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PARALLEL TRIANGULAR MESH REDUCTION  

 

MARTIN FRANC1, VÁCLAV SKALA2 
 

 
Abstract. The visualization of large and complex models is required frequently. This is 

followed by number of operations which must be done before visualization itself, whether it is an 

analysis of input data or a model simplification. One of the techniques that enhance the 

computational power is parallel computation. It can be seen that multiprocessor computers are 

more often available even for ordinary users. Together with Microsoft Windows expansion we 

have easy and comfortable tools for multiprocessor (multithread) programming as well. We 

present an original efficient and stable algorithm for triangle mesh simplification in parallel 

environment. We use a method based on our original super independent set of vertices to avoid 

critical sections. Programs have been verified on MS Windows platform using standard Borland 

Delphi classes for multithread programming. 

 
Keywords: data visualization, triangular mesh reduction, algorithm complexity, computer 

graphics, parallel programming. 

 

1. Introduction. Simplification of large complex models is a common task in 

visualization. The simplification of models finds its use in virtual reality, whenever 

the object is in large distance from the observer or when details of the model are 

irrelevant or we just need rough view for fast manipulation. We show that the 

efficiency of our algorithm is independent on a chosen simplification technique. 

Our algorithm works with a super independent set of vertices [1] for vertex 

elimination to avoid critical sections in program code, which normally decrease the 

speed of computation. As a programming tool we use standard Borland Delphi 

tools together with a TThread class, which encapsulates attributes and methods 

given by MS Windows for multithread programming. 

In section 2 of this paper we describe the simplification in general and 

techniques we use in our algorithm. Section 3 introduces tools for multithread 

programming under MS Windows. This section is followed by section number 4, 

where we discus general problems of shared memory and explain super 

independent set term. In section 5 we present our algorithm and section 6 shows 

achieved results. 

 

2. Popular techniques. Decimation methods are simplification algorithms that 

start with a polygonization (typically a triangulation) and successively simplify it 

until the desired level of approximation is achieved. Most of decimation algorithms 

fall into one of the three categories, discussed below, according to their decimation 

technique. 

                                                           
Department of Computer Science, University of West Bohemia, Univerzitní 8, Box 314, 306 14 

Plzeň, Czech Republic, (e-mail: marty@students.zcu.cz and  skala@kiv.zcu.cz) 

http://iason.zcu.cz/~{marty | skala } 
1 Was supported by the Ministry of Education of the Czech Republic - project VS 97155  
2 Was supported by the Academy of Sciences of the Czech Republic - project A2030801 

 

mailto:marty@students.zcu.cz


358      M. FRANC, V.  SKALA 
 

 
VERTEX DECIMATION METHODS 

One of the most used method is vertex decimation, an iterative simplification 

algorithm originally proposed by Schoreder [2]. In each step of decimation process, 

a vertex is selected for removal. All the facets adjacent to that vertex are removed 

from the model and the resulting hole is retriangulated. Each vertex is evaluated by 

its importance in the mesh. The vertex with low importance is eliminated. In 

general, there are plenty of techniques simplifying triangular meshes by vertex 

elimination. The difference among them is the way of the vertex importance 

evaluation and kind of retriangulation. Since the retriangulation requires a 

projection of the local surface onto a plane, these algorithms are generally limited 

to manifold surfaces. Vertex decimation methods preserve the mesh topology as 

well as a subset of original vertices. 

 
EDGE DECIMATION 

Other subset of decimation techniques is pointed to the elimination of the whole 

edge. When an edge is contracted, a single vertex replaces its endpoint. Triangles, 

which degenerate to an edge, are removed. Hoppe [6] appear to have to be the first 

who used edge contraction as the fundamental mechanism accomplishing surface 

simplification. It is necessary to evaluate the importance of edges before the 

contraction. One of the best-known technique [3] uses quadric error metrics for the 

edge (vertex pairs) evaluation. The edges are contracted according to their 

importance – the less important edges first, similarly to the case of vertex removal. 

Unless the topology is explicitly preserved, edge contraction algorithms may 

implicitly alter the topology by closing holes in the surface. 

 
PATCH (TRIANGLE) DECIMATION METHODS 

Techniques, which eliminate either one triangle or any larger area, belong to the 

last group. These methods delete several adjacent triangles and retriangulate their 

boundary. In case of one triangle, this one is deleted together with three edges and 

the neighbourhood is retriangulated. The evaluation of the reduced elements 

requires more complex algorithms, in these methods.  

 
OUR APPROACH – FRAMEWORK OF OUR ALGORITHM 

Each of the above mentioned approaches have their advantages and 

disadvantages [8]. We have tried to extract the advantages of all approaches as will 

be presented in the following part. We started with vertex decimation methods and 

used the Schroeder’s approach because of its simplicity and generality in meaning 

of vertex importance evaluation, and combine it with edge contraction. The 

methodology of vertex decimation is in fact closely related to the edge contraction 

approach (discussed above). Instead the vertex elimination and arising hole 

retriangulation, one of adjacent edge can be contracted as well. Removing a vertex 

by edge contraction is generally more robust than projection of  neighbourhood 

onto a plane a retriangulation. In this case, we do not need to worry about finding a 

plane onto which the neighbourhood can be projected without overlap.  
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Firstly, each vertex in a mesh is evaluated according to its importance. Then the 

one with the lowest importance is marked and the most suitable edge for the 

contraction is searched in its neighbourhood. As the most suitable edge for 

contraction we take the one, which goes out of the eliminated vertex, that does not 

cause the mesh to fold over itself, and is best preserving the original surface 

according to our criterion. As the criterion we use either the contraction of the 

shortest edge, or the criterion of minimal retriangulated area. To prove the method 

independence of our algorithm, we have tested some more heuristic based on 

vertex decimation, besides Schroeder’s method. These heuristics are described in 

[5] in detail and their comparison can be found in section 5 of this paper. 

Since the contraction can potentially introduce undesirable inconsistencies or 

degeneracies into the mesh, we must apply some consistency checks to a proposed 

contraction. If one of the checks fails, we discard the contraction and use another 

edges if any still remains. 

 

3. Multithread programming . We developed the algorithm for the Windows 

NT platform, using Borland Delphi. There are quite easy and efficient tools for 

multithread programming. 

A thread is an operation system object, where program code is run. For every 

application at least one (primary) thread is created. Each thread can create other 

new threads, during its run. These threads share the same address area and can 

perform either the same or different action. After the primary thread is finished 

(together with all its threads), the application is terminated and the process is 

erased from the system. Threads allow all program routines to run all at once. If 

there in one CPU only, threads alternate (so called preemptive multitasking), 

otherwise they run concurrently. 

Threads can be used to improve application performance by managing input 

from several communication devices, or distinguishing among tasks of varying 

priority.  For example, a high priority thread handles time critical tasks, and a low 

priority thread performs other tasks. In Borland Delphi, there is a standard class 

named TThread, which encapsulates all attributes and methods for multithread 

programming that MS Windows allows. 

 

4. Super independent set.  

INDEPENDENT SET 

A basic idea, which has been used in theoretical work [4] recently, is that 

decimation by deleting an independent set of vertices (no two of which are joined 

by an edge) can be run efficiently in parallel. The vertex removals are independent 

and they leave one hole per one deleted vertex, which can be retriangulated 

independently. This decreases the program complexity and run time significantly. 

Since deletion and retriangulation is related to the degree of vertices being removed 

(in the worst case with O (d
2
) time complexity, where d is the vertex degree), 

Kirkpatrick[4] has advocated deleting low degree vertices (d < 10) and proved that 

this still allows large independent sets (>1/6 of all vertices). However, this 
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approach ignores the preservation of the model shape. Therefore we use a 

technique [5] when we assign an importance value to each vertex, then select an 

independent set to delete by greedily choosing vertices of low importance relative 

to their neighbours. 

It is natural to use a greedy strategy to construct an independent set from an 

assignment of importance values. It means to go through all the vertices in order of 

their importance and take a vertex if none of its neighbours have been taken. It 

means that only those vertices that do not share an edge with the each other can be 

in the independent set.  

 
INDEPENDENT SET – WITHOUT NEED OF CRITICAL SECTIONS 

We have developed and use a super independent set, where every two triangles 

including two independent vertices can not share an edge, see Figure 1. 

 

FIG. 1: Vertices v1, v2, v3 are independent to each other, but only the vertices v1 and v3 are super 

independent. 

 

If we remove one vertex from the independent set, the removal change the 

properties of the vertex neighbours. That affects neighbourhood of other vertices in 

the set. Even vertex neighbours are independent in this super independent set, so 

vertices are completely independent and the parallelization can be done without 

critical sections in program code. Due to the data structures used we can create the 

independent set in O (n) time, where n is the number of vertices. 

 

5. Parallel Algorithm. Our new parallel algorithm can be described as: 

1. Divide the set of vertices into N parts; N is equal to the number of free 

processors. 

 Get the number of processors. 

 Divide the set of vertices into N parts of the same number of vertices. 

2. Run N threads to evaluate vertex importance according to its topology. 

Each thread makes a computation on its own set of vertices. 

 Determine a vertex topology. 

 For simple, boundary or interior edge vertices, compute their 

importance. The importance for any other type of vertex is set to any 

high value. 
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3. After all threads finish their task, sort (Quick Sort algorithm) all the 

vertices according to their importance in increasing order. 

4. Find a super independent set of vertices. For each vertex do: 

 If the vertex is marked as unused in the independent set (initially all 

vertices are marked as unused), check its neighbours. If all the 

neighbours are unused, put the vertex into the independent set and 

mark the vertex and all its neighbour vertices as used. 

 Used vertices and their neighbours are skipped. 

5. Divide the independent set of vertices into N parts. 

6. Run N threads for decimation. Each thread makes the decimation on its 

own set of vertices. 

 For each eliminated vertex, find the optimal edge for contraction that 

includes it. 

 Test the consistency of the mesh if this edge is contracted (removed). 

 If the consistency test is OK, remove the vertex and retriangulate the 

arising hole, otherwise find another short edge and go to the previous 

point. 

7. Repeat steps 1– 6 until the required degree of the mesh reduction is 

reached. 

 

6. Experimental results. In this section we present results of our 

experiments that compare an acceleration and efficiency obtained with different 

data sets, using different number of processors (threads). 

We use 6 different data sets for the experiments, see Table 1. 
 

Model name No. of triangles No. of vertices 

Horse 96,966 48,485 

Bone 137,072 60,537 

Bell 426,572 213,373 

Hand 654,666 327,323 

Dragon 871,414 437,645 

Happyb 1,087,716 543,652 

 

TABLE 1: Data sets used. 

Table 2 shows time comparison achieved by reducing the models using 1 to 8 – 

processor computer (DELL Power Edge 8450 – 8xPentium III, cache 2MB, 

550MHz, 2GB RAM, running on the Windows 2000). 
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Model 

name 

Time [sec] obtained with different number of 

processors (threads) used 

1 2 3 4 5 6 7 8 

Horse 8.9 6.3 5.5 4.9 4.7 4.5 4.4 4.3 

Bone 13.5 9.4 8.2 7.6 7.0 6.8 6.6 6.4 

Bell 62.7 48.1 42.4 39.4 37.8 36.9 35.4 34.6 

Hand 69.2 51.5 44.8 41.0 39.7 38.4 37.5 36.7 

Dragon 93.6 69.5 61.5 57.6 54.3 52.6 51.3 50.6 

Happyb 118.3 89.1 78.1 73.2 69.3 67.8 65.9 64.5 
 

TABLE 2: Obtained time (in seconds) for 90% reduction on 1 to 8 processors active. 

We investigated the acceleration and the efficiency for different size of data sets 

according to the number of processors used.  

 
ACCELERATION COMPARISON 

The acceleration a is computed from total times (sequential and parallel parts of 

the algorithm together) using expression 

,
1time

time
a N                  (1) 

where N=1..8 is a number of processors used and timeN is the time obtained if N 

processors (threads) are used. 

Figure 2 shows the acceleration of individual sequential and parallel part of the 

algorithm for the Happyb model. Total time means run time of the whole 

algorithm, Imp. eval. is time for importance evaluation, Qsort is sorting time, Iset is 

time for selecting the super independent set and Decim is time of the decimation 

part. 
 

EFFICIENCY COMPARISON 

The efficiency e is defined as follows: 

 

 

,
1timeN

time
e N                (2) 

where N=1..8 is a number of processors used and timeN  is the computational time 

if N processors are used. 

 
 

AMDAHL‘S LAW 

The experiments proved that the method is stable according to the number of 

processors used and all the results meet the Amdahl’s law (3) perfectly. 
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where p is potentially parallel code and N is the number of processors used. 
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FIG. 2: The acceleration of individual sequential and parallel part of the algorithm for the Happyb 

model. 

 

The value of potentially parallel code is independent from the number of 

processors used, see Table 3, and for the large model Happyb the value p = 0.51 

was reached for the whole algorithm. 
 

 Number of processors (threads) used 

1 2 3 4 5 6 7 8 

e 1 0.66 0.5 0.4 0.34 0.29 0.25 0.22 

a 1 1.32 1.51 1.61 1.7 1.74 1.79 1.83 

ateor 1 1.32 1.51 1.61 1.7 1.74 1.79 1.83 

p X 0.49 0.51 0.50 0.51 0.51 0.51 0.52 

 

TABLE 3: The experimental results and theoretical calculations according to Amdahl’s law; 

computed for the happyb model. 
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Figure 3 shows the amount of potentially parallel code according to the number of 

triangles, for different number of processors used. 
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FIG. 3: The amount of the parallel code for the whole algorithm (a) – the potentially parallel code 

according to Amdahl’s law is  approx. 51%, the amount of the parallel code for the decimation part 

(b). 
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TIME COMPARISON 

The work itself was inspired by recent work in this field, especially by Seidel 

[7]. Unfortunately the results are not comparable directly due to the different 

platforms. To make the results roughly comparable at least, we use the official 

benchmarks presented by SPEC as shows table 4, where  presents the superiority 

of DELL computer against the SGI. Table 5 presents our results according to 

results obtained recently [7] taking the ratio  into the consideration. Our algorithm 

is 2.72 times faster according to the table 5. 

 

Benchmark test / machine SGI R10000 DELL 410 Precision   
(DELL/SGI) 

SPECfp95  8.77 13.1 1.49 

SPECint95 10.1 17.6 1.74 

TABLE 4: Benchmark test presented by Standard Performance Evaluation Corporation 

 

Model 

name 

Time [sec] of 99.15% reduction ratio 

SGI R10000 [7] DELL 8450 [1 thread]   (SGI/DELL)   /  

Dragon 584.9 123.3 4.74 1.74 2.72 

TABLE 5: Rough comparison 

 

 
INDEPENDENCE ON DECIMATION METHOD 
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FIG. 4: The acceleration of partial parts of the algorithm for several vertex importance evaluation 

heuristics. Criterion of minimal area retriangulation on the left side, the shortest edge contraction 

criterion on the right side of the graph. 
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As we have already mentioned, we use some more vertex decimation heuristics 

to test the independence of our algorithm. In Figure 4, there is a graph of the 

acceleration comparison according to partial parts of algorithm (computation) for 7 

heuristics. On the left side, there is a graph of decimation according to the criterion 

of minimal area after the retriangulation, on the right there is a graph of decimation 

according to the shortest edge contraction criterion, see chapter 2.2. The heuristics 

are intimately described in [5]. They are based on the same principle, except the 

method of their vertex importance evaluation. The following methods have been 

used: Schroeder‘s method, Average Normals, Height difference, Absolute Binary, 

Scape Order, Random (any of previous five) and Edge Switching. 

It is obvious that the algorithm is independent of the heuristic used in meaning 

of the efficiency and the acceleration. 

 
PROGRAM OUTPUT 

Figure 5 shows examples of original and reduced models. 

  
FIG. 5: The Happyb model (courtesy GaTech) at different resolutions; the original model 1.087.716 

triangles (a), reduced to 105.588 triangles (b), 52.586 triangles (c), 13.100 triangles (d). 

 

Conclusion. We have described the new original algorithm for triangular mesh 

simplification with its parallel modification. The algorithm combines vertex 

decimation method with the edge contraction to simplify object models in a short 

time. We have used the super independent set of vertices to improve the 

parallelization. It enables us to make fast parallel algorithm without use of any 

synchronization technique such as critical sections, so the system overhead is 

minimal. Our experiment proved that we reached high effectivity of parallelization 

p = 0.87 (if the overhead cost by the TThread class is included) or p = 0.97 (if the 

overhead cost by the TThread class is not included) for parallelized parts. This also 

proved that high level constructions and object oriented programming can be used 

at the application level with high effeciency guarantee. The proposed method 

proved its stability according to the number of processors and the size of the data 

set used. 
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