gradient vectors 
respectively and N is the number of evaluated vertices. However, some applications are only 
interested in the error angle and do not require the gradient length to be correct. For this 
reason, we have used the first evaluation procedure applying equations (9) and (10). 

The following picture should make the geometrical meaning of individual error 
expressions clear: 

i

iu

iv ii vu −

ii vu −

 

Figure 4: Error measurements illustration 

4. Results 

In the following paragraphs, where the implemented three approaches will be examined from 
several points of view and their results compared, LR-Lin denotes the method that uses linear 
regression based on linear approximation function, LR-Nonlin stands for linear regression 
based on quadratic approximation function and FDM represents the method based on 
generalization of the finite differences method described in [3]. 

4.1 Accuracy Statistics – Varying Sampling Functions 

A good basic notion of how the methods perform can be acquired just by testing them 
on a mesh of only 1000 vertices using the Delaunay criteria. Table 1 shows that, from the 
accuracy point of view, LR-Nonlin performs best (marked by darker shading). The exception 
was using it for estimating linear function (plane) gradients, where the FDM reached the best 
results. The reason is that LR-Nonlin attempts to approximate sample values in the vertices by 
a quadratic function. Therefore, when applied on a simple plane, it performs worse than the 
linearly oriented methods. In all the other cases, however, LR-Nonlin reached the most 
accurate results while FDM the worst, LR-Lin being in the middle. The linear sample function 
(plane) will not be included in further testing as the results balance on the edge of 
computational numerical precision and are not of high importance, for in practice, linear 
sampling function can hardly be expected. 
 

Error Angle in Degrees LR-Lin  LR-Nonlin  FDM 
x (plane) 1.31E-15  1.29E-12  9.30E-16 
x2 + y2 + z2 (sphere) 2.55  0.45  3.89 
x3 + y3 + z3 4.66  0.92  6.32 
3 x4 y2 ez + 8 y + 5 x ey + 16 z5 3.36  1.54  3.86 

Tab. 1: Tests on Delaunay tetrahedra mesh with 1000 vertices. 
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4.2 Accuracy Statistics – Varying Data Density 

The following three graphs (one graph for each of the three sample functions) show how 
the estimation results improve when supplying more information by using a denser mesh. 
Although the graphs look quite similar, it is necessary to note that the scale on the y axis 
differs to keep the graphs legible. 
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 Graph 1:  Estimation accuracy for f1, f2 and f3 

Each value in the graphs has been obtained as an average of three measurements, each 
using a different tetrahedra mesh (i.e. Delaunay mesh and meshes with maximal and minimal 
number of tetrahedra). It is obvious from the graphs above that the denser sampling is 
available the more accurate gradient estimation can be expected. As well, the graphs confirm 
that (except for the linear sample functions) the LR-Nonlin method returns best results. On the 
other hand, comparing these three graphs to each other reveals an interesting fact that more 
complex sampling function does not imply lower estimation accuracy. Regardless of the 
estimation method used, the results of gradient computation are more precise for f3 than for f2. 
In fact, in case of FDM, the results for f3 are even slightly better than those for f1. These, 
maybe a little surprising, results are promising for practice, where the samples will probably 
not approximate neat simple functions. 

4.3 Accuracy Statistics – Varying Vertex Distribution 

In this section the influence of the structure of the input mesh on the accuracy of the 
estimation will be demonstrated. For this purpose, a pair of Delaunay tetrahedra meshes was 
generated upon 5000 and 10000 vertices distributed in clusters. Graph 2 shows the average 
estimation error for all three methods on both the uniform as well as the clustered vertices, 
meshed by the Delaunay method. Although the graph was meant primarily to illustrate the 
influence of the mesh structure on the results, we can also notice that the LR-Nonlin method 

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003



 

 10

performed best again with significant advance to LR-Lin, let alone FDM. Since the graphs for 
different sample functions f1, f2 and f3 resembled each other, only one of them will be 
presented here. For easier orientation, the marks at the ends of the lines are rectangular for the 
estimation from the mesh with uniformly distributed vertices and triangular for the mesh on 
clusters.  

Accuracy (f1) - Uniform vs. Cluster Vertex Distribution
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Graph 2: The average error of the estimation on meshes with clustered and uniform vertex 
distribution. 

At the first glance it might seem rather surprising, but the graph shows that the gradient 
estimation applied on the tetrahedra mesh generated upon the clusters of vertices gives better 
results than the mesh with the same number of vertices distributed uniformly. Closer analysis 
shows that such results in fact correspond to what was described in the previous section. 
When the vertices are grouped in clusters, some of them are positioned at locations, where the 
clusters are connected to each other. In these locations, big errors can be expected as the 
surrounding of these vertices consists of small tetrahedra in the direction of the cluster, on the 
boundaries of which the vertex resides, and large tetrahedra in the other direction, where the 
cluster is connected to the other clusters. This unbalanced distribution of information around 
these vertices causes the failure of all the gradient estimation methods. The estimated gradient 
vectors are strongly inaccurate in such locations. Yet, this situation applies to only a small 
percent of vertices. The majority is located inside the clusters, where their density is higher 
than in case of uniform distribution, which leads to better estimations. The bigger errors are 
compensated and the overall average error is lower for the clustered data than for the 
uniformly distributed vertices, where some error peaks appear as well, especially in the 
locations close to the surface. 

The distribution of the error within the data is illustrated by graph 3. To keep the graphs 
understandable, files with only 1000 vertices have been used. The vertices, where the error 
has its peaks, are easily recognizable and the situation in some of these �problematic� vertices 
has been analyzed visually. This analysis was the ground to the explanations described above. 
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Graph 3: The distribution of the error for uniformly distributed and clustered vertices. 

4.4 Accuracy Statistics – Vector Length 

So far, we have only been concerned in measuring the error angle between the exact and the 
estimated gradient vectors. It is however necessary to realize that, unlike for example surface 
normal vector, gradient is determined by its length as well. Therefore the methods were also 
tested from this point of view and the results have been summarized in Graph 4. 
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Graph 4: The average error of the estimated gradients� length in percents of the exact vector 
length. 

Each value in this graph was obtained as the arithmetic average of nine measurements 
combining the usage of three sampling functions on the three types of meshes described 
above. We can see that the LR-nonlin method gives the most precise results being far ahead of 
the other two. The LR-lin estimations were approximately four times less accurate and those 
of FDM more than six times. Using different mesh types did not lead to significant 
differences here. Concerning the sampling function, results for f1 were a little better than 
results for f2, f3. 

4.5 Speed Statistics 

Although we have adopted the accuracy of individual methods as the main criterion 
according to which the methods should be judged, the time requirements of the computations 
are usually much too important to bee ignored. To be consistent, the temporal needs of the 
three approaches were measured on the same data files as in section 4.2 and the results are 
summarized in graph 5. Each value in the graph has thus been obtained as an average of three 
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measurements on different tetrahedra meshes. When compared to each other, the results of 
these three measurements differed just slightly i.e. at most around 10 percent in one direction 
or the other. 
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Graph 5: Comparison of the methods according to their time requirements 

Apparently, the more accurate the method is, the more time it needs to do the 
computation. While producing the best results, the linear regression method utilizing 
quadratic regression function required about four times more time than the method using 
linear approximation function and up to ten times more than the finite difference method. Yet, 
all three methods have linear time complexity O(N), where N is the number of vertices. 

5. Conclusion & Recommendations 

In the paragraphs above, the behavior of the gradient estimation methods has been examined 
in terms of accuracy while varying several aspects as the mesh internal structure, density and 
the sample function defining the scalar field�s values. From this point of view, the linear 
regression method with quadratic approximation function turned out to be the best, providing 
significantly better results than the other two. On the other hand, it was the most time 
demanding one. Although the time complexity is linear for all these methods, the growth of 
the time requirements is steeper for the method using quadratic function. Thus, an imaginary 
ratio accuracy/speed is roughly the same for all the methods. Therefore there are no 
straightforward recommendations in this case. For each application a decision must first be 
made, what the primary criterion will be, whether accuracy, speed or some kind of trade-off 
between both. As stated at the beginning, accuracy was the main criterion for this study. From 
this point of view, the method based on linear regression with nonlinear approximation 
function presented in previous sections performed best. 
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Vertex Normal Computation 

1. Introduction 

In the following paragraphs, five methods of vertex normal computation will be described, 
tested and compared. The application of the first three approaches is restricted to triangle 
meshes. The other two do not require any mesh and thus can be applied on more general data. 

2. Theoretical Background 

Generally, there are two main approaches for vertex normal computation. The first is based on 
combining the normal vectors of the facets that share the vertex being computed. This is the 
case of the first two methods described below in 2.1 and 2.2. The fourth and fifth methods in 
2.4 and 2.5, on the other hand, try to approximate the surrounding of the vertex in question by 
a surface of certain order. The normal of such surface is than considered to be the 
approximation of the vertex normal of the original surface. Method three, described in 2.3, is 
a combination of both these approaches. It uses a normal of an approximation surface, which 
is, however, computed as a weighted sum of surrounding facets� normals. Since this method�s 
theoretical background resembles methods 2.4 and 2.5, the procedure of the computation is 
similar to 2.1 and 2.2. Thus, it is half way from the first approach to the other one and 
therefore it will be described in section 2.3. 

2.1 Gouraud 

This method has been described in [1] by Gouroud, who suggests computing normals in 
the vertices of a triangle mesh as the average of the normal vectors of the facets that share the 
vertex being computed. In his approach, all the facets, which contribute to the vertex normal 
computation, are weighted equally. Mathematically, 

 
∑

∑
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1 ,  

where N is the normal in the vertex and Ni are the normals of the triangles that share it. 

2.2 Thurmer 

Thurmer and Wuthrich [6] aim to improve the accuracy of the vertex normal 
computation method suggested by Gouraud. They claim that the results of the Gouraud�s 
method strongly depend on the topology of the mesh around the vertex being processed. In 
other words, if we start with certain triangle mesh, choose one of its vertices and compute the 
normal vector there, then if we restructure the surrounding of this vertex and then we re-
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compute the vertex normal, the result should ideally be the same. By reconstructing the vertex 
surrounding we mean using a different triangulation upon the same set of vertices. This can be 
reached for example by adding new vertices on the edges of some of the existing triangles 
thus dividing these triangles into two or more smaller ones while keeping the overall shape of 
the surface untouched � see Figure 1. 

N
N

 

Figure 1: Illustration of the normal�s dependency on the meshing 

The authors of this article try to reach the independency on the mesh structure through 
weighting the contribution of each facet�s normal by the size of the angle of the facet�s edges 
incident to the computed vertex. This can be expressed as 
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where iα  is the angle between the two edges of the facet that lead to the vertex. Thurmer and 
Wutrich state that although other measures (e.g. the areas of the triangles) might also be used, 
the incident angle is the only one to obtain correct results. 

Remark: 
In both the methods described above, there is another aspect to be pointed out. The purpose of 
using these methods is to make the surface shaded smoothly and to get a rid of those edges 
between adjacent polygons that do not occur on the original object and that are caused by the 
approximation. However, the rendered body may also contain some real edges. Smoothing out 
these edges would rather decrease than increase the realism of the rendered image. 
Unfortunately, these edges are usually not marked within the input data, which is why the 
rendering algorithm can hardly recognize them. The method that can sometimes help to 
overcome this drawback is based on defining certain �decision angle�. If the angle between 
two adjacent polygons is less sharp than the decision angle, the edge is considered to be an 
unwanted one and is smoothed. Otherwise, the edge probably represents a real edge on the 
rendered object and should be displayed sharply. 

2.3 Using Facet Normals Weighted by the Area 

In this method, the normal nr  is computed as a normalized weighted sum of the unit 
length normal vectors inr  of the facets that belong to the cycle around the vertex being 
processed similarly as in Gouraud�s [1] and Thurmer�s [6] approach. This time, each facet�s 
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area iS  is considered as the weighting function for the corresponding normal. Thus, the larger 
facets have higher influence than the smaller ones. Symbolically expressed: 
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Remark: 
As mentioned above, this method is a combination of two main approaches in a way. On one 
hand, the actual computation resembles the Gouraud’s or Thurmer’s methods, because the 
vertex is found as a weighted average of the surrounding triangles� normals. On the other 
hand, the theoretical background of this approach rather resembles the idea underlying the 
following two methods, Linear Regression and the Finite Differences Method, where the 
normal of an approximating surface is viewed as the estimation of the vertex normal. In other 
words, the neighbors of the vertex where the normal is to be computed are found first. This set 
of vertices is then interleaved by an average surface, whose normal is then considered to be 
co-linear with the surface normal in the computed vertex.  
According to [7], one way to express the normal of the approximating surface is to make an 
area weighted average of the surrounding triangles� normals, which is the case of the method 
above. 

Nevertheless, there are more ways to find the average surface normal. The following 
two approaches estimate the gradient of the function ),( yxf  that approximates the values in 
the neighborhood of the computed vertex as the first step. The elements of this gradient vector 

),(
y
f

x
ff

∂
∂

∂
∂=∇  represent partial derivatives of f along the x and y directions respectively. The 

vectors 
x
fkiu

∂
∂⋅+=

rrr  and 
y
fkjv

∂
∂⋅+=

rrr  are thus the tangent vectors of f for .consty =  and 

.constx =  Subsequently, the cross product vun rrr ×=  represents the normal vector of the 
approximating function in the location of the vertex in question. This vector nr  is than viewed 
as the estimate of the original surface normal (see figure 2). 
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Figure 2: Computation of surface normal from the data gradient 

The two approaches bellow differ in the procedure of computing the gradient 
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2.4 Linear Regression 

In this method, the gradient of the approximating function is estimated using the linear 
regression, which is described in section 2.1 of the Gradient Vector Estimation chapter above. 
The principle is the same the only difference resides in the fact that in this case the 
computation is done using a 3D linear regression, because we seek gradients of the function 

),(2 yxf  instead of ),,(1 zyxf  that was used in case of volumetric data gradient estimation. 

2.5 Finite Difference Method 

In this method, the gradient of the approximating function is estimated using the 
generalization of the finite differences methods introduced in [3] by Meyer et al. For the 
description of this method see section 2.3 in the chapter devoted to Gradient Vector 
Estimation. 

3. Implementation 

All the above-described methods for vertex normal computation were implemented within 
one application developed under the Borland Delphi environment and the tests were run on a 
system with the Intel Pentium III @ 448MHz CPU and 1024MB RAM. 

3.1 Testing Data 

The testing data for the vertex normal computation were produced via the MVE system 
using the DTLib module. For each of the three kinds of 2D triangle meshes available in this 
module (i.e. regular meshes, irregular meshes with uniformly distributed vertices and irregular 
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meshes with vertices distributed randomly), input files were generated for 1,000 / 10,000 / 
100,000 / 250,000 / 500,000 / 750,000 and 1.000,000 vertices. 

For the computation of the z coordinate, three different functions were used. These are: 

•  22
1 2),( yxyxf −−=  

• )2sin(25.0),( 2
2 yxyxf ⋅⋅⋅+= π  

• )cos(25.0)sin(25.01),(3 yxyxf ⋅⋅+⋅⋅+= ππ  

The examined vertex normal estimating methods can be applied on various triangle meshes, 
which have no common characteristic. Thus there is no principal criterion to be used for 
designing the testing functions for the z coordinate generation. Since 1,0, ∈yx  for all the 
vertices of the generated 2D triangle mesh, the only limitation is that the function f must be 
defined for any point P from this region (i.e. )(:},1,0,:],[{ PfzRzyxyxPP =∈∃∈∈∀ ). All 
the three functions listed above fit this condition. When choosing the functions, the aim was 
to test the methods on surfaces that are curved just slightly as f1, as well as surfaces, where the 
curvature changes quite a lot f3. Function f2 is something in between. 

For the testing purposes, the boundary vertices of the mesh were not included in the 
statistics. 

4. Results 

4.1 Notation 

In the following text, the first three methods described in sections 2.1 � 2.3, which 
compute vertex normals from adjacent triangles� normal vectors, will be marked as 
NfT(w=1), NfT(w=angle) and NfT(w=area) respectively. The fourth method, which uses 
linear regression to estimate the gradient of the approximating surface, will be marked LR. 
The last one will be denoted by FDM. 

4.2 Accuracy Statistics – Varying z-Functions (Surface Shape) 

One of the important aspects, which influence the accuracy of the estimation of the 
triangle mesh vertex normal, is the shape of the examined surface. As one might intuitively 
expect, it is easier to estimate the normal vector in a vertex of a plane or some slightly wavy 
surface than to estimate such normal for strongly curved meshes. To confirm this belief, the 
examined methods were tested on surfaces constructed from planar 2D meshes by defining 
the z coordinate via the functions listed above in section 3.1. Each of the three graphs 
displayed below describes the average errors produced by individual methods when applied 
on the three differently curved surfaces. As expected, most precise results were obtained on 
the surfaces produced by f1, where the curvature was minimal. For f3, on the other hand, the 
average measured errors were approximately four times as big. The function f2 appeared to be 
half way between f1 and f3. 
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Graph 1: The estimation errors for 22
1 2),( yxyxf −−=  
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Graph 2: The estimation errors for )2sin(25.0),( 2
2 yxyxf ⋅⋅⋅+= π  
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Accuracy - f3

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 200000 400000 600000 800000 1000000

Number of Vertices

A
ve

ra
ge

 E
rr

or
 [d

eg
]

NfT(w=1) NfT(w=angle) NfT(w=area) LR FDM
 

Graph 3: The estimation errors for )cos(25.0)sin(25.01),(3 yxyxf ⋅⋅+⋅⋅+= ππ  

4.3 Accuracy Statistics – Varying the Mesh Density 

Another aspect that plays an important role is the density of the mesh. When the number 
of vertices increases, more information is contained in the mesh, smaller regions are used for 
the estimation and more precise results can be obtained. This fact is also illustrated by the 
three graphs above. 

However, the most important knowledge to be acquired from these measurements is 
that, regardless of the number of vertices or the function used, the best results were obtained 
using the NfT(w=1) and NfT(w=angle) methods, followed by LR, NfT(w=area) and FDM as 
the worst one. To be more specific, applying FDM caused the error to be approximately 
double in comparison to NfT(w=1) or NfT(w=angle). It is also necessary to notice that 
NfT(w=area) performs significantly worse than NfT(w=1), which implies that using the facet 
area as a weighting function for computing vertex normals from facet normals decreases 
rather than increases the resulting precision. 

4.4 Accuracy Statistics – Varying Vertex Distribution (Surface Structure) 

In the previous two paragraphs the influence of the overall shape and the density of the 
mesh on the accuracy of the vertex normal computation was examined. In section 4.3 
individual methods have been sorted according to the precision of their results. Here the 
concern will be put on the internal structure of the mesh and its relation to the accuracy of the 
vertex normals computed by individual tested methods. 

The MVE module DTLib produces 2D meshes constructed upon non-uniformly, 
uniformly or regularly distributed data. The following two graphs show that using meshes 
with randomly distributed vertices, whether uniformly or not, does not cause a change in the 
sequence of the methods sorted in 4.3. 
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Accuracy (f3) - Nonuniform Distribution
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Graph 4: Estimation from meshes with non-uniform vertex distribution. 

 

Accuracy (f3) - Uniform Distribution
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Graph 5: Estimation from meshes with uniform vertex distribution. 

If we start with a 2D mesh containing regularly distributed vertices, however, the 
sequence of the methods sorted according to the accuracy differs from the one in 4.3. For the 
correctness, it is necessary to point out that after the transformation to 3D by applying one of 
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the three functions listed in section 3.1, the vertex distribution will not be regular any more. 
Yet, certain features of the mesh will be preserved, which, as it turned out, will be sufficient 
for our purpose. 

Graph 6 describes the average error of vertex normals estimation on a mesh, which was 
obtained by computing the z coordinate for vertices of 2D mesh with regular vertex 
distribution. In this case, f3 was used to do so, but as other measurements have shown, it 
works the same way with the other functions as well. The point is that in this situation, the 
NfT(w=1) method went much worse, while all the other methods remained on their positions 
including NfT(w=angle) and NfT(w=area). In fact, NfT(w=1) performs with nearly the same 
accuracy as NfT(w=area) in this case. 
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Graph 6: Estimation from meshes with regular vertex distribution. 

The reason resides in the structure of the original 2D mesh. Figure 3 shows a real 
example of this mesh. Although the vertex distribution is regular, the triangulation of the 
vertices is not. On the contrary, there are only a few vertices, the nearest surrounding of which 
is triangulated symmetrically. If we recall the principal of NfT(w=angle) as described in 2.2, 
it is obvious that the computation of vertex normal vectors from facet normals without using 
any weighting function, which is the case of NfT(w=1), will often produce incorrect results. 
Although the transformation into 3D deforms the mesh partially, it is not surprising that 
NfT(w=1) produces similar results as NfT(w=area) for such mesh, since all the triangles had 
originally the same area. 
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Figure 3: An example of a 2D mesh with a regular vertex distribution. 

4.5 Speed Statistics 

The time requirements of individual methods are illustrated by Graph 7. The methods 
that use facet normals for the vertex normal computation have similar temporal needs. FDM 
and LR must do some more complex matrix operations. They therefore have higher time 
demands. 
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Graph 7: The time requirements of the tested methods. 

5. Conclusion & Recommendations 

In the preceding paragraphs, five methods for computing triangle mesh vertex normal vectors 
have been presented, implemented and their results were compared with focus on accuracy. 
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The linear regression and the finite difference methods have the advantage that they are easily 
transformable to various kinds of data and are not restricted to triangle meshes. Yet, having 
taken all the gathered information about the behavior of all the tested methods into 
consideration, the approach of Thurmer and Wuthrich seems to be the best solution for 
computing triangle mesh vertex normals.  
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Ideas for the Future Work 
Since we have also dealt with isosurface extraction [2] we would like to find out whether, and 
to what extent, it is possible to use the estimated gradient for computing normal vectors in the 
vertices of the triangle mesh, which represents the extracted isosurface. Our motivation for 
such research can be outlined briefly by the statement that [5] the gradient vector 

k
z

j
y

i
x ∂

∂
+

∂
∂

+
∂
∂

=∇
φφφφ  in location ],,[ 000 zyxQ of the function ( )pφ , which describes the values 

of a scalar field, is perpendicular to the field�s isosurface passing through the ],,[ 000 zyxQ . The 
gradients might therefore be pre-computed in the preprocessing step and then, during the 
extraction, just interpolated to form the vertex normals of the extracted surface. This will 
require the gradient vectors to be estimated exactly enough including their length and not only 
the direction. 
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Appendix 
A short overview of several articles that are related to this topic but do not directly address the 
problem stated at the beginning and that have not been included in the comparative study, will 
be listed here. 

 
Article: 
Max N.: Weights for computing vertex normals from facet normals. Journal of Graphics 
Tools, 4(2):1-6, 1999. 
 
Notes: 
The author of this article focuses on the computation of the vertex normals in polygonal 
meshes. Unlike the previous two methods, neither of which made any restrictions in respect of 
the position of the facets� vertices except for some singularities, the approach proposed by 
Max requires the vertices to be placed on a spherical surface. The underlying idea resides in 
the simple fact that for such a set of vertices the normal direction must pass through the 
sphere�s center point, which can be found as the intersection of the bisector planes of the 
edges between the computed vertex and the surrounding ones. Through a set of mathematical 
derivations, Max comes to the following new weighting function for vertex normal 
computation from the facet normals: 
 

( )1

sin

+

=
ii

i
i VV

w
α

. 

 
According to his tests this method is superior to any other weighting functions, but only for 
polygon inscribed in a sphere. Max also claims that in these tests the Thurmer and Wuthrich�s 
method performed worse then the non-weighted Gouraud�s algorithm. 

 
 
Article: 
Thürmer G., Wuthrich A.: Normal Computation for Discrete Surfaces in 3D Space. 
Eurographics'97, vol 16, num 3, 1997. 
 
Notes: 
Thurmer and Wuthrich describe a way to find a normal vector in any point of a surface. The 
underlying idea of their attitude resides in the fact that the surface divides the space into two 
separate parts each of which contains the information about the shape of the surface. To 
extract the information for a particular point on the surface it is sufficient to examine the 
situation in just one of the two sub-spaces. The estimation procedure works as follows. First 
of all, uniformly distributed sample points are generated in the chosen sub-space of the local 
neighborhood of the computed vertex, which is considered as the origin of the coordinate 
system. (As written in the article, �a sample point ),,( sss zyxq  consists of the random 
variables XS, YS and ZS distributed uniformly in the interval [-d,d]. Then we obtain the set of 
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i.e. above the surface ),( SSS yxSz > .) The local neighborhood is spherical (circular in 2D); 
therefore the polar coordinates are used for simplicity. Then all the vectors from the computed 
vertex to the individual sample points are summed and the resulting vector points in the 
direction of the surface normal. This vector is then normalized. 
 

A

B

p

 
Figure 1: Vectors in one subspace within a circle neighborhood. 

 
There is also the possibility to use a cubic (square in 2D) neighborhood. In that case, however, 
the corners of the cube (or square) introduce certain error to the estimation process. Thurmer 
and Wuthrich derive the expectable error for such kind of neighborhood. 
The authors also derive a method for the discrete space and in the article bellow they study its 
performance if run with various parameters: 
 
Thürmer G., Wuthrich A.: Varying Neighborhood Parameters for the Computation of 
Normals on Surfaces in Discrete Space. Proc. Computer Graphics International'98, IEEE 
Computer Society Press, 1998, pp.616-625. 

 
 

Article: 
Moller T., Machiraju R., Mueller K., Yagel R.: A Comparison of Normal Estimation Schemes, 
IEEE Visualization Proceedings 1997, pp. 19--26, October 1997. 
 
Notes: 
This article is rather theoretical and describes the overall framework for the normal 
estimation. A general mathematical device is derived at the beginning as a tool for proving the 
correctness of the approaches discussed. The goal of these approaches is to find a location of 
certain character within the input data and to estimate the normal vector in such a location. To 
do this, the authors use the interpolation and the derivative filters. They, however, do not give 
any particular suggestions about how these filters should look like. They rather focus on the 
order, in which to apply the filters. There are three possibilities. In the first one, the desired 
location is found first (using the interpolation filter) and afterwards the computation of the 
normal vector takes place (through the derivative filter). The second possibility is to estimate 
the normal vectors in the original data locations first (that is to use the derivative filter) and 
then apply the interpolation filter to find the required location interpolating the previously 
found normals as well. The last way, which the authors themselves consider to be rather 
hypothetical than practical, is to combine both the filters first, thus obtaining a single transfer 
function, which could then be applied on the input data. In that case, the desired location and 
its normal vector would be found within a single step. 
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