
Proceedings of ALGORITMY 2000

Conference on Scientific Computing, pp. 357 - 367

357

PARALLEL TRIANGULAR MESH REDUCTION

MARTIN FRANC1, VÁCLAV SKALA2

Abstract. The visualization of large and complex models is required frequently. This is

followed by number of operations which must be done before visualization itself, whether it is an

analysis of input data or a model simplification. One of the techniques that enhance the

computational power is parallel computation. It can be seen that multiprocessor computers are

more often available even for ordinary users. Together with Microsoft Windows expansion we

have easy and comfortable tools for multiprocessor (multithread) programming as well. We

present an original efficient and stable algorithm for triangle mesh simplification in parallel

environment. We use a method based on our original super independent set of vertices to avoid

critical sections. Programs have been verified on MS Windows platform using standard Borland

Delphi classes for multithread programming.

Keywords: data visualization, triangular mesh reduction, algorithm complexity, computer

graphics, parallel programming.

1. Introduction. Simplification of large complex models is a common task in

visualization. The simplification of models finds its use in virtual reality, whenever

the object is in large distance from the observer or when details of the model are

irrelevant or we just need rough view for fast manipulation. We show that the

efficiency of our algorithm is independent on a chosen simplification technique.

Our algorithm works with a super independent set of vertices [1] for vertex

elimination to avoid critical sections in program code, which normally decrease the

speed of computation. As a programming tool we use standard Borland Delphi

tools together with a TThread class, which encapsulates attributes and methods

given by MS Windows for multithread programming.

In section 2 of this paper we describe the simplification in general and

techniques we use in our algorithm. Section 3 introduces tools for multithread

programming under MS Windows. This section is followed by section number 4,

where we discus general problems of shared memory and explain super

independent set term. In section 5 we present our algorithm and section 6 shows

achieved results.

2. Popular techniques. Decimation methods are simplification algorithms that

start with a polygonization (typically a triangulation) and successively simplify it

until the desired level of approximation is achieved. Most of decimation algorithms

fall into one of the three categories, discussed below, according to their decimation

technique.

Department of Computer Science, University of West Bohemia, Univerzitní 8, Box 314, 306 14

Plzeň, Czech Republic, (e-mail: marty@students.zcu.cz and skala@kiv.zcu.cz)

http://iason.zcu.cz/~{marty | skala }
1 Was supported by the Ministry of Education of the Czech Republic - project VS 97155
2 Was supported by the Academy of Sciences of the Czech Republic - project A2030801

mailto:marty@students.zcu.cz

358 M. FRANC, V. SKALA

VERTEX DECIMATION METHODS

One of the most used method is vertex decimation, an iterative simplification

algorithm originally proposed by Schoreder [2]. In each step of decimation process,

a vertex is selected for removal. All the facets adjacent to that vertex are removed

from the model and the resulting hole is retriangulated. Each vertex is evaluated by

its importance in the mesh. The vertex with low importance is eliminated. In

general, there are plenty of techniques simplifying triangular meshes by vertex

elimination. The difference among them is the way of the vertex importance

evaluation and kind of retriangulation. Since the retriangulation requires a

projection of the local surface onto a plane, these algorithms are generally limited

to manifold surfaces. Vertex decimation methods preserve the mesh topology as

well as a subset of original vertices.

EDGE DECIMATION

Other subset of decimation techniques is pointed to the elimination of the whole

edge. When an edge is contracted, a single vertex replaces its endpoint. Triangles,

which degenerate to an edge, are removed. Hoppe [6] appear to have to be the first

who used edge contraction as the fundamental mechanism accomplishing surface

simplification. It is necessary to evaluate the importance of edges before the

contraction. One of the best-known technique [3] uses quadric error metrics for the

edge (vertex pairs) evaluation. The edges are contracted according to their

importance – the less important edges first, similarly to the case of vertex removal.

Unless the topology is explicitly preserved, edge contraction algorithms may

implicitly alter the topology by closing holes in the surface.

PATCH (TRIANGLE) DECIMATION METHODS

Techniques, which eliminate either one triangle or any larger area, belong to the

last group. These methods delete several adjacent triangles and retriangulate their

boundary. In case of one triangle, this one is deleted together with three edges and

the neighbourhood is retriangulated. The evaluation of the reduced elements

requires more complex algorithms, in these methods.

OUR APPROACH – FRAMEWORK OF OUR ALGORITHM

Each of the above mentioned approaches have their advantages and

disadvantages [8]. We have tried to extract the advantages of all approaches as will

be presented in the following part. We started with vertex decimation methods and

used the Schroeder’s approach because of its simplicity and generality in meaning

of vertex importance evaluation, and combine it with edge contraction. The

methodology of vertex decimation is in fact closely related to the edge contraction

approach (discussed above). Instead the vertex elimination and arising hole

retriangulation, one of adjacent edge can be contracted as well. Removing a vertex

by edge contraction is generally more robust than projection of neighbourhood

onto a plane a retriangulation. In this case, we do not need to worry about finding a

plane onto which the neighbourhood can be projected without overlap.

PARALLEL TRIANGULAR MESH REDUCTION 359

Firstly, each vertex in a mesh is evaluated according to its importance. Then the

one with the lowest importance is marked and the most suitable edge for the

contraction is searched in its neighbourhood. As the most suitable edge for

contraction we take the one, which goes out of the eliminated vertex, that does not

cause the mesh to fold over itself, and is best preserving the original surface

according to our criterion. As the criterion we use either the contraction of the

shortest edge, or the criterion of minimal retriangulated area. To prove the method

independence of our algorithm, we have tested some more heuristic based on

vertex decimation, besides Schroeder’s method. These heuristics are described in

[5] in detail and their comparison can be found in section 5 of this paper.

Since the contraction can potentially introduce undesirable inconsistencies or

degeneracies into the mesh, we must apply some consistency checks to a proposed

contraction. If one of the checks fails, we discard the contraction and use another

edges if any still remains.

3. Multithread programming . We developed the algorithm for the Windows

NT platform, using Borland Delphi. There are quite easy and efficient tools for

multithread programming.

A thread is an operation system object, where program code is run. For every

application at least one (primary) thread is created. Each thread can create other

new threads, during its run. These threads share the same address area and can

perform either the same or different action. After the primary thread is finished

(together with all its threads), the application is terminated and the process is

erased from the system. Threads allow all program routines to run all at once. If

there in one CPU only, threads alternate (so called preemptive multitasking),

otherwise they run concurrently.

Threads can be used to improve application performance by managing input

from several communication devices, or distinguishing among tasks of varying

priority. For example, a high priority thread handles time critical tasks, and a low

priority thread performs other tasks. In Borland Delphi, there is a standard class

named TThread, which encapsulates all attributes and methods for multithread

programming that MS Windows allows.

4. Super independent set.

INDEPENDENT SET

A basic idea, which has been used in theoretical work [4] recently, is that

decimation by deleting an independent set of vertices (no two of which are joined

by an edge) can be run efficiently in parallel. The vertex removals are independent

and they leave one hole per one deleted vertex, which can be retriangulated

independently. This decreases the program complexity and run time significantly.

Since deletion and retriangulation is related to the degree of vertices being removed

(in the worst case with O (d
2
) time complexity, where d is the vertex degree),

Kirkpatrick[4] has advocated deleting low degree vertices (d < 10) and proved that

this still allows large independent sets (>1/6 of all vertices). However, this

360 M. FRANC, V. SKALA

approach ignores the preservation of the model shape. Therefore we use a

technique [5] when we assign an importance value to each vertex, then select an

independent set to delete by greedily choosing vertices of low importance relative

to their neighbours.

It is natural to use a greedy strategy to construct an independent set from an

assignment of importance values. It means to go through all the vertices in order of

their importance and take a vertex if none of its neighbours have been taken. It

means that only those vertices that do not share an edge with the each other can be

in the independent set.

INDEPENDENT SET – WITHOUT NEED OF CRITICAL SECTIONS

We have developed and use a super independent set, where every two triangles

including two independent vertices can not share an edge, see Figure 1.

FIG. 1: Vertices v1, v2, v3 are independent to each other, but only the vertices v1 and v3 are super

independent.

If we remove one vertex from the independent set, the removal change the

properties of the vertex neighbours. That affects neighbourhood of other vertices in

the set. Even vertex neighbours are independent in this super independent set, so

vertices are completely independent and the parallelization can be done without

critical sections in program code. Due to the data structures used we can create the

independent set in O (n) time, where n is the number of vertices.

5. Parallel Algorithm. Our new parallel algorithm can be described as:

1. Divide the set of vertices into N parts; N is equal to the number of free

processors.

 Get the number of processors.

 Divide the set of vertices into N parts of the same number of vertices.

2. Run N threads to evaluate vertex importance according to its topology.

Each thread makes a computation on its own set of vertices.

 Determine a vertex topology.

 For simple, boundary or interior edge vertices, compute their

importance. The importance for any other type of vertex is set to any

high value.

PARALLEL TRIANGULAR MESH REDUCTION 361

3. After all threads finish their task, sort (Quick Sort algorithm) all the

vertices according to their importance in increasing order.

4. Find a super independent set of vertices. For each vertex do:

 If the vertex is marked as unused in the independent set (initially all

vertices are marked as unused), check its neighbours. If all the

neighbours are unused, put the vertex into the independent set and

mark the vertex and all its neighbour vertices as used.

 Used vertices and their neighbours are skipped.

5. Divide the independent set of vertices into N parts.

6. Run N threads for decimation. Each thread makes the decimation on its

own set of vertices.

 For each eliminated vertex, find the optimal edge for contraction that

includes it.

 Test the consistency of the mesh if this edge is contracted (removed).

 If the consistency test is OK, remove the vertex and retriangulate the

arising hole, otherwise find another short edge and go to the previous

point.

7. Repeat steps 1– 6 until the required degree of the mesh reduction is

reached.

6. Experimental results. In this section we present results of our

experiments that compare an acceleration and efficiency obtained with different

data sets, using different number of processors (threads).

We use 6 different data sets for the experiments, see Table 1.

Model name No. of triangles No. of vertices

Horse 96,966 48,485

Bone 137,072 60,537

Bell 426,572 213,373

Hand 654,666 327,323

Dragon 871,414 437,645

Happyb 1,087,716 543,652

TABLE 1: Data sets used.

Table 2 shows time comparison achieved by reducing the models using 1 to 8 –

processor computer (DELL Power Edge 8450 – 8xPentium III, cache 2MB,

550MHz, 2GB RAM, running on the Windows 2000).

362 M. FRANC, V. SKALA

Model

name

Time [sec] obtained with different number of

processors (threads) used

1 2 3 4 5 6 7 8

Horse 8.9 6.3 5.5 4.9 4.7 4.5 4.4 4.3

Bone 13.5 9.4 8.2 7.6 7.0 6.8 6.6 6.4

Bell 62.7 48.1 42.4 39.4 37.8 36.9 35.4 34.6

Hand 69.2 51.5 44.8 41.0 39.7 38.4 37.5 36.7

Dragon 93.6 69.5 61.5 57.6 54.3 52.6 51.3 50.6

Happyb 118.3 89.1 78.1 73.2 69.3 67.8 65.9 64.5

TABLE 2: Obtained time (in seconds) for 90% reduction on 1 to 8 processors active.

We investigated the acceleration and the efficiency for different size of data sets

according to the number of processors used.

ACCELERATION COMPARISON

The acceleration a is computed from total times (sequential and parallel parts of

the algorithm together) using expression

,
1time

time
a N (1)

where N=1..8 is a number of processors used and timeN is the time obtained if N

processors (threads) are used.

Figure 2 shows the acceleration of individual sequential and parallel part of the

algorithm for the Happyb model. Total time means run time of the whole

algorithm, Imp. eval. is time for importance evaluation, Qsort is sorting time, Iset is

time for selecting the super independent set and Decim is time of the decimation

part.

EFFICIENCY COMPARISON

The efficiency e is defined as follows:

,
1timeN

time
e N (2)

where N=1..8 is a number of processors used and timeN is the computational time

if N processors are used.

AMDAHL‘S LAW

The experiments proved that the method is stable according to the number of

processors used and all the results meet the Amdahl’s law (3) perfectly.

PARALLEL TRIANGULAR MESH REDUCTION 363

,

)1(

1

N

p
p

ateor ,
)1(*

)1(*

Na

aN
p

teor

teor (3), (4)

where p is potentially parallel code and N is the number of processors used.

Acceleration - 'Happyb' model

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9

number of threads

a
c
c

e
le

ra
ti

o
n

Total time

Imp. eval.

Qsort

Iset

Decim

IDEAL CASE

FIG. 2: The acceleration of individual sequential and parallel part of the algorithm for the Happyb

model.

The value of potentially parallel code is independent from the number of

processors used, see Table 3, and for the large model Happyb the value p = 0.51

was reached for the whole algorithm.

 Number of processors (threads) used

1 2 3 4 5 6 7 8

e 1 0.66 0.5 0.4 0.34 0.29 0.25 0.22

a 1 1.32 1.51 1.61 1.7 1.74 1.79 1.83

ateor 1 1.32 1.51 1.61 1.7 1.74 1.79 1.83

p X 0.49 0.51 0.50 0.51 0.51 0.51 0.52

TABLE 3: The experimental results and theoretical calculations according to Amdahl’s law;

computed for the happyb model.

364 M. FRANC, V. SKALA

Figure 3 shows the amount of potentially parallel code according to the number of

triangles, for different number of processors used.

Amount of the parralel code (whole algorithm)

0%

10%

20%

30%

40%

50%

60%

70%

0 200000 400000 600000 800000 1000000 1200000

number of triangles

p
a
ra

ll
e

l
c

o
d

e

2

3

4

5

6

7

8

(a)

Amount of the parralel code in decimation part

-10%

10%

30%

50%

70%

90%

110%

0 200000 400000 600000 800000 1000000 1200000

number of triangles

p
o

te
n

ti
a
ll

y
 p

ra
ll

e
l
c

o
d

e

2

3

4

5

6

7

8

(b)

FIG. 3: The amount of the parallel code for the whole algorithm (a) – the potentially parallel code

according to Amdahl’s law is approx. 51%, the amount of the parallel code for the decimation part

(b).

PARALLEL TRIANGULAR MESH REDUCTION 365

TIME COMPARISON

The work itself was inspired by recent work in this field, especially by Seidel

[7]. Unfortunately the results are not comparable directly due to the different

platforms. To make the results roughly comparable at least, we use the official

benchmarks presented by SPEC as shows table 4, where presents the superiority

of DELL computer against the SGI. Table 5 presents our results according to

results obtained recently [7] taking the ratio into the consideration. Our algorithm

is 2.72 times faster according to the table 5.

Benchmark test / machine SGI R10000 DELL 410 Precision
(DELL/SGI)

SPECfp95 8.77 13.1 1.49

SPECint95 10.1 17.6 1.74

TABLE 4: Benchmark test presented by Standard Performance Evaluation Corporation

Model

name

Time [sec] of 99.15% reduction ratio

SGI R10000 [7] DELL 8450 [1 thread] (SGI/DELL) /

Dragon 584.9 123.3 4.74 1.74 2.72

TABLE 5: Rough comparison

INDEPENDENCE ON DECIMATION METHOD

Algorithm stability

0

1

2

3

4

5

6

7

8

9

Imp.

eval.

Qsort Iset Decim Total

time

Imp.

eval.

Qsort Iset Decim Total

time

partial computation

a
c
c

e
le

ra
ti

o
n

Schroeder

Average normals

Height Difference

Absolute Binary

Scape Order

Random

Edge Switching

FIG. 4: The acceleration of partial parts of the algorithm for several vertex importance evaluation

heuristics. Criterion of minimal area retriangulation on the left side, the shortest edge contraction

criterion on the right side of the graph.

366 M. FRANC, V. SKALA

As we have already mentioned, we use some more vertex decimation heuristics

to test the independence of our algorithm. In Figure 4, there is a graph of the

acceleration comparison according to partial parts of algorithm (computation) for 7

heuristics. On the left side, there is a graph of decimation according to the criterion

of minimal area after the retriangulation, on the right there is a graph of decimation

according to the shortest edge contraction criterion, see chapter 2.2. The heuristics

are intimately described in [5]. They are based on the same principle, except the

method of their vertex importance evaluation. The following methods have been

used: Schroeder‘s method, Average Normals, Height difference, Absolute Binary,

Scape Order, Random (any of previous five) and Edge Switching.

It is obvious that the algorithm is independent of the heuristic used in meaning

of the efficiency and the acceleration.

PROGRAM OUTPUT

Figure 5 shows examples of original and reduced models.

FIG. 5: The Happyb model (courtesy GaTech) at different resolutions; the original model 1.087.716

triangles (a), reduced to 105.588 triangles (b), 52.586 triangles (c), 13.100 triangles (d).

Conclusion. We have described the new original algorithm for triangular mesh

simplification with its parallel modification. The algorithm combines vertex

decimation method with the edge contraction to simplify object models in a short

time. We have used the super independent set of vertices to improve the

parallelization. It enables us to make fast parallel algorithm without use of any

synchronization technique such as critical sections, so the system overhead is

minimal. Our experiment proved that we reached high effectivity of parallelization

p = 0.87 (if the overhead cost by the TThread class is included) or p = 0.97 (if the

overhead cost by the TThread class is not included) for parallelized parts. This also

proved that high level constructions and object oriented programming can be used

at the application level with high effeciency guarantee. The proposed method

proved its stability according to the number of processors and the size of the data

set used.

PARALLEL TRIANGULAR MESH REDUCTION 367

Acknowledgements. We would like to express our thanks to DELL Computer

Czech Republic for enabling us to carry out all the experiments on their 8-

processor computer type, DELL Power Edge 8450 – 8xPentium III, cache 2MB,

550MHz, 2GB RAM. We also benefited from the large model repository located at

Georgia Institute of Technology;
URL: http://www.cc.gatech.edu/projects/large_models.

REFERENCES

[1] M. Franc, V. Skala. Parallel Triangular Mesh Decimation. In SCCG 2000 Conference

Proceedings, Comenius University Bratislava, May 2000

[2] W. Schroeder, J. Zarge, W. Lorensen. Decimation of Triangle Meshes. In SIGGRAPH

92 Conference Proceedings, pages 65-70, July 1992

[3] M. Garland, P. Heckbert. Surface Simplification Using Quadric Error Metrics. In

SIGGRAPH 97 Conference Proceedings, 1997

[4] D. Kirkpatrick. Optimal Search in Planar Subdivisions. SIAM J. Comp., pages 12:28-

35, 1993

[5] B. Junger, J. Snoeyink. Selecting Independent Vertices for Terrain Simplification. In

WSCG 98 Proc., Pilsen University of West Bohemia, pages 157-164, February 1998

[6] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle. Mesh optimization. In

SIGGRAPH 93 Conference Proc. pages 19-26, 1993

[7] H. P. Seidel, S. Campagna, L. Kobbelt, R. Schneider, J. Vorsatz. Mesh Reduction and

Interactive Multiresolution Modeling on Arbitrary Triangle Meshes. In SCCG 99

Proceedings, Comenius University Bratislava, pages 34-44, 1999

[8] M. Garland. Multiresolution Modeling: Survey & Future Opportunities. In the

SIGGRAPH 97 course notes, 1997

http://www.cc.gatech.edu/projects/large_models

