
 Gradient Vector Estimation Using Quadratic Regression Function, ICCVG2002 Int.Conf., Poland, ISBN 839176830-9, pp.380-386, 2002

Scanned by the Library of UWB

Related Technical Report is appended at the end of the paper

 Gradient Vector Estimation Using Quadratic Regression Function, ICCVG2002 Int.Conf., Poland, ISBN 839176830-9, pp.380-386, 2002

Scanned by the Library of UWB

 Gradient Vector Estimation Using Quadratic Regression Function, ICCVG2002 Int.Conf., Poland, ISBN 839176830-9, pp.380-386, 2002

Scanned by the Library of UWB

 Gradient Vector Estimation Using Quadratic Regression Function, ICCVG2002 Int.Conf., Poland, ISBN 839176830-9, pp.380-386, 2002

Scanned by the Library of UWB

 Gradient Vector Estimation Using Quadratic Regression Function, ICCVG2002 Int.Conf., Poland, ISBN 839176830-9, pp.380-386, 2002

Scanned by the Library of UWB

 Gradient Vector Estimation Using Quadratic Regression Function, ICCVG2002 Int.Conf., Poland, ISBN 839176830-9, pp.380-386, 2002

Scanned by the Library of UWB

 Gradient Vector Estimation Using Quadratic Regression Function, ICCVG2002 Int.Conf., Poland, ISBN 839176830-9, pp.380-386, 2002

Scanned by the Library of UWB

 Gradient Vector Estimation Using Quadratic Regression Function, ICCVG2002 Int.Conf., Poland, ISBN 839176830-9, pp.380-386, 2002

Scanned by the Library of UWB

 Gradient Vector Estimation Using Quadratic Regression Function, ICCVG2002 Int.Conf., Poland, ISBN 839176830-9, pp.380-386, 2002

Scanned by the Library of UWB

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Gradient Vector Estimation and Vertex
Normal Computation
Research Report

Tomáš Jirka, Václav Skala

Technical Report No. DCSE/TR-2002-08
October, 2002

Distribution: public

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

Technical Report No. DCSE/TR-2002-08
October 2002

Gradient Vector Estimation and Vertex
Normal Computation
Tomáš Jirka, Václav Skala

Abstract
In this document a comparison of three methods of volumetric data gradient
vector estimation (one of which was proposed by the authors) and five methods
for triangle mesh vertex normal computation will be described and compared.
All the methods can be used for regular as well as irregular meshes. The tests
were focused primarily on the accuracy. However, a comparison of the temporal
requirements of individual methods is included as well.

This work was supported the Ministry of Education of the Czech Republic -
project MSM23500005.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Copyright © 2002 University of West Bohemia in Pilsen, Czech Republic

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

Gradient Vector Estimation ...1

1. Introduction ...1
2. Theoretical Background ..1

2.1 4D Linear Regression using Linear Approximation Function......................1
2.2 4D Linear Regression using Quadratic Approximation Function.................2
2.3 Finite Difference Method..3

3. Implementation & Testing ..6
3.1 Testing Data ..6
3.2 Error Measurement..7

4. Results ...8
4.1 Accuracy Statistics � Varying Sampling Functions......................................8
4.2 Accuracy Statistics � Varying Data Density...9
4.3 Accuracy Statistics � Varying Vertex Distribution.......................................9
4.4 Accuracy Statistics � Vector Length...11
4.5 Speed Statistics..11

5. Conclusion & Recommendations..12
Vertex Normal Computation..13

1. Introduction ...13
2. Theoretical Background ..13

2.1 Gouraud...13
2.2 Thurmer...13
2.3 Using Facet Normals Weighted by the Area...14
2.4 Linear Regression..16
2.5 Finite Difference Method..16

3. Implementation ...16
3.1 Testing Data ..16

4. Results ...17
4.1 Notation...17
4.2 Accuracy Statistics � Varying z-Functions (Surface Shape)17
4.3 Accuracy Statistics � Varying the Mesh Density..19
4.4 Accuracy Statistics � Varying Vertex Distribution (Surface Structure)19
4.5 Speed Statistics..22

5. Conclusion & Recommendations..22
Ideas for the Future Work ...24
References...25
Appendix ...26

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 1

Gradient Vector Estimation

1. Introduction

In the following paragraphs, three methods for the scalar irregularly distributed volumetric
data gradient vector (see Fig. 1) estimation will be presented. First, it is the 4D linear
regression method using linear approximation function as proposed in [4]. Then its extension
consisting in using quadratic regression function developed with the aim to reach higher
estimation accuracy will be described as a second method. Third, it will be the approach based
on generalization of the finite differences method presented in [3]. The performance of all the
three methods will be examined from different points of view, compared and evaluated.

f∇

),,(
z
f

y
f

x
ff

∂
∂

∂
∂

∂
∂=∇

0

0

4

10

10

10
f

),,(
z
f

y
f

x
ff

∂
∂

∂
∂

∂
∂=∇

Figure 1: Illustration of a gradient vector in a vertex of an irregular scalar field, upon which a
tetrahedral mesh has been constructed.

2. Theoretical Background

In the following paragraphs, the principles of 4D linear regression method for gradient
estimation will be described and the approach utilizing quadratic approximation function for
the linear regression will be proposed. Then the 3D version of the approach generalizing the
finite differences methods will be outlined.

2.1 4D Linear Regression using Linear Approximation Function

This method for gradient estimation from regular as well as irregular volumetric data
proposed in [4] tries to find a 4D regression hyper plane DzCyBxAzyxf +⋅+⋅+⋅≈),,(with
minimal error. The error function is represented as the summed squares of the difference
between the original values in the interpolated vertices and the values that the solution of the
hyper plane equation would give in these points. Mathematically:

 ∑
=

−+⋅+⋅+⋅=
n

k
kkkkk fDzCyBxAwDCBAE

0

2)(),,,(, (1)

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 2

where xk, yk and zk are the coordinates of the vertices involved in the approximation (the
computed vertex being considered as the origin of the coordinate system) and fk are the values
in these points. A, B and C make up the vertex gradient that we search for and D is the filtered
value in the computed vertex. The wk symbol represents the weighting function, which should
be spherically symmetric and monotonically decreasing as the distance from the origin (i.e.
the computed vertex) grows.

To minimize the error function E from (1), its partial derivatives along A, B, C and D
must be equal to zero:

∑ =⋅−+⋅+⋅+⋅⋅⋅=
∂
∂

k
kkkkkk xfDzCyBxAw

A
E 0)(2 ,

∑ =⋅−+⋅+⋅+⋅⋅⋅=
∂
∂

k
kkkkkk yfDzCyBxAw

B
E 0)(2 ,

∑ =⋅−+⋅+⋅+⋅⋅⋅=
∂
∂

k
kkkkkk zfDzCyBxAw

C
E 0)(2 ,

∑ =−+⋅+⋅+⋅⋅⋅=
∂
∂

k
kkkkk fDzCyBxAw

D
E 0)(2 .

This system of simultaneous linear equations can be rewritten in a matrix notation in the
following way:

=

⋅

∑
∑
∑
∑

∑∑∑∑
∑∑∑∑
∑∑∑∑
∑∑∑∑

kk

kkk

kkk

kkk

kkkkkkk

kkkkkkkkkk

kkkkkkkkkk

kkkkkkkkkk

fw
zfw
yfw
xfw

D
C
B
A

wzwywxw
zwzwzywzxw
ywzywywyxw
xwzxwyxwxw

2

2

2

. (2)

Solving the system for A, B, C and D gives the hyper plane normal vector),,(CBAnr , which is

considered to be the estimation of the gradient),,(
z
f

y
f

x
ff

∂
∂

∂
∂

∂
∂=∇ .

2.2 4D Linear Regression using Quadratic Approximation Function

In order to reach higher accuracy of estimated gradient vectors, it is necessary to apply a
nonlinear approximation function. In our approach we use a general quadratic function of the
following form

⋅

⋅=

1000
00

0
]1,,,[),,(

44

3433

242322

14131211

z
y
x

A
AA
AAA
AAAA

zyxzyxg

instead of the original linear function DzCyBxAzyxf +⋅+⋅+⋅≈),,(. For the further
description, the non-matrix notation will be more illustrative:

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 3

4434
2

332423
2

22141312
2

11),,(AzAzAyAyzAyAxAxzAxyAxAzyxg +++++++++= .

Now we need to express the error function:

∑ −+++++++++=
k

kk fAzAzAyAyzAyAxAxzAxyAxAwAAE 2
4434

2
332423

2
22141312

2
114411)(),...,(

and find the partial derivatives according to all the ten unknown parameters A11 through A44:

∑ ⋅−+++++++++⋅=
∂
∂

k
kkkkkkkkkkkkkkk xfAzAzAyAzyAyAxAzxAyxAxAw

A
E 2

4434
2

332423
2

22141312
2

11
11

)(2 ,

∑ ⋅−+++++++++⋅=
∂
∂

k
kkkkkkkkkkkkkkkk yxfAzAzAyAzyAyAxAzxAyxAxAw

A
E)(2 4434

2
332423

2
22141312

2
11

12

,

...

∑ ⋅−+++++++++⋅=
∂
∂

k
kkkkkkkkkkkkkk fAzAzAyAzyAyAxAzxAyxAxAw

A
E 1)(2 4434

2
332423

2
22141312

2
11

44

.

These partial derivatives must be equal to zero, thus we get a 10 x 10 matrix describing the set
of simultaneous equations, which are linear in respect to the A11 through A44 parameters.
The gradient of the function can be described by the following formula:

)2;2;2(),,(),,(342313332423122214131211 AyAxAzAAzAxAyAAzAyAxA
z
g

y
g

x
gzyxg +++⋅+++⋅+++⋅=

∂
∂

∂
∂

∂
∂=∇ .

As the active vertex is always translated to the origin of the coordinate system, the x, y and z
coordinates equal to zero. Thus having computed the A11 through A44 parameters, the gradient
vector can be obtained from the simple formula:

).,,()0,0,0(342414 AAAg =∇

2.3 Finite Difference Method

In [3] a generalization of the finite differences method is proposed. According to the
authors, the finite differences methods can only be used for rectangular (although not
necessarily regular) grids. These methods are based on the Taylor�s series:

)()(
)!1(

...)(
!2

)()()()1(

)1(1

2

22

ξnn

nn

r
dx

aFd
n

x
dx

aFdx
dx

adFxaFxaF +
−

∆++∆+∆+=∆+ −

−−

, (3)

where)(ξnr is a remainder term. Solving the equation obtained as)()(xaFxaF ∆−−∆+ with
3=n for dxadF /)(then gives the central difference equation:

x
xaFxaF

x
rr

x
xaFxaF

dx
adF nn

∆
∆−−∆+≈

∆
+

+
∆

∆−−∆+=
2

)()(
2

)()(
2

)()()(ζξ .

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 4

The equations above describe a 1D case, where we search for the gradient of function
F(x), which is supposed to be smooth. For computing gradients of a smooth function),(yxS ,
the Taylor�s series from (3) can be generalized to R2:

 ∑
−

=
+

∂
∂∆+

∂
∂∆=∆+∆+

1

0
),(),()(

!
1),(

n

i
n

i rbaS
y

y
x

x
i

ybxaS ζξ . (4)

Similarly an R3 extension can be used for estimating gradients of a scalar field defined by a
smooth function),,(zyxV . The Taylor�s series, however, relies on partial derivatives that are
aligned to curves parallel to the coordinate axis thus restricting the finite differences methods
to be applicable for rectangular grids only. However, x∆ may not be uniform as shown on
Fig 2.

∆x

∆y

Figure 2: Irregular rectangular grid

To make the finite differences method suitable for irregularly distributed data as well,
the authors generalize it using directional derivatives instead of partial derivatives. They first
state the problem the following way:

• Let ℜ be an open, bounded, simply connected subset of the two-dimensional,
Euclidean real space R2.

• Let),(yxS be a smooth, real-valued function over ℜ .
• Let),(, yx pppp =ℜ∈ be a sample point of interest.
• Let },|,...,,...,{ 1 pppppps jjmj ≠ℜ∈= be a set of distinct sample points forming a

neighborhood around p (see Fig 3). At least one point in s must not be collinear with
the others.

• Find an approximation of the gradient of S at p.

Obviously, the authors describe the R2 case. For scalar field gradient estimation the R3 version
would have to be used. We will, however, describe the R2 case as described in [3] because it is
easier to follow and the modification of the algorithm for use in R3 is straightforward.

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 5

x

y

z

S(p)

S

R
pj

p

vj

Figure 3: The neighborhood of the point of interest

The authors start to derive their method by expressing the difference in the value of S between
p and pj using equation (4) as

),(... ζξnyx rySxSS ++∆+∆=∆ ,

with Sx and Sy denoting xppS yx ∂∂ /),(and yppS yx ∂∂ /),(respectively. They describe the
directional vector jvr from p to some other point pj, its magnitude jv and the unit vector in the
same direction jv) :

 ppyjxiv jj −=∆+∆=
))r , jj vv r= ,

j

j

jj
j v

v
v

yj
v

xiv
r

))) =∆+∆= ,

kji
v))

,, being unit vectors in the directions of the x, y and z Cartesian axis, respectively. The
ratio between the value change S∆ between two points p and pj and their distance vj can be
expressed as

j

n
j

j

n
y

j
x

jj v
r

Sv
v

r
S

v
yS

v
x

v
S),(

...
),(

...
ζξζξ

++∇⋅=++∆+∆=∆) (5)

and for 0→jv and ∞→n , equation (5) leads to the directional derivative of S in the direction

jvr :

Sv
vd

dS
v

S
j

jjnv j

∇⋅=≡∆
∞→→

)
r

,0
lim ,

which shows the desired relationship between the directional derivative and the gradient of S.
Knowing this relation, the approximation can then be done for 2=n :

 Sv
v

r
Sv

v
S

j
j

j
j

∇⋅≈+∇⋅=∆))),(2 ζξ (6)

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 6

where

)2(
!2
1),(222

yyxyxx
jj

SyySxSx
vv

r
∆+∆∆+∆=

ζξ (7)

and xxS stands for 22 /),(xS ∂∂ ζξ , xyS for yxS ∂∂∂ /),(2 ζξ and yyS for 22 /),(yS ∂∂ ζξ , where

R∈),(ζξ . Since yxv j ∆≈∆≈ , the truncation error represented by equation (7) is)(2xO ∆ as
well as in case of the central difference method.

Applying (6) to each point sp j ∈ results in an over-determined system of simultaneous
equations, whose solution gives an estimation of xS ∂∂ / and yS ∂∂ / . Marking the matrix
containing the sample vectors� x and y components vx,j and vy,j as V, the vector of the partial
derivative approximations as t and the vector of the slope estimates jj vS /∆ as σ , the system
of equations can be rewritten as

 tV ⋅=σ (8)

∂∂
∂∂

⋅

=

∆

∆
∆

yS
xS

vv

vv
vv

vS

vS
vS

mymx

yx

yx

mm

/
/

/

/
/

,,

2,2,

1,1,

22

11

))
MM

))

))

M
.

Then, t can be found from (8) in the following way:

σ
σ

σ
σ

tt

tttt

tt

VVVt
VVVVtVVV

VVtV
Vt

1

11

)(
)()(

−

−−

=
=
=
=

1)(−VV t always exists because of the assumption of non-collinearity. The authors also
note that �)(VV t is a 2 x 2 matrix and therefore finding its inverse is not computationally
demanding."

3. Implementation & Testing

All the above-described approaches were implemented within one application for the purpose
of comparison. All the implementations were done in the Borland Delphi environment and the
tests were run on a system with the Intel Pentium III @ 448MHz CPU and 1024MB RAM.

3.1 Testing Data

The application requires the volumetric data to be structured to constitute a tetrahedra
mesh whether regular or not. The tetrahedra structure only serves to determine each vertex�s
surrounding, which should be involved in the computation, and is not necessary for the
approach itself.

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 7

Our tests have been performed on meshes constructed upon the sets of 5000, 10000,
15000 and 20000 vertices using Delaunay approach, maximal number of tetrahedra and
minimal number of tetrahedra. To show, how the mesh structure influences the results,
estimations from meshes constructed upon clusters of vertices have also been tested.

To be able to make comparisons and evaluations we need the exact gradient vectors.
Thus it is necessary to use some known function to generate the scalar field values. However,
the estimation methods are meant to search for gradients of general data with no common
characteristic known in advance (e.g. empirically measured data). Therefore there was no
definite criterion for choosing the testing function. The strategy was chosen to test the
methods on some simple function (i.e. f1 � see below), then on some simple function (i.e. f2)
with higher order then the order of the approximation functions used in the estimation method
and eventually on a relatively complex function (i.e. f3), which would be rather distant to
those approximation functions thus at least partially substituting the empirically obtained data:

• 222
1),,(zyxzyxf ++= ,

• 333
2),,(zyxzyxf ++= ,

• 524
3 16583),,(zexyeyxzyxf yz ⋅+⋅⋅+⋅+⋅⋅⋅= .

 These functions will be referenced as f1, f2 and f3.

3.2 Error Measurement

For the testing purposes, the boundary vertices of the mesh were filtered out from the
statistics. The main measure of accuracy was the average error angle computed the following
way. For each vertex, the angle in degrees between the exact gradient and the estimated one
was found. Their arithmetic average then determined the average error:

 ∑
−

=
=

1

0
/)(

N

i
i NE αα . (9)

 The secondary measure was the error of the vector length. In this case, the error
computation consisted of the following steps. First, the difference in the length of both the
vectors was enumerated for each mesh vertex. The ratio of this distance and the length of the
exact gradient vector in that vertex was then expressed. Finally, the arithmetic average of such
ratios was computed:

 N
v

vu
E

N

i i

ii
l /

1

0
∑

−

=

−
= r

rr

 (10)

where E is the average error, ui and vi are the estimated and the exact gradient vectors
respectively and N is the number of evaluated vertices.

Instead of (9) and (10), it would also be possible to measure the error as the length of the
error vector (11), which would be the distance between the end points of the exact and the
computed vector. Symbolically written:

N

v
vu

E

N

i i

ii∑
−

=

−

=

1

0
r

rr

, (11)

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 8

where E is again the average error, ui and vi are the estimated and the exact gradient vectors
respectively and N is the number of evaluated vertices. However, some applications are only
interested in the error angle and do not require the gradient length to be correct. For this
reason, we have used the first evaluation procedure applying equations (9) and (10).

The following picture should make the geometrical meaning of individual error
expressions clear:

i

iu

iv ii vu −

ii vu −

Figure 4: Error measurements illustration

4. Results

In the following paragraphs, where the implemented three approaches will be examined from
several points of view and their results compared, LR-Lin denotes the method that uses linear
regression based on linear approximation function, LR-Nonlin stands for linear regression
based on quadratic approximation function and FDM represents the method based on
generalization of the finite differences method described in [3].

4.1 Accuracy Statistics – Varying Sampling Functions

A good basic notion of how the methods perform can be acquired just by testing them
on a mesh of only 1000 vertices using the Delaunay criteria. Table 1 shows that, from the
accuracy point of view, LR-Nonlin performs best (marked by darker shading). The exception
was using it for estimating linear function (plane) gradients, where the FDM reached the best
results. The reason is that LR-Nonlin attempts to approximate sample values in the vertices by
a quadratic function. Therefore, when applied on a simple plane, it performs worse than the
linearly oriented methods. In all the other cases, however, LR-Nonlin reached the most
accurate results while FDM the worst, LR-Lin being in the middle. The linear sample function
(plane) will not be included in further testing as the results balance on the edge of
computational numerical precision and are not of high importance, for in practice, linear
sampling function can hardly be expected.

Error Angle in Degrees LR-Lin LR-Nonlin FDM
x (plane) 1.31E-15 1.29E-12 9.30E-16
x2 + y2 + z2 (sphere) 2.55 0.45 3.89
x3 + y3 + z3 4.66 0.92 6.32
3 x4 y2 ez + 8 y + 5 x ey + 16 z5 3.36 1.54 3.86

Tab. 1: Tests on Delaunay tetrahedra mesh with 1000 vertices.

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 9

4.2 Accuracy Statistics – Varying Data Density

The following three graphs (one graph for each of the three sample functions) show how
the estimation results improve when supplying more information by using a denser mesh.
Although the graphs look quite similar, it is necessary to note that the scale on the y axis
differs to keep the graphs legible.

Accuracy - f1

0

0,5

1

1,5

2

2,5

3

5000 10000 15000 20000
Number of Vertices

A
ve

ra
ge

 E
rr

or
 [d

eg
]

Accuracy - f2

0

1

2

3

4

5

5000 10000 15000 20000
Number of Vertices

A
ve

ra
ge

 E
rr

or
 [d

eg
]

Accuracy - f3

0

0,5

1

1,5

2

2,5

3

5000 10000 15000 20000

Number of Vertices

A
ve

ra
ge

 E
rr

or
 [d

eg
]

LR-Lin LR-Nonlin FDM

 Graph 1: Estimation accuracy for f1, f2 and f3

Each value in the graphs has been obtained as an average of three measurements, each
using a different tetrahedra mesh (i.e. Delaunay mesh and meshes with maximal and minimal
number of tetrahedra). It is obvious from the graphs above that the denser sampling is
available the more accurate gradient estimation can be expected. As well, the graphs confirm
that (except for the linear sample functions) the LR-Nonlin method returns best results. On the
other hand, comparing these three graphs to each other reveals an interesting fact that more
complex sampling function does not imply lower estimation accuracy. Regardless of the
estimation method used, the results of gradient computation are more precise for f3 than for f2.
In fact, in case of FDM, the results for f3 are even slightly better than those for f1. These,
maybe a little surprising, results are promising for practice, where the samples will probably
not approximate neat simple functions.

4.3 Accuracy Statistics – Varying Vertex Distribution

In this section the influence of the structure of the input mesh on the accuracy of the
estimation will be demonstrated. For this purpose, a pair of Delaunay tetrahedra meshes was
generated upon 5000 and 10000 vertices distributed in clusters. Graph 2 shows the average
estimation error for all three methods on both the uniform as well as the clustered vertices,
meshed by the Delaunay method. Although the graph was meant primarily to illustrate the
influence of the mesh structure on the results, we can also notice that the LR-Nonlin method

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 10

performed best again with significant advance to LR-Lin, let alone FDM. Since the graphs for
different sample functions f1, f2 and f3 resembled each other, only one of them will be
presented here. For easier orientation, the marks at the ends of the lines are rectangular for the
estimation from the mesh with uniformly distributed vertices and triangular for the mesh on
clusters.

Accuracy (f1) - Uniform vs. Cluster Vertex Distribution

0

0,5

1

1,5

2

2,5

5000 6000 7000 8000 9000 10000

Number of Vertices

A
ve

ra
ge

 E
rr

or
 in

 D
eg

re
es

Uniform LR-Lin

Uniform LR-Nonlin

Uniform FDM

Clusters LR-Lin

Clusters LR-Nonlin

Clusters FDM

Graph 2: The average error of the estimation on meshes with clustered and uniform vertex
distribution.

At the first glance it might seem rather surprising, but the graph shows that the gradient
estimation applied on the tetrahedra mesh generated upon the clusters of vertices gives better
results than the mesh with the same number of vertices distributed uniformly. Closer analysis
shows that such results in fact correspond to what was described in the previous section.
When the vertices are grouped in clusters, some of them are positioned at locations, where the
clusters are connected to each other. In these locations, big errors can be expected as the
surrounding of these vertices consists of small tetrahedra in the direction of the cluster, on the
boundaries of which the vertex resides, and large tetrahedra in the other direction, where the
cluster is connected to the other clusters. This unbalanced distribution of information around
these vertices causes the failure of all the gradient estimation methods. The estimated gradient
vectors are strongly inaccurate in such locations. Yet, this situation applies to only a small
percent of vertices. The majority is located inside the clusters, where their density is higher
than in case of uniform distribution, which leads to better estimations. The bigger errors are
compensated and the overall average error is lower for the clustered data than for the
uniformly distributed vertices, where some error peaks appear as well, especially in the
locations close to the surface.

The distribution of the error within the data is illustrated by graph 3. To keep the graphs
understandable, files with only 1000 vertices have been used. The vertices, where the error
has its peaks, are easily recognizable and the situation in some of these �problematic� vertices
has been analyzed visually. This analysis was the ground to the explanations described above.

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 11

Error Distribution - Delaunay Mesh w ith
Uniform Vertex Distribution

0

5

10

15

20

25

0 200 400 600 800 1000

Vertex Number

Er
ro

r A
ng

le

[d
eg

]

Error Distribution - Delaunay Mesh with
Clustered Vertices

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 900 1000

Vertex Number

Er
ro

r A
ng

le

[d
eg

]

Graph 3: The distribution of the error for uniformly distributed and clustered vertices.

4.4 Accuracy Statistics – Vector Length

So far, we have only been concerned in measuring the error angle between the exact and the
estimated gradient vectors. It is however necessary to realize that, unlike for example surface
normal vector, gradient is determined by its length as well. Therefore the methods were also
tested from this point of view and the results have been summarized in Graph 4.

Accuracy - Length

0,00E+00

2,00E-02

4,00E-02

6,00E-02

8,00E-02

1,00E-01

1,20E-01

1,40E-01

5000 10000 15000 20000

Number of Vertices

A
ve

ra
ge

 E
rr

or
 [%

/1
00

]

LR-Lin

LR-Nonlin

FDM

Graph 4: The average error of the estimated gradients� length in percents of the exact vector
length.

Each value in this graph was obtained as the arithmetic average of nine measurements
combining the usage of three sampling functions on the three types of meshes described
above. We can see that the LR-nonlin method gives the most precise results being far ahead of
the other two. The LR-lin estimations were approximately four times less accurate and those
of FDM more than six times. Using different mesh types did not lead to significant
differences here. Concerning the sampling function, results for f1 were a little better than
results for f2, f3.

4.5 Speed Statistics

Although we have adopted the accuracy of individual methods as the main criterion
according to which the methods should be judged, the time requirements of the computations
are usually much too important to bee ignored. To be consistent, the temporal needs of the
three approaches were measured on the same data files as in section 4.2 and the results are
summarized in graph 5. Each value in the graph has thus been obtained as an average of three

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 12

measurements on different tetrahedra meshes. When compared to each other, the results of
these three measurements differed just slightly i.e. at most around 10 percent in one direction
or the other.

Speed

0

2

4

6

8

10

5000 10000 15000 20000

Number of Vertices

Ti
m

e
in

 S
ec

on
ds

LR-Lin

LR-Nonlin

FDM

Graph 5: Comparison of the methods according to their time requirements

Apparently, the more accurate the method is, the more time it needs to do the
computation. While producing the best results, the linear regression method utilizing
quadratic regression function required about four times more time than the method using
linear approximation function and up to ten times more than the finite difference method. Yet,
all three methods have linear time complexity O(N), where N is the number of vertices.

5. Conclusion & Recommendations

In the paragraphs above, the behavior of the gradient estimation methods has been examined
in terms of accuracy while varying several aspects as the mesh internal structure, density and
the sample function defining the scalar field�s values. From this point of view, the linear
regression method with quadratic approximation function turned out to be the best, providing
significantly better results than the other two. On the other hand, it was the most time
demanding one. Although the time complexity is linear for all these methods, the growth of
the time requirements is steeper for the method using quadratic function. Thus, an imaginary
ratio accuracy/speed is roughly the same for all the methods. Therefore there are no
straightforward recommendations in this case. For each application a decision must first be
made, what the primary criterion will be, whether accuracy, speed or some kind of trade-off
between both. As stated at the beginning, accuracy was the main criterion for this study. From
this point of view, the method based on linear regression with nonlinear approximation
function presented in previous sections performed best.

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 13

Vertex Normal Computation

1. Introduction

In the following paragraphs, five methods of vertex normal computation will be described,
tested and compared. The application of the first three approaches is restricted to triangle
meshes. The other two do not require any mesh and thus can be applied on more general data.

2. Theoretical Background

Generally, there are two main approaches for vertex normal computation. The first is based on
combining the normal vectors of the facets that share the vertex being computed. This is the
case of the first two methods described below in 2.1 and 2.2. The fourth and fifth methods in
2.4 and 2.5, on the other hand, try to approximate the surrounding of the vertex in question by
a surface of certain order. The normal of such surface is than considered to be the
approximation of the vertex normal of the original surface. Method three, described in 2.3, is
a combination of both these approaches. It uses a normal of an approximation surface, which
is, however, computed as a weighted sum of surrounding facets� normals. Since this method�s
theoretical background resembles methods 2.4 and 2.5, the procedure of the computation is
similar to 2.1 and 2.2. Thus, it is half way from the first approach to the other one and
therefore it will be described in section 2.3.

2.1 Gouraud

This method has been described in [1] by Gouroud, who suggests computing normals in
the vertices of a triangle mesh as the average of the normal vectors of the facets that share the
vertex being computed. In his approach, all the facets, which contribute to the vertex normal
computation, are weighted equally. Mathematically,

∑

∑

=

==
n

i
i

n

i
i

N

N
N

1

1 ,

where N is the normal in the vertex and Ni are the normals of the triangles that share it.

2.2 Thurmer

Thurmer and Wuthrich [6] aim to improve the accuracy of the vertex normal
computation method suggested by Gouraud. They claim that the results of the Gouraud�s
method strongly depend on the topology of the mesh around the vertex being processed. In
other words, if we start with certain triangle mesh, choose one of its vertices and compute the
normal vector there, then if we restructure the surrounding of this vertex and then we re-

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 14

compute the vertex normal, the result should ideally be the same. By reconstructing the vertex
surrounding we mean using a different triangulation upon the same set of vertices. This can be
reached for example by adding new vertices on the edges of some of the existing triangles
thus dividing these triangles into two or more smaller ones while keeping the overall shape of
the surface untouched � see Figure 1.

N
N

Figure 1: Illustration of the normal�s dependency on the meshing

The authors of this article try to reach the independency on the mesh structure through
weighting the contribution of each facet�s normal by the size of the angle of the facet�s edges
incident to the computed vertex. This can be expressed as

∑

∑

=

==
n

i
ii

n

i
ii

N

N
N

1

1

α

α
,

where iα is the angle between the two edges of the facet that lead to the vertex. Thurmer and
Wutrich state that although other measures (e.g. the areas of the triangles) might also be used,
the incident angle is the only one to obtain correct results.

Remark:
In both the methods described above, there is another aspect to be pointed out. The purpose of
using these methods is to make the surface shaded smoothly and to get a rid of those edges
between adjacent polygons that do not occur on the original object and that are caused by the
approximation. However, the rendered body may also contain some real edges. Smoothing out
these edges would rather decrease than increase the realism of the rendered image.
Unfortunately, these edges are usually not marked within the input data, which is why the
rendering algorithm can hardly recognize them. The method that can sometimes help to
overcome this drawback is based on defining certain �decision angle�. If the angle between
two adjacent polygons is less sharp than the decision angle, the edge is considered to be an
unwanted one and is smoothed. Otherwise, the edge probably represents a real edge on the
rendered object and should be displayed sharply.

2.3 Using Facet Normals Weighted by the Area

In this method, the normal nr is computed as a normalized weighted sum of the unit
length normal vectors inr of the facets that belong to the cycle around the vertex being
processed similarly as in Gouraud�s [1] and Thurmer�s [6] approach. This time, each facet�s

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 15

area iS is considered as the weighting function for the corresponding normal. Thus, the larger
facets have higher influence than the smaller ones. Symbolically expressed:

∑
∑

=

m
i

m
ii

S

Sn
N

r
r

, where
N
Nn r

r
r

= .

Remark:
As mentioned above, this method is a combination of two main approaches in a way. On one
hand, the actual computation resembles the Gouraud’s or Thurmer’s methods, because the
vertex is found as a weighted average of the surrounding triangles� normals. On the other
hand, the theoretical background of this approach rather resembles the idea underlying the
following two methods, Linear Regression and the Finite Differences Method, where the
normal of an approximating surface is viewed as the estimation of the vertex normal. In other
words, the neighbors of the vertex where the normal is to be computed are found first. This set
of vertices is then interleaved by an average surface, whose normal is then considered to be
co-linear with the surface normal in the computed vertex.
According to [7], one way to express the normal of the approximating surface is to make an
area weighted average of the surrounding triangles� normals, which is the case of the method
above.

Nevertheless, there are more ways to find the average surface normal. The following
two approaches estimate the gradient of the function),(yxf that approximates the values in
the neighborhood of the computed vertex as the first step. The elements of this gradient vector

),(
y
f

x
ff

∂
∂

∂
∂=∇ represent partial derivatives of f along the x and y directions respectively. The

vectors
x
fkiu

∂
∂⋅+=

rrr and
y
fkjv

∂
∂⋅+=

rrr are thus the tangent vectors of f for .consty = and

.constx = Subsequently, the cross product vun rrr ×= represents the normal vector of the
approximating function in the location of the vertex in question. This vector nr is than viewed
as the estimate of the original surface normal (see figure 2).

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 16

x
f

∂
∂

y
f

∂

),0,1(
x
fu

∂
∂r

),1,0(
y
f

v
∂
∂r

)1,,(
y
f

x
fn

∂
−

∂
−r

Figure 2: Computation of surface normal from the data gradient

The two approaches bellow differ in the procedure of computing the gradient

),(
y
f

x
ff

∂
∂

∂
∂=∇ .

2.4 Linear Regression

In this method, the gradient of the approximating function is estimated using the linear
regression, which is described in section 2.1 of the Gradient Vector Estimation chapter above.
The principle is the same the only difference resides in the fact that in this case the
computation is done using a 3D linear regression, because we seek gradients of the function

),(2 yxf instead of),,(1 zyxf that was used in case of volumetric data gradient estimation.

2.5 Finite Difference Method

In this method, the gradient of the approximating function is estimated using the
generalization of the finite differences methods introduced in [3] by Meyer et al. For the
description of this method see section 2.3 in the chapter devoted to Gradient Vector
Estimation.

3. Implementation

All the above-described methods for vertex normal computation were implemented within
one application developed under the Borland Delphi environment and the tests were run on a
system with the Intel Pentium III @ 448MHz CPU and 1024MB RAM.

3.1 Testing Data

The testing data for the vertex normal computation were produced via the MVE system
using the DTLib module. For each of the three kinds of 2D triangle meshes available in this
module (i.e. regular meshes, irregular meshes with uniformly distributed vertices and irregular

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 17

meshes with vertices distributed randomly), input files were generated for 1,000 / 10,000 /
100,000 / 250,000 / 500,000 / 750,000 and 1.000,000 vertices.

For the computation of the z coordinate, three different functions were used. These are:

• 22
1 2),(yxyxf −−=

•)2sin(25.0),(2
2 yxyxf ⋅⋅⋅+= π

•)cos(25.0)sin(25.01),(3 yxyxf ⋅⋅+⋅⋅+= ππ

The examined vertex normal estimating methods can be applied on various triangle meshes,
which have no common characteristic. Thus there is no principal criterion to be used for
designing the testing functions for the z coordinate generation. Since 1,0, ∈yx for all the
vertices of the generated 2D triangle mesh, the only limitation is that the function f must be
defined for any point P from this region (i.e.)(:},1,0,:],[{ PfzRzyxyxPP =∈∃∈∈∀). All
the three functions listed above fit this condition. When choosing the functions, the aim was
to test the methods on surfaces that are curved just slightly as f1, as well as surfaces, where the
curvature changes quite a lot f3. Function f2 is something in between.

For the testing purposes, the boundary vertices of the mesh were not included in the
statistics.

4. Results

4.1 Notation

In the following text, the first three methods described in sections 2.1 � 2.3, which
compute vertex normals from adjacent triangles� normal vectors, will be marked as
NfT(w=1), NfT(w=angle) and NfT(w=area) respectively. The fourth method, which uses
linear regression to estimate the gradient of the approximating surface, will be marked LR.
The last one will be denoted by FDM.

4.2 Accuracy Statistics – Varying z-Functions (Surface Shape)

One of the important aspects, which influence the accuracy of the estimation of the
triangle mesh vertex normal, is the shape of the examined surface. As one might intuitively
expect, it is easier to estimate the normal vector in a vertex of a plane or some slightly wavy
surface than to estimate such normal for strongly curved meshes. To confirm this belief, the
examined methods were tested on surfaces constructed from planar 2D meshes by defining
the z coordinate via the functions listed above in section 3.1. Each of the three graphs
displayed below describes the average errors produced by individual methods when applied
on the three differently curved surfaces. As expected, most precise results were obtained on
the surfaces produced by f1, where the curvature was minimal. For f3, on the other hand, the
average measured errors were approximately four times as big. The function f2 appeared to be
half way between f1 and f3.

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 18

Accuracy - f1

0

0,05

0,1

0,15

0,2

0,25

0 200000 400000 600000 800000 1000000

Number of Vertices

A
ve

ra
ge

 E
rr

or
 [d

eg
]

NfT(w=1) NfT(w=angle) NfT(w=area) LR FDM

Graph 1: The estimation errors for 22
1 2),(yxyxf −−=

Accuracy - f2

0

0,1

0,2

0,3

0,4

0,5

0,6

0 200000 400000 600000 800000 1000000

Number of Vertices

A
ve

ra
ge

 E
rr

or
 [d

eg
]

NfT(w=1) NfT(w=angle) NfT(w=area) LR FDM

Graph 2: The estimation errors for)2sin(25.0),(2
2 yxyxf ⋅⋅⋅+= π

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 19

Accuracy - f3

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 200000 400000 600000 800000 1000000

Number of Vertices

A
ve

ra
ge

 E
rr

or
 [d

eg
]

NfT(w=1) NfT(w=angle) NfT(w=area) LR FDM

Graph 3: The estimation errors for)cos(25.0)sin(25.01),(3 yxyxf ⋅⋅+⋅⋅+= ππ

4.3 Accuracy Statistics – Varying the Mesh Density

Another aspect that plays an important role is the density of the mesh. When the number
of vertices increases, more information is contained in the mesh, smaller regions are used for
the estimation and more precise results can be obtained. This fact is also illustrated by the
three graphs above.

However, the most important knowledge to be acquired from these measurements is
that, regardless of the number of vertices or the function used, the best results were obtained
using the NfT(w=1) and NfT(w=angle) methods, followed by LR, NfT(w=area) and FDM as
the worst one. To be more specific, applying FDM caused the error to be approximately
double in comparison to NfT(w=1) or NfT(w=angle). It is also necessary to notice that
NfT(w=area) performs significantly worse than NfT(w=1), which implies that using the facet
area as a weighting function for computing vertex normals from facet normals decreases
rather than increases the resulting precision.

4.4 Accuracy Statistics – Varying Vertex Distribution (Surface Structure)

In the previous two paragraphs the influence of the overall shape and the density of the
mesh on the accuracy of the vertex normal computation was examined. In section 4.3
individual methods have been sorted according to the precision of their results. Here the
concern will be put on the internal structure of the mesh and its relation to the accuracy of the
vertex normals computed by individual tested methods.

The MVE module DTLib produces 2D meshes constructed upon non-uniformly,
uniformly or regularly distributed data. The following two graphs show that using meshes
with randomly distributed vertices, whether uniformly or not, does not cause a change in the
sequence of the methods sorted in 4.3.

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 20

Accuracy (f3) - Nonuniform Distribution

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 200000 400000 600000 800000 1000000

Number of Vertices

A
ve

ra
ge

 E
rr

or
 [d

eg
]

NfT(w=1) NfT(w=angle) NfT(w=area) LR FDM

Graph 4: Estimation from meshes with non-uniform vertex distribution.

Accuracy (f3) - Uniform Distribution

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 200000 400000 600000 800000 1000000

Number of Vertices

A
ve

ra
ge

 E
rr

or
 [d

eg
]

NfT(w=1) NfT(w=angle) NfT(w=area) LR FDM

Graph 5: Estimation from meshes with uniform vertex distribution.

If we start with a 2D mesh containing regularly distributed vertices, however, the
sequence of the methods sorted according to the accuracy differs from the one in 4.3. For the
correctness, it is necessary to point out that after the transformation to 3D by applying one of

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 21

the three functions listed in section 3.1, the vertex distribution will not be regular any more.
Yet, certain features of the mesh will be preserved, which, as it turned out, will be sufficient
for our purpose.

Graph 6 describes the average error of vertex normals estimation on a mesh, which was
obtained by computing the z coordinate for vertices of 2D mesh with regular vertex
distribution. In this case, f3 was used to do so, but as other measurements have shown, it
works the same way with the other functions as well. The point is that in this situation, the
NfT(w=1) method went much worse, while all the other methods remained on their positions
including NfT(w=angle) and NfT(w=area). In fact, NfT(w=1) performs with nearly the same
accuracy as NfT(w=area) in this case.

Accuracy (f3) - Regular Distribution

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 200000 400000 600000 800000 1000000

Number of Vertices

A
ve

ra
ge

 E
rr

or
 [d

eg
]

NfT(w=1) NfT(w=angle) NfT(w=area) LR FDM

Graph 6: Estimation from meshes with regular vertex distribution.

The reason resides in the structure of the original 2D mesh. Figure 3 shows a real
example of this mesh. Although the vertex distribution is regular, the triangulation of the
vertices is not. On the contrary, there are only a few vertices, the nearest surrounding of which
is triangulated symmetrically. If we recall the principal of NfT(w=angle) as described in 2.2,
it is obvious that the computation of vertex normal vectors from facet normals without using
any weighting function, which is the case of NfT(w=1), will often produce incorrect results.
Although the transformation into 3D deforms the mesh partially, it is not surprising that
NfT(w=1) produces similar results as NfT(w=area) for such mesh, since all the triangles had
originally the same area.

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 22

Figure 3: An example of a 2D mesh with a regular vertex distribution.

4.5 Speed Statistics

The time requirements of individual methods are illustrated by Graph 7. The methods
that use facet normals for the vertex normal computation have similar temporal needs. FDM
and LR must do some more complex matrix operations. They therefore have higher time
demands.

Speed

0

5

10

15

20

25

0 200000 400000 600000 800000 1000000

Number of Vertices

Ti
m

e
[s

]

NfT(w=1) NfT(w=angle) NfT(w=area) LR FDM

Graph 7: The time requirements of the tested methods.

5. Conclusion & Recommendations

In the preceding paragraphs, five methods for computing triangle mesh vertex normal vectors
have been presented, implemented and their results were compared with focus on accuracy.

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 23

The linear regression and the finite difference methods have the advantage that they are easily
transformable to various kinds of data and are not restricted to triangle meshes. Yet, having
taken all the gathered information about the behavior of all the tested methods into
consideration, the approach of Thurmer and Wuthrich seems to be the best solution for
computing triangle mesh vertex normals.

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 24

Ideas for the Future Work
Since we have also dealt with isosurface extraction [2] we would like to find out whether, and
to what extent, it is possible to use the estimated gradient for computing normal vectors in the
vertices of the triangle mesh, which represents the extracted isosurface. Our motivation for
such research can be outlined briefly by the statement that [5] the gradient vector

k
z

j
y

i
x ∂

∂
+

∂
∂

+
∂
∂

=∇
φφφφ in location],,[000 zyxQ of the function ()pφ , which describes the values

of a scalar field, is perpendicular to the field�s isosurface passing through the],,[000 zyxQ . The
gradients might therefore be pre-computed in the preprocessing step and then, during the
extraction, just interpolated to form the vertex normals of the extracted surface. This will
require the gradient vectors to be estimated exactly enough including their length and not only
the direction.

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 25

References

[1] Gouraud, H.: Continuous Shading of Curved Surfaces, IEEE Transactions on Computers,

Vol. 20, No. 6, pp. 623--629, June 1971.

[2] Jirka, T.: Methods of isosurface extraction from tetrahedral meshes and nonscalar data

visualization, MSc. Thesis (in Czech), Západočeská univerzita v Plzni - FAV, 2001.

[3] Meyer T.H., Eriksson M., Maggio R.C.: Gradient estimation from irregularly spaced data

sets, Mathematical Geology, 33: (6) 693-717, August 2001

[4] Neumann L., Csbfalvi B., Knig A., Groeller E.: Gradient Estimation in Volume Data

using 4D Linear Regression. EUROGRAPHICS 2000, 2000.

[5] Rektorys, K.: An Overview of Applied Mathematics. (in Czech) SNTL � Nakladatelství

technické literatury, Praha, 1981.

[6] Thürmer G., Wuthrich A.: Computing vertex normals from polygonal facets. Journal of

Graphics Tools, 3(1):43-46 1998.

[7] �ára j., Bene� B., Felkel P.: Modern Computer Graphics. (in Czech) Computer Press,

Praha, p. 149, 1998.

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 26

Appendix
A short overview of several articles that are related to this topic but do not directly address the
problem stated at the beginning and that have not been included in the comparative study, will
be listed here.

Article:
Max N.: Weights for computing vertex normals from facet normals. Journal of Graphics
Tools, 4(2):1-6, 1999.

Notes:
The author of this article focuses on the computation of the vertex normals in polygonal
meshes. Unlike the previous two methods, neither of which made any restrictions in respect of
the position of the facets� vertices except for some singularities, the approach proposed by
Max requires the vertices to be placed on a spherical surface. The underlying idea resides in
the simple fact that for such a set of vertices the normal direction must pass through the
sphere�s center point, which can be found as the intersection of the bisector planes of the
edges between the computed vertex and the surrounding ones. Through a set of mathematical
derivations, Max comes to the following new weighting function for vertex normal
computation from the facet normals:

()1

sin

+

=
ii

i
i VV

w
α

.

According to his tests this method is superior to any other weighting functions, but only for
polygon inscribed in a sphere. Max also claims that in these tests the Thurmer and Wuthrich�s
method performed worse then the non-weighted Gouraud�s algorithm.

Article:
Thürmer G., Wuthrich A.: Normal Computation for Discrete Surfaces in 3D Space.
Eurographics'97, vol 16, num 3, 1997.

Notes:
Thurmer and Wuthrich describe a way to find a normal vector in any point of a surface. The
underlying idea of their attitude resides in the fact that the surface divides the space into two
separate parts each of which contains the information about the shape of the surface. To
extract the information for a particular point on the surface it is sufficient to examine the
situation in just one of the two sub-spaces. The estimation procedure works as follows. First
of all, uniformly distributed sample points are generated in the chosen sub-space of the local
neighborhood of the computed vertex, which is considered as the origin of the coordinate
system. (As written in the article, �a sample point),,(sss zyxq consists of the random
variables XS, YS and ZS distributed uniformly in the interval [-d,d]. Then we obtain the set of

vectors],,[)(
222222222
SSS

s

SSS

s

SSS

s
p

zyx

z

zyx

y

zyx

x
AV

++++++
= of all sample points which

are in the considered neighborhood 2222
SSS zyxd ++≥ , and that are on one side of the surface,

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

 27

i.e. above the surface),(SSS yxSz > .) The local neighborhood is spherical (circular in 2D);
therefore the polar coordinates are used for simplicity. Then all the vectors from the computed
vertex to the individual sample points are summed and the resulting vector points in the
direction of the surface normal. This vector is then normalized.

A

B

p

Figure 1: Vectors in one subspace within a circle neighborhood.

There is also the possibility to use a cubic (square in 2D) neighborhood. In that case, however,
the corners of the cube (or square) introduce certain error to the estimation process. Thurmer
and Wuthrich derive the expectable error for such kind of neighborhood.
The authors also derive a method for the discrete space and in the article bellow they study its
performance if run with various parameters:

Thürmer G., Wuthrich A.: Varying Neighborhood Parameters for the Computation of
Normals on Surfaces in Discrete Space. Proc. Computer Graphics International'98, IEEE
Computer Society Press, 1998, pp.616-625.

Article:
Moller T., Machiraju R., Mueller K., Yagel R.: A Comparison of Normal Estimation Schemes,
IEEE Visualization Proceedings 1997, pp. 19--26, October 1997.

Notes:
This article is rather theoretical and describes the overall framework for the normal
estimation. A general mathematical device is derived at the beginning as a tool for proving the
correctness of the approaches discussed. The goal of these approaches is to find a location of
certain character within the input data and to estimate the normal vector in such a location. To
do this, the authors use the interpolation and the derivative filters. They, however, do not give
any particular suggestions about how these filters should look like. They rather focus on the
order, in which to apply the filters. There are three possibilities. In the first one, the desired
location is found first (using the interpolation filter) and afterwards the computation of the
normal vector takes place (through the derivative filter). The second possibility is to estimate
the normal vectors in the original data locations first (that is to use the derivative filter) and
then apply the interpolation filter to find the required location interpolating the previously
found normals as well. The last way, which the authors themselves consider to be rather
hypothetical than practical, is to combine both the filters first, thus obtaining a single transfer
function, which could then be applied on the input data. In that case, the desired location and
its normal vector would be found within a single step.

Published:Szczyrk int.workshop, Poland, ISSN 1427-9274, pp.27-32, 2003

	img023.pdf
	img024.pdf
	img025.pdf
	img026.pdf
	img027.pdf
	img028.pdf
	img029.pdf
	img030.pdf
	img031.pdf

