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Let us assume that two points A(x A, yA, z A) and
B(xB, yB, zB) are given, and we wish to compute
the intersection of the line segment AB with the uni-
tary clipping pyramid, defined as the set of all points
(x, y, z) such that −z ≤ x ≤ z and −z ≤ y ≤ z (z ≥
0). The intersection is either empty or a line segment
whose end points we must compute.
Many algorithms for clipping a line or a line seg-
ment in E3 have been published; see the stan-
dard textbooks (Cyrus and Beck 1978; Liang and
Barsky 1983, 1984; Foley et al. 1990; Skala 1996,
1997) for the main references. For a long time,
the Cohen-Sutherland (CS) algorithm and its ex-
tensions to E3 (Foley et al. 1990) were used for
the line segment clipping algorithms nearly exclu-
sively. Later, the Liang-Barsky (LB) and Cyrus-
Beck (CB) algorithms were proposed, and they are
based on the line parametric representation. Be-
cause the line segment clipping against a pyramid
is used in all graphics packages, a new algorithm
based on Nicholl-Lee-Nicholl algorithm has been
developed.
Before describing the proposed algorithm for a line
segment clipping, it is necessary to unify some
definitions.

2 Definitions

The planes x = −z, x = z, y = −z, and y = z
are called the right, left, bottom, and top bound-
aries of the unitary pyramid, respectively. We say
that:

• A point or a line segment is visible if it lies en-
tirely inside the given pyramid,

• A point or a line segment is invisible if it lies en-
tirely outside the given pyramid,

• A line segment is partially visible if it lies partly
inside and partly outside the given pyramid.

If the line segment is invisible, then no part of
the line segment appears in the output, and the
line segment is said to be rejected by the clipping
algorithm.
The boundaries of the pyramid divide the carte-
sian positive half space (z ≥ 0) into nine regions.
Regions that are bounded by only two boundaries
are called the corner regions, and regions that are
bounded by three boundaries are called the edge re-
gions (Fig. 1).
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Fig. 1. Subdivision of the positive half space into regions
Fig. 2. Subregions for the case when point A lies inside the pyramid
Fig. 3. Subregions for the case when point A is in the left edge region
Fig. 4. Subregions for the case when point A is in top right corner region

3 Proposed pyramidal clipping
algorithm

The proposed pyramidal clipping (PC) algorithm
uses an approach similar to that of the Nicholl–Lee–
Nicholl algorithm (Nicholl et al. 1987) that was de-
rived for the E2 case only. Given a line segment AB,
for simplicity, we assume that both points A and B
are in the positive half space. The end point A there-
fore can lie inside of the pyramid, in an edge re-
gion or in a corner region. For each of these cases,
we can divide the positive half space into certain
number of subregions (Figs. 2–4). These subregions

are bounded by the pyramid boundaries and planes
determined by point A and one edge of the pyra-
mid. These planes are denoted as �1, �2, �3, and
�4, clockwise from the top left edge (Figs. 2–4).
All other cases can be obtained from one of these
cases in Figs. 2–4 by rotating the scene around the
z axis.
With these definitions, the algorithm can be de-
scribed by the following basic steps:

• Characterize the location of point A among the
nine regions.

• Characterize the location of point B among the
appropriate subregions.
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• Compute the intersection points according to the
characterization.

The main advantage of this approach is that we
can determine which pyramid boundaries are inter-
sected, and we therefore avoid unnecessary compu-
tation of invalid intersection points.
The proposed PC algorithm is explained in more de-
tail by the top-down approach. At the beginning, we
must determine whether the end point A of the given
line segment is beyond the right boundary, beyond
the left boundary, or between those two boundaries.
The main procedure, in Pascal-like code is:

procedure Clip(x A, yA, z A, xB, yB, zB : real);
begin

if x A < −z A then case 3.1
{point A is beyond right boundary}

else if x A <= z A then case 3.2
{point A is between 2 boundaries}

else case 3.3
{point A is beyond left boundary}

end;

We will use the exit command in the following parts
of the algorithm to denote the end of the procedure
and to avoid “else if” sequences that are unnecessary
for the algorithm explanation.

3.1 Point A is beyond the right boundary

If point B is also beyond the right boundary, it is not
necessary to characterize point A further because the
line segment is invisible. Therefore, we must check
whether point B is beyond the right boundary before
proceeding. After that, we must test whether point A
lies either in the corner region or in the edge region.
This section of the algorithm can be implemented as
follows:

begin {case 3.1}
if xB < −zB then

EXIT; {Line segment is rejected}
if yA > z A then case 3.1.1

{point A is in the top right
corner region}

else if yA >= −z A then case 3.1.2
{point A is in the right edge

region}
else case 3.1.3

{point A is in the bottom right
corner region}

end {case 3.1};

3.1.1 Point A is in the top right corner region, and
point B is not beyond the right boundary

If point B is above the top boundary, the line segment
is invisible, and no further computation is needed.
Therefore, we need to check this condition first, and
then characterize point B so that we can distinguish
between the case when point B is beyond the left
boundary and the case when point B is inside the
pyramid or in the bottom edge region (Fig. 4). The
following pseudo-code shows how it can be imple-
mented:

begin {case 3.1.1}
if yB > zB then

EXIT; {Line segment is rejected}
if xB > zB then case 3.1.1.1

{point B is in the left edge or in the
bottom left corner region}

else case 3.1.1.2
{point B is inside of the pyramid or in

the bottom edge region}
end {case 3.1.1};

3.1.1.1 Point A is in the top right corner region and
point B is in the left edge region or in the
bottom left corner region

If point B is above the plane �1, the line segment is
rejected (Fig. 4). Therefore, we must check this con-
dition first, and then distinguish the case when point
B is in the left edge region and the case when point
B is in the bottom left corner region. In the case of
the left edge region, one intersection point lies on
the pyramid’s left boundary. The location of point B
against the plane �2 specifies, that the second inter-
section point lies on the top or on the right boundary.
This way, only the appropriate intersection point is
computed. In the case of bottom left corner region,
point B is compared to the plane �3 first to eliminate
the case when the line segment is rejected. After that,
we compare the position of point B to the plane �4 to
determine the location of the first intersection point
(on the bottom or on the left boundary). At the end, a
similar comparison with the plane �2 determines the
second intersection point. An implementation can be
as follows:

begin {case 3.1.1.1}
∆x := xB − x A; ∆y := yB − yA; ∆z := zB − z A;
if ((x A − z A)∗ (∆z −∆y)

> (yA − z A)∗ (∆z −∆x))
then EXIT; {Line segment is rejected}
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{first intersection point computation}
if yB > −zB then {B is in the left edge region}

t1 := (x A − z A)/(∆z −∆x)
else {B is in the bottom left corner region}
begin
if ((x A + z A)∗ (∆z +∆y)

> (yA + z A)∗ (∆z +∆x))
then EXIT; {Line segment is rejected}

if ((z A − x A)∗ (∆y +∆z)
> (z A + yA)∗ (∆z −∆x))

then {intersection with left boundary}
t1 := (x A − z A)/(∆z −∆x)

else {intersection with bottom boundary}
t1 := −(yA + z A)/(∆z +∆y)

end;
{second intersection point computation}
if ((x A + z A)∗ (∆z −∆y)

> (z A − yA)∗ (∆z +∆x))
then {intersection with top boundary}

t2 := (yA − z A)/(∆z −∆y)
else {intersection with right boundary}

t2 := −(x A + z A)/(∆z +∆x)
end {case 3.1.1.1};

3.1.1.2 Point A is in the top right corner region, and
point B is inside the pyramid or in the
bottom edge region

In the case when point B is inside the pyramid, the
position of point B against the plane �2 specifies
whether the intersection point lies either on the top
or on the right boundary. In the case when point B
is in the bottom edge region, point B must be com-
pared with the plane �3 first to eliminate the situation
in which the line segment is rejected. If the line seg-
ment AB is not rejected by the clipping algorithm,
then one intersection point lies on the bottom bound-
ary. The other intersection point lies on the top or on
the right boundary according to the position of point
B against the plane �2. This section can be imple-
mented as follows:

begin {case 3.1.1.2}
∆x := xB − x A; ∆y := yB − yA; ∆z := zB − z A;
{first intersection point computation}
if yB < −zB then {B in bottom edge region}
begin
if ((x A + z A)∗ (∆z +∆y)

> (yA + z A)∗ (∆z +∆x))
then EXIT; {Line segment is rejected}

t1 := −(yA + z A)/(∆z +∆y)
end

else {B is inside the pyramid}
t1 := 1;

{second intersection point computation}
if ((x A + z A)∗ (∆z −∆y)

> (z A − yA)∗ (∆z +∆x))
then {intersection with top boundary}
t2 := (yA − z A)/(∆z −∆y)

else {intersection with right boundary}
t2 := −(x A + z A)/(∆z +∆x)

end {case 3.1.1.2};

3.1.2 Point A is in the right edge region, and point
B is not beyond the right boundary

We need to distinguish the cases when point B is be-
low the bottom boundary (point B is in bottom left
corner region or in the bottom edge region), or above
the top boundary (point B is in top left corner region
or in the top edge region) or between top and bottom
boundaries. An implementation can be as follows:

begin {case 3.1.2}
if yB < −zB then case 3.1.2.1

{point B is in the bottom-left corner
or in the bottom edge region}

else if yB <= zB then case 3.1.2.2
{point B is in the left edge region or

inside of the pyramid}
else case 3.1.2.3

{point B is in the top left corner
or in the top edge region}

end {case 3.1.2}

3.1.2.1 Point A is in the right edge region, and point
B is in the bottom left corner or in the
bottom edge region

The location of point B against the plane �3 helps
us to eliminate the case when the line segment is re-
jected. If point B is in the bottom edge region, then
the intersection points are on the right and the bot-
tom boundaries. If point B is in the bottom left corner
region, then one intersection point lies on the right
boundary and the second intersection point’s loca-
tion (either on the left or on the bottom boundary)
is determined by the location of point B against the
plane �4.

begin {case 3.1.2.1}
if ((x A + z A)∗ (∆z +∆y)

> (yA + z A)∗ (∆z +∆x))
then EXIT; {Line segment is rejected}

{first intersection point computation}
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if xB > zB then {B in the bottom left corner}
if ((z A − x A)∗ (∆z +∆y)

> (z A + yA)∗ (∆z −∆x))
then {intersection with left boundary}

t1 := (x A − z A)/(∆z −∆x)
else {intersection with bottom boundary}

t1 := −(yA + z A)/(∆z +∆y)
else {B in bottom edge region}

{intersection with bottom boundary}
t1 := −(yA + z A)/(∆z +∆y);

{second intersection is on right boundary}
t2 := −(x A + z A)/(∆z +∆x)

end {case 3.1.2.1};

3.1.2.2 Point A is in the right edge region, and point
B is inside of the pyramid or in the left edge
region

In this case, one intersection point is on the right
boundary and the second one (if point B is in the left
edge region) is on the left boundary; see following
pseudo-code:

begin {case 3.1.2.2}
{first intersection is on right boundary}
t1 := −(x A + z A)/(∆z +∆x);
{second intersection point computation}
if xB > zB then {point B in left edge region}

t2 := (x A − z A)/(∆z −∆x)
else t2 := 1

end {case 3.1.2.2};

3.1.2.3 Point A is in the right edge region, and point
B is in the top left corner or in the top edge
region

This case is similar to the case in Sect. 3.1.2.1.

3.1.3 Point A is in the bottom right corner region,
and point B is not beyond the right boundary

The case is similar to the case in Sect. 3.1.1.

3.2 Point A is between the left and the right
boundaries

In this case, we need to characterize the location of
point A to specify whether point A lies inside the
pyramid or in an edge region. The following pseudo-
code shows how it can be done:

begin {case 3.2}
if yA > z A then case 3.2.1

{A is in the top edge region}
else if yA < −z A then case 3.2.2

{A is in the bottom edge region}
else case 3.2.3 {A is inside the pyramid}

end {case 3.2};

We need to consider only the case when point A is
inside the pyramid (case 3.2.3). The cases, in which
point A is in the top (case 3.2.1) or bottom edge re-
gion (case 3.2.2), are similar to the case when point
A is in the right edge region (case 3.1.2).

3.2.3 Point A is inside the pyramid

If point B lies in an edge region, then the bound-
ary, on which the intersection point lies, is deter-
mined (Fig. 2), and the appropriate intersection point
is computed. If point B lies in a corner region, then
a comparison of the location of point B with an ap-
propriate plane �i is necessary before the appropriate
intersection point is computed. An implementation
can be illustrated as follows:

begin {case 3.2.3}
if xB < −zB then

if yB > zB then case 3.2.3.1
{B is in the top right corner region}

else if yB >= −zB then case 3.2.3.2
{B is in the right edge region}

else case 3.2.3.3
{B is in the bottom right corner region}

else if xB > zB then
if yB > zB then case 3.2.3.4

{B is in the top left corner region}
else if yB < −zB then case 3.2.3.5

{B is in the bottom left corner region}
else case 3.2.3.6

{B is in the left edge region}
else

if yB > zB then case 3.2.3.7
{B is in the top edge region}

else if yB < −zB then case 3.2.3.8
{B is in the bottom edge region}

else case 3.2.3.9
{B is inside pyramid; the whole line

segment is visible}
end {case 3.2.3};

3.2.3.1 Point A is inside the pyramid, and point B is
in top right corner region

The comparison of point B with the plane �2 spec-
ifies which boundary (top or right) is to be used to
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compute the intersection point. An implementation
can be as follows:
begin {case 3.2.3.1}

if ((x A + z A)∗ (∆z −∆y)
> (z A − yA)∗ (∆z +∆x))

then {intersection with top boundary}
t1 := (yA − z A)/(∆z −∆y)

else {intersection with right boundary}
t1 := −(x A + z A)/(∆z +∆x);

t2 := 0;
end {case 3.2.3.1};
The cases 3.2.3.3–3.2.3.5 are similar to case 3.2.3.1.

3.2.3.2 Point A is inside the pyramid, and point B is
in right edge region

The appropriate intersection point (the intersection
point on the right boundary) is calculated. The fol-
lowing pseudo-code shows how it can be imple-
mented:
begin {case 3.2.3.2}

t1 := −(x A + z A)/(∆z +∆x);
t2 := 0

end {case 3.2.3.2};
The cases 3.2.3.6–3.2.3.8 can be solved similarly.

3.3 Point A is beyond the left boundary

This case can be solved similarly to the case when
point A is beyond the right boundary (case 3.1).
Finally, we can easily compute the end points of the
output line segment from the parameter value t as
follow:

x := t ∗∆x + x A;
y := t ∗∆y + yA;
z := t ∗∆z + z A.

It can be seen that all possible cases have been
solved, and the complete algorithm can be ob-
tained by substitution of the appropriate codes in all
procedures.

4 Experimental results

To be able to compare the CS, LB, and CB algo-
rithms with the proposed PC algorithm and evalu-
ate the efficiency of the PC algorithm, we introduce
three coefficients of efficiency as:

ν1 = TCS

TPC
, ν2 = TLB

TPC
, ν3 = TCB

TPC
,

5

6

Fig. 5. Generated line segments
Fig. 6. Generated line segments

where TCS, TLB, TCB, and TPC denote the time
consumed by the CS algorithm, LB algorithm,
CB algorithm, and the proposed PC algorithm,
respectively.
For experimental verification, 8 ·107 different line
segments were randomly generated for each of the
21 cases shown in Figs. 5 and 6. The tests were per-
formed on a PC Intergraph Pentium II, 400 MHz
512 MB RAM, 256 KB cache. The obtained re-
sults are presented in Table 1, which shows that
the proposed algorithm is just as fast as the CS
algorithm when the line segment lies inside the
pyramid, and it is significantly faster in all other
cases. It can be seen that the speed-up varies from
1.17 to 2.08 approximately for these cases. Table 1
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Table 1. Experimental results

Case ν1 ν2 ν3

s1 1.01 2.54 2.40
s2 1.29 2.83 2.69
s3 1.51 1.85 1.75
s4 1.52 1.84 1.75
s5 1.25 1.74 1.63
s6 1.31 1.35 1.25
s7 1.57 1.26 1.17
s8 1.18 1.78 1.63
s9 1.55 1.64 1.51
s10 1.53 1.56 1.46
s11 1.54 1.22 1.14
s12 1.17 1.68 1.58
s13 1.25 1.28 1.19
s14 1.18 1.69 1.57
s15 2.08 1.53 1.74
s16 1.38 1.44 1.62
s17 1.50 1.23 1.13
s18 1.63 1.09 1.00
s19 1.18 1.25 1.15
s20 1.49 1.23 1.12
s21 1.32 1.30 1.22

also shows that the PC algorithm is significantly
faster than the LB and CB algorithms for most
cases.

5 Conclusion

The new line segment clipping algorithm against a
given pyramid in E3 has been developed, verified,
and tested. This algorithm is convenient for all ap-
plications if the line segment clipping in E3 is to
be used. Experiments have shown that the new al-
gorithm is never slower than the CS, LB, and CB
algorithms, and is generally faster; up to twice as fast
in some cases.
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