
Parallel Triangular Mesh Decimation Without Sorting
Martin Franc', Vaclav Skala2

Department of Computer Science and Engineering
University of West Bohemia in Plzen

Abstract

The common tusk in computer gruphics is to visuulise
models of real world objects. These models are often
represented by triungulur mesh, which can be very large
und complex (thousands or million triangles). Since we
want U fust und inteructive munipulution with the models,
we need either to improve our gruphics hurdwure or to
find any method for reducing number of triangles in the
mesh. We present here u fust ulgorithm for triungulur mesh
reduction bused on the principle of mesh decimution.

We present un efficient and stuble ulgorithm for
triungulur mesh simplificution in purullel environment. We
use U method bused on vertex decimution und our originul
super independent set of vertices to avoid criticul sections.

1 Introduction

Due to wide technological advancement on field of
computer graphics during last years, there is real expansion
of applications dealing with models of real world objects.
For the representation of such models a triangular mesh is
commonly used. With growing demands on quality and
complexity of computations we can meet models of which
surfaces contain hundreds thousand or millions triangles.
The models are usually produced by:

3D scanners, computer vision and medical
visualisation systems, which can produce models
of real world objects.
CAD systems, usually producing complex and
high detailed models.

Surface reconstruction methods or methods for
iso-surface extraction, which give us models with
very dense polygonal mesh, usually with regular
vertices arrangement.

Since the visualisation of large and complex models has
high demands of computers performance, the techniques
for mesh simplification have been developed. The aim of
such techniques is to create an approximation of the
original model preserving important details of the object
shape. However these techniques are often very slow and
therefore unsuitable for large datasets.

Our goal was not to make an algorithm, which will
produce high quality surface in sense of approximation
error. We wanted to develop a fast and easy to implement
algorithm for simplification of large and complex
triangular meshes. Our method is built on known
decimation techniques and increased the efficiency by
parallel implementation. Proposed algorithm has been
tested on large datasets.

This paper is structured as follows: In section 2 we
discuss a previous work, basic techniques for the mesh
simplification especially decimation and a general
overview of our previous approach. We present our
improvements to the method as well as data structures used
and our new algorithm in section 3 . Section 5 introduces
our results. Time comparison, approximation quality and
some examples of reduced models.

{martylskala) Okiv zcu cz
http //home zcu cz/-fniart~Iskala)
This work was supported by
'The Ministry of Education of The Czech Republic
-project MSM 235200002
'Academy of Sciences of The Czech Republic
- project A 2030801

0-7695-1215-1/01 $10.00 0 2001 IEEE
22

SCCG IEEE proceedings, ISBN 0-7695-1215-1, pp.22-29, 2001

2 Previous work

2.1 Mesh decimation

Mesh decimation methods are simplification algorithms
that start with a polygonisation (typically a triangulation)
and successively simplify it until the desired level of
approximation is achieved. Most of decimation algorithms
fall into one of the three categories, discussed below,
according to their decimation technique.

One of the most used methods is vertex decimation, an
iterative simplification algorithm originally proposed by
Schroeder [l] . In each step of decimation process, all
vertices are evaluated according to their importance. The
least important vertex is selected for removal and all the
facets adjacent to that vertex are removed from the model
and the resulting hole is triangulated.

Since the triangulation requires a projection of the local
surface onto a plane, these algorithms are generally limited
to manifold surfaces. Vertex decimation methods preserve
the mesh topology as well as a subset of original vertices.

Other subset of decimation techniques is pointed to the
elimination of the whole edge. The principle is similar to
the vertex decimation. When the least important edge if
found, its length is contracted to zero and triangles, which
degenerate to an edge, are removed. Hoppe [2] was the
first who has used edge contraction as the fundamental
mechanism accomplishing surface simplification. It is also
necessary to evaluate the importance of edges before the
contraction. One of the best-known techniques [3] uses
quudric error metrics for the edge (vertex pairs)
evaluation.

Unless the topology is explicitly preserved, edge
contraction algorithms may implicitly alter the topology by
closing holes in the surface.

Techniques, which eliminate either one triangle or any
larger area, belong to the last group. These methods delete
several adjacent triangles and triangulate their boundary. In
case of one triangle, this one is deleted together with three
edges and the neighbourhood is triangulated. The
evaluation of the reduced elements requires more complex
algorithms, in these methods.

2.2 Our approach

Each of the above mentioned approaches have their
advantages and disadvantages [4]. We have tried to extract
the advantages of all approaches as will be presented in the
following part.

We have started with vertex decimation methods and
used the Schroeder’s approach [13 because of its simplicity

and generality in meaning of vertex importance evaluation,
and combine it with edge contraction. The methodology of
vertex decimation is in fact closely related to the edge
contraction approach. Instead of the vertex elimination and
arising hole triangulation, one of adjacent edges is
contracted, thus we obtain a new triangulation
automatically. For the contraction we use the edge that
goes out from the eliminated vertex and causes the
minimal area of a new surface.

A basic idea that has been used in [6] recently is that
decimation by deleting an independent set of vertices (no
two of which are joined by an edge, see) can be run
efficiently in parallel. The vertex removals are independent
and they leave one hole per one deleted vertex, which can
be triangulated independently. This decreases the program
complexity and run time significantly. We used a
technique [6] when we assign an importance value to each
vertex, then select an independent set to delete by choosing
vertices of the lowest importance.

According to our special data structures used, we have
to apply more strict rules on independent set of vertices3.
Therefore we defined super independent set of vertices [7].
Two vertices are in the super independent set if all
triangles that share them do not share any other vertex
from that set, Figure 1 .

Figure 1: Vertices VI, v2, v3 can belong to the
independent set of vertices; vertices VI and v3

belong to the super independent set of vertices.

To construct a super independent set from
an assignment of importance values we go through all the
vertices in order of their importance and take a vertex if it
fit to previous condition.

If we summarize the ideas from paragraphs above we
get a fundamental algorithm [7].

Otherwise there will be critical sections in a parallel code and the
overhead rapidly decrease the algorithm performance [7].

23

SCCG IEEE proceedings, ISBN 0-7695-1215-1, pp.22-29, 2001

1.

2.

3.

4.

5.

Evaluation of importance of all the vertices
(parallel).
Sort them according to their importance
(sequential/parallel).
Create the super independent set of vertices
(sequential).
Decimate (remove) vertices in the super
independent set (parallel).
Repeat steps 1 to 4 until desired reduction
achieved.

It is obvious that the critical points of the algorithm are
the sequential parts (steps 2 and 3). Since we cannot
efficiently parallelize the creation of the super independent
set of vertices, we substitute an ineffective vertices sorting.

3 Improvements

3.1 Main idea

It is necessary to point to the fact that independent set
inhibits vertex importance! Because if we have several
least important neighbouring vertices, only one of them
will be chosen to the independent set of vertices in one
iteration. The rest will be ignored and instead of them other
more important vertices will be removed from the mesh.

Considering this we found that it is not necessary to
have vertices exactly sorted, so we can use another
mechanism, e.g. bucketing function.

The second point came out from the look to the
histogram of vertices importance for several datasets, see
Figure 2.

nl.tlva Importance [0.1%]

Figure 2: Vertices importance histogram.

It is obvious that 80-90% of vertices have the
importance below 1% of the maximum importance value.

Therefore we decided to create a super independent set of
vertices from vertices with their importance under some
threshold only. This approach seemed to introduce big
errors in resulting approximation at the first view. But if
we consider the behaviour of the algorithm that uses the
super independent set of vertices, we find that the
approximation quality is sufficient as the experiments
proved.

3.2 Data structure used

To improve the efficiency of our parallel algorithm we
also used a special data structure. To store the information
about vertices we use a data structure similar to a winged
edge. With each vertex is kept the number (vertex degree)
and indexes of triangles that share the vertex, see Figure 3.

Vertex:

n '1,2.5.4,3,?,6

Figure 3: An illustrating scheme of our data
structures.

Due to these data structures used we can create the
independent set in 0 (d*n) time, where n is the number of
vertices and d is the vertex degree (d=6 on an average).

3.3 Resulting algorithm

Having described the ideas upon which our method is
based, we can present now the resulting algorithm:

1.

2.

3.

4.

Vertices evaluation - vertex type classification
and importance computation (parallel).
Vertices thresholding and super independent set
of vertices creation (sequential).
Vertices removal (decimation) - edge importance
evaluation, triangulation (parallel).
Repetition of steps 1-3 until desired amount of
triangles reached.

Parallel parts run as threads, where each thread has its
own part of vertices to process. More details can be found
in [7].

24

SCCG IEEE proceedings, ISBN 0-7695-1215-1, pp.22-29, 2001

4 Experimental results

~0de1 name-
Teeth
Bunny

4.1 Speed-up comparison

NO. iftriangles NO. of vertices
58,328 29,166
69,45 1 35,947

In this section we present results of our experiments that
compare a speed-up and approximation error obtained with
different data sets, using different number of processors.

We have used several large data sets but we mention
experimental results only with 7 different data sets, see
Table 1.

Horse 96,966 48,485
137,072 60,537
654,666 3 2 7,3 2 3
87 1,414 437,645

1,087,716 543,652
Turbine blade 1,765,388 882,954

Table 1: Data sets used.

We made ow experiments on DELL Power Edge 8450
- 8xPentium 111, cache 2MB, SSOMHz, 2GB RAM,
running on the Windows 2000.

Figure 4 shows a graph of the speedup comparison. The
speedup U is computed from total times (sequential and
parallel parts of the algorithm together) using expression
(1).

time
time, (1) = 2,

where N = l . . 8 is a number of processors used and timeN
is the time obtained if N processors are used.

4.2 Time comparison

The comparison of vertices sorting and vertices
thresholding approaches can be seen on Figure 5. On
Figure 6 is shown the actual runtime (in percent) of the
various algorithm steps for Huppy Buddhu model. You can
compare the ratio for old and new method. Notice that the
creation of super independent set seems to be limiting and
the maximal speedup of this approach is approximately 15.

3

2 5

n 2
? B
H 1 5

1

0 5

0
0 1 2 3 4 5 6 7 8 9

processors used

Figure 4: The speed-up of total computation (total time), parallel and sequential parts together; the
acceleration is computed for several models of different amount of triangles.

25

SCCG IEEE proceedings, ISBN 0-7695-1215-1, pp.22-29, 2001

180 ~

+Thresholding - -Q-Sort
160 -

140 - -

(Y

20 -. //
p---+--- a

O T
Teeth Bunny Horse Bone Hand Dragon Happy Buddha Turbine blade

model name

Figure 5: Time comparison of old method with vertices sorting (Quick-Sort) and new approach with
vertices thresholding.

Figure 6: The time ratio of various parts of the algorithm for Happy Buddha model with one (outside) and
eight (inside) processors used (vertices sorting on the left, vertices thresholding is on the right side).

Unfortunately we cannot compare achieved times where q presents the superiority of DELL computer
directly with others due to the different platforms used. To against the SGI. Table 3 presents our results according to
make the results roughly comparable at least, we use the results obtained recently taking the ratio q into the
official benchmarks presented by SPEC as shows Table 2 , consideration.

26

SCCG IEEE proceedings, ISBN 0-7695-1215-1, pp.22-29, 2001

Benchmark SGI DELL 410 rl
test / machine RlOOOO Precision (DELLBGI)
SPECfp95 8.77 13.1 1.49

I SPECint95 I 10.1 I 17.6 I 1.74 I

Figure 7 shows the ratio of parallel code (3) of the
decimation part according to the number of triangles, for
different number of processors used.

Table 2: Benchmark test presented by
Standard Performance Evaluation Corporation.

Algorithm
Presented algorithm
Garland [3]
Lindstrom & Turk [8]
Hoppe [9]
JADE [101

Decim. time from 69.451 to
1.000 triangles [sec]

3.7 * k = 3.7* 1.49 = 5.51
10.4
2585
500
325

4.3 Amdahl's law

I
ZxOm E" anm arm0 l " m 1 2 " o

number of triangles

Figure 7: The ratio of the parallel code for
decimation part.

The experiments proved that the method is stable
according to the number of processors used and all the
results meet the Amdahl's law (2) perfectly.

4.4 Approximation

The quality of an approximation can be measured by
several approaches. One of the possible ways is to compute
a geometric error using Eavg metric [1 11 (4,5) derived from

1
(2) CI =

(I - p) + E
N Hausdorff distance:

and therefore
N * (1 - U)

a * (N - I) '
p=-

(3)

where U is the speed-up, p is potentially parallel code
and N is the number of processors used.

The value of potentially parallel code is independent
from the number of processors used, see Table 4 and
for the large model Huppy Buddhu the value p = 0.69 was
reached for the whole algorithm.

Table 4: The comparison of speed-up and
potentially parallel code between method using
vertices sorting (s) and method with vertices

thresholding (t); computed for the Happy Buddha
model.

where MI and M2 are original and reduced model, k,
and k2 are numbers of vertices on each model, X I and X2
are subsets of vertices in MI , M2.

Since our method keeps the subset of original vertices,
we can use more simple formula (6) :

where kl is original number of vertices, P(Ml) is a set of
original vertices and d,(Md is the distance between
original and reduced set of vertices.

Figure 8 presents a comparison of error measurement of
the proposed algorithm and M. Garland's method [I I] on
aBunny model. However, such a comparison is not very
accurate because Garland uses edge collapse procedure and
changes vertex positions.

27

SCCG IEEE proceedings, ISBN 0-7695-1215-1, pp.22-29, 2001

1

o M.Garland
+ prop. alg.

We also benefited from Cyberware.com model gallery
and from the large model repository located at Georgia
Institute of Technology;
URL: http://www.cc.gatech.edu/proiects/large models.

Figure 8: Approximation error comparison.

Examples of reduced models show figures 9 and 10.

5 Conclusion

We have described a new algorithm for parallel
triangular mesh decimation without vertices sorting.

The algorithm combines vertex decimation method with
the edge contraction to simplify object models in a short
time. To improve the efficiency of our parallel algorithm
we have used the super independent set of vertices and
substitute vertices sorting algorithm by fast vertices
thresholding. The disadvantage of present implementation
is the sequential creation of the super independent set of
vertices, which is limiting for maximum speed-up about
15. The proposed method proved its stability according to
the number of processors and the size of the data set used.

In Future we expect to remove independent set creation
step using a hash Function and also to improve the hole re-
triangulation method, which could be controlled by the
local error measurement.

Acknowledgements

The authors would like to thank all who contributed to
this work, especially to colleagues, MSc. and PhD.
Students at the university of West Bohemia in Plzen who
have stimulated this work. This paper benefits from several
discussions with them a lot. We would also like to thank to
DELL Computer Czech Republic for enabling us to carry
out all the experiments on their 8-processor computer type.

References

1. W. Schroeder, J. Zarge, W. Lorensen. Decimution of
Triungle Meshes. In SIGGRAPH 92 Conference
Proceedings, pages 65-70, July 1992.

2. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W.
Stuetzle. Mesh optimization. In SIGGRAPH 93 Conference
Proceedings, pages 19-26, 1993.

3. M. Garland, P. Heckbert. Surface Simpl$fication Using
Quudric Error Metrics. In SIGGRAPH 97 Conference
Proceedings, 1997.

4. M. Garland. Multiresolution Modeling: Survey (e Future
Opportunities. In the SIGGRAPH 97 course notes, 1997.

D. Kirkpatrick. Optimal Search in Planur Subdivisions.
SIAM J. Comp., pages 12:28-35, 1983.

5.

6. B. Junger, J. Snoeyink. Selecting Independent k'ertices for
Terrain Simplification. In WSCG 98 Proceedings, Plzen
University of West Bohemia, pages 157-164, February
1998.

7. M. Franc, V. Skala. Purullel Triungulur Mesh
Decimution. In SCCG 2000 Conference Proceedings,
Comenius University Bratislava, May 2000.

P. Lindstrom, G. Turk. Fast and memory efficient polygonal
simplification. IEEE Visualization 98 Conference
Proceedings, 1998.

8.

9. H. Hoppe. Progresive meshes. SIGGRAPH '96
Proceedings, 1996.

I O . A. Ciampaliny, P. Cigony, C. Montani, R. Scopigno.
Mutiresolution decimation based on global error. The
Visual Computer, 1997.

1 1. M. Garland. Quadric-Based Polygonal Surjace
Simplification. PhD Thesis, School of Computer Science,
Camegie Mellon University, 1999.

28

SCCG IEEE proceedings, ISBN 0-7695-1215-1, pp.22-29, 2001

http://Cyberware.com
http://www.cc.gatech.edu/proiects/large

Figure I O : A dragon model (courtesy GaTech) at different resolutions; the original model with
871,414 triangles on the left, reduced to approx. 430,000 triangles in the middle and 87,000

triangles approximation on the right.

Figure 9: A teeth model (courtesy Cyberware); an original model with 58.328 triangles on
the left, reduced with vertices sorting method to 2.736 triangles in the middle and reduced

by proposed method to 2.730 triangles on the right side.

29

SCCG IEEE proceedings, ISBN 0-7695-1215-1, pp.22-29, 2001

