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Abstract 

The common tusk in computer gruphics is to visuulise 
models of real world objects. These models are often 
represented by triungulur mesh, which can be very large 
und complex (thousands or million triangles). Since we 
want U fust und inteructive munipulution with the models, 
we need either to improve our gruphics hurdwure or to 
find any method for  reducing number of triangles in the 
mesh. We present here u fust ulgorithm for  triungulur mesh 
reduction bused on the principle of mesh decimution. 

We present un efficient and stuble ulgorithm for  
triungulur mesh simplificution in purullel environment. We 
use U method bused on vertex decimution und our originul 
super independent set of vertices to avoid criticul sections. 

1 Introduction 

Due to wide technological advancement on field of 
computer graphics during last years, there is real expansion 
of applications dealing with models of real world objects. 
For the representation of such models a triangular mesh is 
commonly used. With growing demands on quality and 
complexity of computations we can meet models of which 
surfaces contain hundreds thousand or millions triangles. 
The models are usually produced by: 

3D scanners, computer vision and medical 
visualisation systems, which can produce models 
of real world objects. 
CAD systems, usually producing complex and 
high detailed models. 

Surface reconstruction methods or methods for 
iso-surface extraction, which give us models with 
very dense polygonal mesh, usually with regular 
vertices arrangement. 

Since the visualisation of large and complex models has 
high demands of computers performance, the techniques 
for mesh simplification have been developed. The aim of 
such techniques is to create an approximation of the 
original model preserving important details of the object 
shape. However these techniques are often very slow and 
therefore unsuitable for large datasets. 

Our goal was not to make an algorithm, which will 
produce high quality surface in sense of approximation 
error. We wanted to develop a fast and easy to implement 
algorithm for simplification of large and complex 
triangular meshes. Our method is built on known 
decimation techniques and increased the efficiency by 
parallel implementation. Proposed algorithm has been 
tested on large datasets. 

This paper is structured as follows: In section 2 we 
discuss a previous work, basic techniques for the mesh 
simplification especially decimation and a general 
overview of our previous approach. We present our 
improvements to the method as well as data structures used 
and our new algorithm in section 3 .  Section 5 introduces 
our results. Time comparison, approximation quality and 
some examples of reduced models. 
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2 Previous work 

2.1 Mesh decimation 

Mesh decimation methods are simplification algorithms 
that start with a polygonisation (typically a triangulation) 
and successively simplify it until the desired level of 
approximation is achieved. Most of decimation algorithms 
fall into one of the three categories, discussed below, 
according to their decimation technique. 

One of the most used methods is vertex decimation, an 
iterative simplification algorithm originally proposed by 
Schroeder [l] .  In each step of decimation process, all 
vertices are evaluated according to their importance. The 
least important vertex is selected for removal and all the 
facets adjacent to that vertex are removed from the model 
and the resulting hole is triangulated. 

Since the triangulation requires a projection of the local 
surface onto a plane, these algorithms are generally limited 
to manifold surfaces. Vertex decimation methods preserve 
the mesh topology as well as a subset of original vertices. 

Other subset of decimation techniques is pointed to the 
elimination of the whole edge. The principle is similar to 
the vertex decimation. When the least important edge if 
found, its length is contracted to zero and triangles, which 
degenerate to an edge, are removed. Hoppe [2] was the 
first who has used edge contraction as the fundamental 
mechanism accomplishing surface simplification. It is also 
necessary to evaluate the importance of edges before the 
contraction. One of the best-known techniques [3] uses 
quudric error metrics for the edge (vertex pairs) 
evaluation. 

Unless the topology is explicitly preserved, edge 
contraction algorithms may implicitly alter the topology by 
closing holes in the surface. 

Techniques, which eliminate either one triangle or any 
larger area, belong to the last group. These methods delete 
several adjacent triangles and triangulate their boundary. In 
case of one triangle, this one is deleted together with three 
edges and the neighbourhood is triangulated. The 
evaluation of the reduced elements requires more complex 
algorithms, in these methods. 

2.2 Our approach 

Each of the above mentioned approaches have their 
advantages and disadvantages [4]. We have tried to extract 
the advantages of all approaches as will be presented in the 
following part. 

We have started with vertex decimation methods and 
used the Schroeder’s approach [ 13 because of its simplicity 

and generality in meaning of vertex importance evaluation, 
and combine it with edge contraction. The methodology of 
vertex decimation is in fact closely related to the edge 
contraction approach. Instead of the vertex elimination and 
arising hole triangulation, one of adjacent edges is 
contracted, thus we obtain a new triangulation 
automatically. For the contraction we use the edge that 
goes out from the eliminated vertex and causes the 
minimal area of a new surface. 

A basic idea that has been used in [6] recently is that 
decimation by deleting an independent set of vertices (no 
two of which are joined by an edge, see) can be run 
efficiently in parallel. The vertex removals are independent 
and they leave one hole per one deleted vertex, which can 
be triangulated independently. This decreases the program 
complexity and run time significantly. We used a 
technique [6] when we assign an importance value to each 
vertex, then select an independent set to delete by choosing 
vertices of the lowest importance. 

According to our special data structures used, we have 
to apply more strict rules on independent set of vertices3. 
Therefore we defined super independent set of vertices [7]. 
Two vertices are in the super independent set if all 
triangles that share them do not share any other vertex 
from that set, Figure 1 .  

Figure 1: Vertices VI, v2, v3 can belong to the 
independent set of vertices; vertices VI and v3 

belong to the super independent set of vertices. 

To construct a super independent set from 
an assignment of importance values we go through all the 
vertices in order of their importance and take a vertex if it 
fit to previous condition. 

If we summarize the ideas from paragraphs above we 
get a fundamental algorithm [7]. 

Otherwise there will be critical sections in a parallel code and the 
overhead rapidly decrease the algorithm performance [7]. 
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1. 

2. 

3. 

4. 

5. 

Evaluation of importance of all the vertices 
(parallel). 
Sort them according to their importance 
(sequential/parallel). 
Create the super independent set of vertices 
(sequential). 
Decimate (remove) vertices in the super 
independent set (parallel). 
Repeat steps 1 to 4 until desired reduction 
achieved. 

It is obvious that the critical points of the algorithm are 
the sequential parts (steps 2 and 3). Since we cannot 
efficiently parallelize the creation of the super independent 
set of vertices, we substitute an ineffective vertices sorting. 

3 Improvements 

3.1 Main idea 

It is necessary to point to the fact that independent set 
inhibits vertex importance! Because if we have several 
least important neighbouring vertices, only one of them 
will be chosen to the independent set of vertices in one 
iteration. The rest will be ignored and instead of them other 
more important vertices will be removed from the mesh. 

Considering this we found that it is not necessary to 
have vertices exactly sorted, so we can use another 
mechanism, e.g. bucketing function. 

The second point came out from the look to the 
histogram of vertices importance for several datasets, see 
Figure 2.  

nl.tlva Importance [0.1%] 

Figure 2: Vertices importance histogram. 

It is obvious that 80-90% of vertices have the 
importance below 1% of the maximum importance value. 

Therefore we decided to create a super independent set of 
vertices from vertices with their importance under some 
threshold only. This approach seemed to introduce big 
errors in resulting approximation at the first view. But if 
we consider the behaviour of the algorithm that uses the 
super independent set of vertices, we find that the 
approximation quality is sufficient as the experiments 
proved. 

3.2 Data structure used 

To improve the efficiency of our parallel algorithm we 
also used a special data structure. To store the information 
about vertices we use a data structure similar to a winged 
edge. With each vertex is kept the number (vertex degree) 
and indexes of triangles that share the vertex, see Figure 3.  

Vertex: 

n '1,2.5.4,3,?,6 

Figure 3: An illustrating scheme of our data 
structures. 

Due to these data structures used we can create the 
independent set in 0 (d*n) time, where n is the number of 
vertices and d is the vertex degree (d=6 on an average). 

3.3 Resulting algorithm 

Having described the ideas upon which our method is 
based, we can present now the resulting algorithm: 

1.  

2. 

3. 

4. 

Vertices evaluation - vertex type classification 
and importance computation (parallel). 
Vertices thresholding and super independent set 
of vertices creation (sequential). 
Vertices removal (decimation) - edge importance 
evaluation, triangulation (parallel). 
Repetition of steps 1-3 until desired amount of 
triangles reached. 

Parallel parts run as threads, where each thread has its 
own part of vertices to process. More details can be found 
in [7]. 

24 

SCCG IEEE proceedings,  ISBN 0-7695-1215-1, pp.22-29, 2001



4 Experimental results 

~0de1 name- 
Teeth 
Bunny 

4.1 Speed-up comparison 

NO. iftriangles NO. of vertices 
58,328 29,166 
69,45 1 35,947 

In this section we present results of our experiments that 
compare a speed-up and approximation error obtained with 
different data sets, using different number of processors. 

We have used several large data sets but we mention 
experimental results only with 7 different data sets, see 
Table 1. 

Horse 96,966 48,485 
137,072 60,537 
654,666 3 2 7,3 2 3 
87 1,414 437,645 

1,087,716 543,652 
Turbine blade 1,765,388 882,954 

Table 1: Data sets used. 

We made ow experiments on DELL Power Edge 8450 
- 8xPentium 111, cache 2MB, SSOMHz, 2GB RAM, 
running on the Windows 2000. 

Figure 4 shows a graph of the speedup comparison. The 
speedup U is computed from total times (sequential and 
parallel parts of the algorithm together) using expression 
(1). 

time 
time, (1) = 2, 

where N = l . . 8  is a number of processors used and timeN 
is the time obtained if N processors are used. 

4.2 Time comparison 

The comparison of vertices sorting and vertices 
thresholding approaches can be seen on Figure 5. On 
Figure 6 is shown the actual runtime (in percent) of the 
various algorithm steps for Huppy Buddhu model. You can 
compare the ratio for old and new method. Notice that the 
creation of super independent set seems to be limiting and 
the maximal speedup of this approach is approximately 15. 

3 

2 5  

n 2  
? B 
H 1 5  

1 

0 5  

0 
0 1 2 3 4 5 6 7 8 9 

processors used 

Figure 4: The speed-up of total computation (total time), parallel and sequential parts together; the 
acceleration is computed for several models of different amount of triangles. 

25 

SCCG IEEE proceedings,  ISBN 0-7695-1215-1, pp.22-29, 2001



180 ~ 

+Thresholding - -Q-Sort 
160 - 

140 - -  

(Y 

20 -. // 
p---+--- a 

O T  
Teeth Bunny Horse Bone Hand Dragon Happy Buddha Turbine blade 

model name 

Figure 5: Time comparison of old method with vertices sorting (Quick-Sort) and new approach with 
vertices thresholding. 

Figure 6: The time ratio of various parts of the algorithm for Happy Buddha model with one (outside) and 
eight (inside) processors used (vertices sorting on the left, vertices thresholding is on the right side). 

Unfortunately we cannot compare achieved times where q presents the superiority of DELL computer 
directly with others due to the different platforms used. To against the SGI. Table 3 presents our results according to 
make the results roughly comparable at least, we use the results obtained recently taking the ratio q into the 
official benchmarks presented by SPEC as shows Table 2 ,  consideration. 
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Benchmark SGI DELL 410 rl 
test / machine RlOOOO Precision (DELLBGI) 
SPECfp95 8.77 13.1 1.49 

I SPECint95 I 10.1 I 17.6 I 1.74 I 

Figure 7 shows the ratio of parallel code (3) of the 
decimation part according to the number of triangles, for 
different number of processors used. 

Table 2: Benchmark test presented by 
Standard Performance Evaluation Corporation. 

Algorithm 
Presented algorithm 
Garland [3] 
Lindstrom & Turk [8] 
Hoppe [9] 
JADE [ 101 

Decim. time from 69.451 to 
1.000 triangles [sec] 

3.7 * k = 3.7* 1.49 = 5.51 
10.4 
2585 
500 
325 

4.3 Amdahl's law 

I 
ZxOm E" anm arm0 l " m 1 2 " o  

number of triangles 

Figure 7: The ratio of the parallel code for 
decimation part. 

The experiments proved that the method is stable 
according to the number of processors used and all the 
results meet the Amdahl's law (2) perfectly. 

4.4 Approximation 

The quality of an approximation can be measured by 
several approaches. One of the possible ways is to compute 
a geometric error using Eavg metric [ 1 11 (4,5) derived from 

1 
(2) CI = 

( I  - p )  + E  
N Hausdorff distance: 

and therefore 
N * (1 - U )  

a * ( N  - I ) '  
p=- 

(3) 

where U is the speed-up, p is potentially parallel code 
and N is the number of processors used. 

The value of potentially parallel code is independent 
from the number of processors used, see Table 4 and 
for the large model Huppy Buddhu the value p = 0.69 was 
reached for the whole algorithm. 

Table 4: The comparison of speed-up and 
potentially parallel code between method using 
vertices sorting (s) and method with vertices 

thresholding (t); computed for the Happy Buddha 
model. 

where MI and M2 are original and reduced model, k, 
and k2 are numbers of vertices on each model, X I  and X2 
are subsets of vertices in MI ,  M2. 

Since our method keeps the subset of original vertices, 
we can use more simple formula (6) :  

where kl is original number of vertices, P(Ml) is a set of 
original vertices and d,(Md is the distance between 
original and reduced set of vertices. 

Figure 8 presents a comparison of error measurement of 
the proposed algorithm and M. Garland's method [ I  I ]  on 
aBunny model. However, such a comparison is not very 
accurate because Garland uses edge collapse procedure and 
changes vertex positions. 
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1 

o M.Garland 
+ prop. alg. 

We also benefited from Cyberware.com model gallery 
and from the large model repository located at Georgia 
Institute of Technology; 
URL: http://www.cc.gatech.edu/proiects/large models. 

Figure 8: Approximation error comparison. 

Examples of reduced models show figures 9 and 10. 

5 Conclusion 

We have described a new algorithm for parallel 
triangular mesh decimation without vertices sorting. 

The algorithm combines vertex decimation method with 
the edge contraction to simplify object models in a short 
time. To improve the efficiency of our parallel algorithm 
we have used the super independent set of vertices and 
substitute vertices sorting algorithm by fast vertices 
thresholding. The disadvantage of present implementation 
is the sequential creation of the super independent set of 
vertices, which is limiting for maximum speed-up about 
15. The proposed method proved its stability according to 
the number of processors and the size of the data set used. 

In Future we expect to remove independent set creation 
step using a hash Function and also to improve the hole re- 
triangulation method, which could be controlled by the 
local error measurement. 
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Figure I O :  A dragon model (courtesy GaTech) at different resolutions; the original model with 
871,414 triangles on the left, reduced to approx. 430,000 triangles in the middle and 87,000 

triangles approximation on the right. 

Figure 9: A teeth model (courtesy Cyberware); an original model with 58.328 triangles on 
the left, reduced with vertices sorting method to 2.736 triangles in the middle and reduced 

by proposed method to 2.730 triangles on the right side. 
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