Sign Language Interpreter

Jiti Dobry, Vaclav Skala’
Department of Computer Science & Engineering,
University of West Bohemia, P.O.Box 314, Univerzitni 8, 306 14 Plzen, Czech Republic
E-mail: jdobry @students.zcu.cz, skala@kiv.zcu.cz

Abstract

There are five human senses connecting each of us with the surrounding world. Deaf and hard of hearing
people are missing one of these senses. Their communication is strongly affected, because most of them are
not able to communicate verbally. In this article a graphic system for the computer visualisation of the sign
language (the means of communication between deaf people based on hand movements) will be described.
The system visualises an animated human model in real time and is able to translate written text into the sign
language (with the limitations of the dictionary). In the following paragraphs an introduction to the sign
language will be presented as well as an explanation of the geometric model of human being, controlling of

animation and real time visualisation using OpenGL APIL

1. Introduction

Everybody needs to communicate with the
world around him or her. For the
communication people use their senses. Deaf
and hard of hearing people are unable to use
the most common way of communication -
a spoken language, because their ability to
hear 1s limited and in most cases is none.
Therefore they wuse special form of
communication - the sign language. It is a
language with its own grammatical rules,
words and special expressions.
Communication is then based on combining
movements of fingers, hands and arms. Some
of the signs consist of movements of hands in
connection with different parts of the rest of
the body (especially of the face). Sometimes
grimaces and facial expressions are used too.
A special form of communication with the
deaf people is the lip reading. When speaking
to them they watch the movements of the
speaker’s mouth and if they are trained in it,
they can understand even without using the
sign language or hearing the speaker.

The system described here uses computer
graphics to simulate the real sign language
speaker. There are many possibilities how to
use the system. One of them is virtual sign

language speaker in connection with TV

subtitles. This virtual speaker will be able to

translate written form of subtitles into more
suitable form for the deaf people, into the sign
language. Another possibility is to use the
system as an interactive sign language
dictionary. This four dimensional dictionary
(3D space + time) cannot be compared with
the book. Another very similar way of use is
multimedia application for learning sign
language. We can use all the advantages of
modern multimedia systems and join it
together with sign language. As the result we
get very suitable way how to learn sign
language especially for deaf children, their
parents and people working with deaf and
hard of hearing persons. Similar system to
this is now being developed on the St Paul’s
University in Chicago [7].

2. Visualisation of humanoids

2.1. Model representation

There is a lot of methods for visualising
objects of the real world by a computer.
Human beings visualisation is one of the most
complicated problems being solved in
computer graphics. The difficulty is given by
anatomical structure of the human body. One
day we will be able to simulate movements of
all the muscles, skin deformation, hair and a
lot of other parts of human body according to

' This work was supported by the Ministry of Education of the Czech Republic - project VS 97155, Academy of

Sciences of the Czech Republic project - A2030801

all the physical laws in real time. But it is still
the future. There are systems producing very
realistic human model visualisation (computer
generated movies, commercials, etc.), but
these techniques are time consuming and
unusable for a real time system.

Many people were trying to visualise human
models in the past and different techniques
and algorithms were used.

a) Stick figures

One of the first experiments how to visualise
the animation of humanoids was using the
stick figures. The body was represented by a
set of segments connected together in joints.
However this approach has a lot of
disadvantages and the visual results are not
very realistic. The first well known model
was designed by Withrow in 1970 [9].

b) Surface figures

Another method wused in humanoid
visualisation is the use of the surface model.
Skeleton is covered by the surface consisting
of polygons or curved surfaces (Bezier
patches, NURBS etc.). Many of these models
were designed for commercial use. The big
advantage of such models is their realistic
appearance. The animation of these models is
complicated near segment joints, because
some kind of shape deformation must be
applied in order to get acceptable results.

¢) Volume figures

The third method is the volume representation
of the models. The models are built from
volume primitives such as cones, ellipsoids or
spheres. Visualisation of such a model is fast,
but the visual results are not so good as in the
case of surface models.

Our approach

For our purposes we have compared
advantages and disadvantages of the methods.
To achieve good visual results, the best way is
to use a surface model with approximately
5000 triangles. Such a complex model can
still animated in real time with the use of
recent graphic hardware accelerators. Very

important thing is bending the segments in
joints when animating such amodel. The
bending algorithm we use will be described
later. To get a high performance, relatively
fast bending method is used.

2.2. Animation techniques

There are several animating techniques that
produce different results. The computational
complexity, special hardware requirements,
knowledge and experience of the animators
are some of the parameters affecting the final
result. Two basic principles for controlling the
animation are used.

a) Key-frame animation

Key-frame animation is based on computing
the frames (so called in-betweens) between
the frames that are set by animator. Animator
usually sets only several frames and the
application computes the in-betweens to get
smooth movement of the animated object.
Two different approaches are used for
key-frame animation.

Techniques

Shape interpolation

The first approach we mention here is
interpolation of the frames themselves. It is
called image-based key-frame animation or
shape interpolation. It is an old technique
used already for animated line drawings. The
animator sets the positions of all the vertices
in 3D space and the application interpolates
the vertex co-ordinates between two frames.
Linear interpolation causes a lot of negative
effects in more complicated movements if this
method is used.

Parametric key-frame animation

Another technique is generation of
in-betweens by interpolating the parameters
of the model. This method is -called
parametric key-frame animation or Kkey-
transformation. The model is specified by the
set of parameters. Animator sets the values of
these parameters in the key-frames and the in-
between frames are computed by

interpolation. But in this case only the
parameters are interpolated. From the
interpolated parameters we get new poses of
the models, that we render to get the final
image.

Interpolation

Interpolation is very important part of the
animation. There are several methods of
interpolation. Some of them are faster but
produce bad visual effects and, on the other
hand, there are very good interpolation
algorithms that are time consuming and
therefore they can't be used for real time
animation. The most popular methods of
interpolation are linear interpolation (used for
the shape interpolation) and spline
interpolation (for parametric key-frame
animation). The most interesting splines for
animation are cardinal, Catmull-Rom and
Kochanek-Bartels splines, that allow more
advanced controlling of the splines.

Obtaining the key-frames

Very important question in the key-frame
animation is how to get the key-frames. Let's
mention some of the most popular ways.

e Motion capture

Motion capturing is a method based on
special hardware that grabs real character
motions and converts the movements into
digital form. The hardware for precise motion
capturing is very expensive. The cheaper
hardware 1is not very accurate and the
animator must correct the data manually.

e Forward animation

The most common way of designing the
animation is the forward method. Animator
sets all the poses of the characters manually in
the forward direction. The forward direction
means in this case, that for example to reach
the object on the table with the hand of the
character, animator must set rotations for the
character’s shoulder properly and then for the
elbow. If the hand can’t reach the object,
animator must rearrange all the rotations in
the arm.

e Inverse kinematics

It is a very popular method in contemporary
animation software. This method enables the

animator to set only the terminal part of the
bone chain to specific position and the
software computes all the rotations
automatically. In the case of the arm and the
object, the animator sets only the position of
the hand to the object and application
computes interactively the rotations in wrist,
elbow and the shoulder. This technique is
very progressive for the design, but it is not so
easy to implement.

b) Procedural animation

Key-frame animation is very good and
relatively easy method for animation, but
there are limitations in the use, because the
movements are limited to the number of
animations given by the number of the
key-frames. Sometimes the application calls
for the more advanced and flexible animation.
The procedural animation is the solution. In
procedural animation functions or special
algorithms control the movements. For
example the advanced algorithm for walking
animation can consist of setting the rotations
of all the segments of the legs, detecting
collisions with the ground, keeping balance of
the character and many other aspects.
Procedural animation is more difficult to
implement, but it is flexible to react
automatically to situations in the- virtual
world.

Our approach

We use key frame animation for animating
our virtual sign language speaker. The shape
interpolation is not suitable for body
animation, because the sign language has
thousands of different movements and the
shape interpolation requires storing all the
key-frames in the 3D co-ordinates of all the
vertices. Instead of shape interpolation we use
parametric key-frame animation. The
parameters are 1-3 angles representing
rotations in the joints. The best method for
interpolating the values of the angles when
computing the in-betweens seems to be the
spline interpolation, because it produces a
smooth movement of the segments (similarly
to human movements). The linear
interpolation produces movement similar to
movement of a robot. The spline interpolation

has better visual results and is not so much
time consuming.

3. Anatomic and geometric skeletons

Human body is very complicated. Real

simulation of all the bones, muscles and skin

is still impossible in real time applications
with contemporary graphic hardware. That is
why some simplifications must be done. The
human skeleton can be represented by
geometrical model. Each important bone is
substituted by one segment in the virtual
character and the transformation matrix of the
segment represents the direction of the bone
in current body pose. The transformation
matrix is given by composition of the
following matrices.

M =B-R,-R, ‘R, B!

where:

- M is the matrix of final transformation,

-B, B! are the matrices, that represent
transformations between the co-ordinate
space of the scene and the segment (the axis
of rotations are not always parallel to scene
axis),

-Ri, Ry, R3 are the matrices of rotations.
There are up to three different rotations in
the body joints.

This model enables to represent the state of
one segment with 3 values (3 angles). These
three values are used for constructing the R,
Rz, Ri. Our system consists of about 50
segments. The state of the whole model can
be described by about 150 values. However
not every part of the body is able to reach all
the directions. The movements of human
articulations are limited. The model we are
using has different degrees of freedom in
different joints in according to ability of a real
human. Some of the limit values are taken
from [3].

There are several joint types in human body
with different mobility. To keep the model
e€asy to control and able to reach all the poses,
we use simple joint restrictions. The
maximum and minimum angle values for all
the joints are set according to [4]. The
movement limitations of the arm are in the
table 1.

Movement Range (deg.)
Wrist flexion 90
Wrist extension 99
Wrist adduction 27
Wrist abduction 47
Forearm supination 113
Forearm pronation 77
Elbow flexion 142
Shoulder flexion 188
Shoulder extension 61
Shoulder adduction 48
Shoulder abduction 134

Table 1 (movement limitations)

There is possibility to use 2D reachability
map, where x, y co-ordinates represent alpha
and theta angles in spherical co-ordinates and
the value in the map says if this values of the
angles are possible to reach or not. This
approach is more suitable for complicated
joints like shoulder. But for our purposes the
construction of the 2D reachability map is too
complicated and so we do not use this
method.

4. Hierarchical structure and
bending of the segments

4.1. Hierarchical structure

As it was already mentioned above the model
consists of segments connected in joints. The
whole skeleton has the tree structure. The
nodes of this tree represent segments and each
of the segments contains transformation
matrix which affect this segment and also all
the segments following in the hierarchy.
There is a special system for controlling the
order of transformations. In fact we don't use
the tree data structure in the application.
Instead of this we use stack buffer, that
contains all of the operations in sequential
order. The operations control the rendering
and deformations of the whole model. There
are three kinds of operations: Pop, Push and
Deform&Draw. The Pop and Push are
operations, that store and load the
transformation matrices and The
Deform&Draw is operation that applies
deformation and renders one segment. This
approach is very similar to philosophy of

OpenGL transformation matrices and so it is
easy to implement and fast.

4.2. Bending of the segments

One of the most complicated problems of
human model visualisation is realistic bending
of the surfaces representing parts of the body
near articulations. Several techniques for
avoiding the bending were used in the past,
but they don't bring good visual results. Some
of them are based on very simple idea of
putting spheres into the joints or simply
letting the segments to intersect. These
methods are not convenient for our needs.
Instead of that we tend to use bending of the
segments.

The bending is based on idea of local
deformation of the segments. The vertices that
are close to the joints have special parameter
that we call bending weight and also the
reference to the segment they are close to.
The bending weights say how flexible is the
vertex - how much it will be deformed. The
vertices close to the joint are deformed by a
simple rule, which takes into account the
bending weights and the transformation
matrices of the two segments closest to the
joint.

Values of the bending weights have been
obtained experimentally in order to get good
visual result of the bent areas in all poses the
joint is able to reach. We use two layers of the
bent points. One layer contains points shared
by two of the segments (usually the value for
these vertices is approx. 0.5) and the second
layer contains the neighbours of the first ones
(vertices connected with the shared ones
usually the weights are approx. 0.20 or 0.80
depending the two cases discussed later). The
situation can be seen on figure 1.

Let the model is in basic pose. All of the
points have co-ordinates relatively to the
centre of rotation of this segment. All of the
transformation matrices are identity matrices.
No bending is performed. Now we change
one matrix (for example rotation in the
shoulder). The rotation of the shoulder
changes the matrix of the upper arm segment.
The vertices that will be deformed are those
belonging to the upper arm segment and also
the vertices belonging to the chest segment.

Two different situations in each segment are
solved:

Points that are closer to the origin of the
segment (upper arm segment)

In this case, the matrix of the segment they
belong to transforms all the points. But the
weights are included and so the vertices with
the weight of 0.0 are fully rotated and those
that have weight 1.0 are static (stay in basic
position). The rule for rotation is described
here.

M =M -w+I-(1-w)
where:
-M' is a new inverse matrix of the
deformation
-M is an original inverse matrix of the
deformation,
- w is a bending weight of the vertex,
- I is an identity matrix

The final matrix M’ is then normalised and the
vertex is transformed by this matrix. Now let
us explain why we are using inverse matrix.
All of the vertices are transformed by
model-view matrix when displayed by
OpenGL. We set the values to the model-view
matrix from segment transformation matrix.
Now it is easy to imagine that if we want to
keep the vertex in its initial position, we must
firstly transform this vertex by the inverse
matrix of the segment and than after the
transformation provided by OpenGL the
vertex has its original position.

Points closer to the next segment in hierarchy
(body segment)

Situation for the body segment vertices is
more complicated. At first we must compute
relative co-ordinates to the centre of rotation,
because the vertices of this segment have the
co-ordinates relatively to the segment origin
and now we want to rotate them around
different centre (the centre of the next
segment). Then we must apply the inverse
rotation as in the case above and finally full
forward rotation controlled by the
transformation matrix of the next segment.
Then we must re-compute back the
co-ordinates of the vertices to its original

system (relatively to its origin). The OpenGL
then applies the model-view matrix
transformation.

Upper arm ~ Body

origin
Figure 1 (different bending weights)

5. Rendering with OpenGL

OpenGL is very advanced graphic API, that
provide all the important features of modern
rendering techniques such as blending,
texturing, local illumination, stencil buffering
and many others, with maximal support of
new hardware graphic accelerators. We use
this API to get very fast rendering of our
virtual character. The data structures in the
application are suitable to be used with the
OpenGL. We use the OpenGL matrix model
when rendering hierarchical virtual character,
because the OpenGL can take advantages of
the hardware when computing geometric
transformations. To describe all the features
of OpenGL that we use in visualising the sign
language interpreter is not the main point of
this article.

6. Conclusion

The system for the interpretation of the sign
language by computer was presented. The
system has its own integrated database of
signs with a special editor to manage this
database. All modules and applications have
been programmed in Borland Delphi 4.0 on
Windows NT platform. Sign language
interpreter is able to translate written text in
the Czech language into the Czech sign
language and visualise the animated virtual
speaker of the sign language in real time on

contemporary graphic hardware (tested on
NVidia Riva TNT2). The system 1is easy to
use, relatively fast and able to be included in
different applications that need the Czech sign
language as an output. Several examples can
be seen on figures 2a, 2b, 2c and 2d.

7. Acknowledgements

The authors would like to thank to all who
contributed to this work, especially to Jakub
Mares and Digital World s.r.o. for the model
design, colleagues at the University of West
Bohemia in Plzen who have stimulated these
thoughts, to anonymous reviewers of this
paper as they shared some valuable insights
on this problem solution. Their invaluable
critical comments and suggestions improved
the manuscript significantly.

8. References

[1] Thalmann,N.M., Thalmann,D.: New
Trends in animation and visualization, John
Wiley, 1991

2] Thalmann,N.M., Thalmann,D.: Computer
Animation Theory and Practice - Second
Revised Edition, Springer-Verlag 1985, 1990
[3] Hamill,J., Knutzen, K.M.: Biomechanical
Basis of Human Movement, Williams &
Wilkins 1995 ’

[4] http://www.itl.nist. gov/iaui/ovri/projects/
vrml/h-anim/jointInfo.html

[5] Gabrielova,D., Paur,J., Zeman,J.: Slovnik
znakove feci, Horizont, Praha 1988

[6] Babski,Ch., Thalmann,D.: A Seamless
Shape for HANIM Compliant Bodies,
http://ligwww.epfl.ch/~babski/
StandardBody/Deformation

[7] McDonald,J., Alkoby,K., Berthiaume,A.,
Chomwong,P., Christopher,J., Davidson,M.J.,
Furst,J., Konie,B., Lancaster,G., Lytinen,S.,
Roychoudhuri, L., Sedgwick,E., Tomuro,N.,
Toro,J., Wolfe,R.: An Improved Articulated
Model of the Human Hand, pp.306-311, in
WSCG2000 Int.Conf. proceedings, 2000

[8] Skala,V.(Ed): WSCG2000 Int.Conf.
proceedings, Univ.of West Bohemia, Plzen,
Czech Republic, 2000

[9] Withrow,C.: A Dynamic Model for
Computer-Aided Choreography, Computer
Sci.Dept., Univ.of Utah, 1970

Figures 2a, 2b, 2¢, 2d

