Modular Visualisation Environment
MVE

Michal Rousal’, Viclav Skala®
Department of Computer Science and Engineering
University of West Bohemia
Univerzitni 8, Box 314, 306 14 Plzen
Czech Republic
E-mail: rousal @students.zcu.cz, skala@kiv.zcu.cz

Abstract

The interpretation of various data resulting from simulation and real world is an important of
a disparate range of sciences. The field of data visualisation seeks to address this problem by providing
appropriate analysis via graphical representations. Various software tools now exist that provide suitable
environments for a range of interpretational tasks. Modular Visualisation Environments are one from them.
These provide a visual programming environment in which the user can manipulate data and create various
graphical representations. A major disadvantages of visualisation via standard MVEs are, that the systems
are not easy to use, too complex, huge and very expensive. To address these problems, a new system is
presented. This system builds upon recognised benefits of MVEs, simplifying the visualisation, module
creation process and introducing a framework that allows complex data (volumetric data in our case, for

example) to be easily investigated.

1. Introduction

Data visualisation deals with the exploration
and presentation of data, primarily through
graphical representation. In the last years the
problem of visualising data felt into three main
categories of software solutions.

Possible solutions for data visualisation

Graphical Libraries — These range from low
level libraries such as OpenGL to higher level
examples such as NAG Graphical libraries.
A major disadvantage of these solutions is
their time requirements, because user has to
learn how to use the libraries and need the time
for IMPLEMENTATION of data visualisation.

Turnkey Systems - (systems with closed set of
modules) Useful for one specific problem. The
user is provided with a visualisation solution

quickly and easily but their options are
subsequently restricted.

Modular Visualisation Environments (MVEs)
— these systems fall between the two previous
options. They give user a default set of
modules. By connecting these modules
together the wuser can visually construct
a program to visualise their data. The modules
are equivalent to functions in high-level
programming language. These systems should
allow the user with unforeseen visualisation
requirements to write new modules.

Although MVEs are designed to overcome the
disadvantages of both graphical libraries and
turnkey systems, offering a very flexible
environment, learning how to use these
products is not simple. Access to these systems
for a novice user is as complex as graphical
libraries for the non-programmer. The novice
user must undergo an extensive period of
experimenting with the systems to enable their

' This work was supported by the Ministry of Education of the Czech Republic - project VS 97155
> Supported by the Academy of Sciences of the Czech Republic project - A2030801

full potential to be realised. Once familiar with
operation of MVEs, a further disadvantage is
encountered. The learning curve is derived
from the bottom-up method employed to create
visualisations. =~ The wusers start their
visualisation from nothing, using “small”
visualisation modules to build a complex
network.

A great advantage of MVEs is their
extensibility. User with some knowledge of
programming can “easily” create new module
to solve a specific problem and add this
module to existing set of modules.

Our approach

In any group of programmers, where are
people working on wide range of problems,
they always need a piece of code one from
another one. This situation is also in our
computer graphics group.

For example, people need to load volumetric
data, generate triangle mesh from this data,
reduce the mesh and render it on screen or
write the output into a file. This is more
complicated, because there is no common
programming language, so everyone uses his
favourite programming environment (VC++,
Delphi, C++ Builder).

To solve this problem we have decided to use
~some MVE to put all pieces of our work
together. Nevertheless all existing systems are
very expensive to buy them and programming
of new modules is always with some
restrictions (programming language etc.). So
we concluded to create our own MVE which
will be exactly what we need.

Our system is designed for MS Windows
platform and uses one of many possibilities
how to create modular system under this
operating system.

We are using standard DLLs (dynamic load
libraries), this solution enables to write
modules in any programming environment
which can create DLLs for MS Windows
operating system.

The system consists of the Editor, representing
visual and interactive part of MVE, and
runtime part, which manages running and
controlling the whole computation.

Runtime itself is also integrated to the editor,
to enable running designed net of modules
directly.

2. MVE
2.1 Modules

It is possible to imagine module like a function
in high-level programming language. It can
have some data inputs and some data outputs
(Figure 1). One special input for each module
is its settings. For example: the module for
extraction of triangles from volumetric data
will have one input “volume data”, one output
“triangular mesh” and its settings. It can be the
density of the material to compute
iso-surfaces.

Output 2

Module N
Figure 1

There are many possibilities how to represent
modules in MS Windows operating system
from simple set of functions across the object
representation to usage of COM/DCOM or
CORBA standards.

We don’t use COM/DCOM or CORBA
standards, because they are too complicated,
and so unusable for a normal user. In regard of
the conditions we have mentioned above (MS
Windows platform, no common programming
language) we have decided to use set of
functions to represent the modules. It is
a simple solution, but its open for any further
improvements and the users who are not so
skilled in programming can implement their
modules more easily.

Each module consists of five functions: One
function for the executive part of a module

(whole computation or visualisation), one
function for the settings of a module and three
functions to free memory allocated during the
module execution or its set-up data.

All the functions must be named according to
defined rules. The names of the functions
consist of the name of the module they belong
to and the suffix to specify the object of the
function.

Module functions

ModulNamer SETUP_FUNC

ModulNamer_MAIN_MODULE_FUNC

ModulNamer_FREE _SETUP_DATA

ModulNamer FREE DATA

ModulNamer FREE STATE

Table 1

These functions are named according to
Table 1, only ModuleName sub-string must be
replaced by correct module name.

Functions for freeing memory are important,
because if memory is allocated in DLL library
it must be freed by function from the same
DLL in the MS Windows environment.

In contrast to other MVEs we give users, who
are creating modules, full control over the
settings of the modules in the setting function.
It can be done automatically by analysing the
set of module parameters, but we think, that in
modern programming environments its is very
easy to create any setting dialog.

2.2 Editor

In the editor users can manipulate with
modules from the list of available modules,
connect them together, set any parameters
needed for the proper function of the modules
and to create his own application visually. The
user can also run his application inside the
editor to check if everything is working
correctly.

The whole environment is designed to be easy
to understand for everyone. Users can simply
drag modules on the workspace, connect them
together by dragging output of one module to
corresponding input of another module and
then run this designed application (Figure 2)
just by pressing one button. Of course it is

possible to save or load the whole net of
modules with all the settings.
Adding new modules into the database of the

Load
Picture

Filter —»{ Display

Picture

Display
Picture

Figure 2

editor is very simple. Users need only to
register their DLL library containing the
modules. System itself analyses if the selected
DLL is usable (if it contains any modules),
load all the modules (information about the
modules) from the DLL and add them into the
list from which users can select them.

Every DLL library for our MVE must contain
the function, which returns the information
(name of the module, number and data type of
module inputs and outputs), about the modules
that it contains. Inside the editor and the
runtime part is this information converted into
the object representation of modules. This
representation is used for any further work
with the modules in MVE. At first the object is
created for the runtime, then by using this one
the object for graphic representation of the
module inside the editor.

We have chosen this way to eliminate possible
problems (new version of modules but old info
file, unusable DLL without info file, etc.) with
modules and description of modules stored
apart.

2.3 Run-time

This part of MVE is responsible for running
modules, transferring data between modules
and controlling the whole computation.

Modules can run sequentially or in parallel on
one computer. We also thought about
distributed computation, but because our MVE
was especially composed for visualisation of
large data sets like volumetric data, we still
have not implemented this. It is complicated to

transfer such large data over the network and it
can consume more time then the computation
itself on one computer with more processors
and fast network usable for this kind of

computation 1S very expensive, currently
100Mb/s Ethernet is used.

DLL library 1 Runtime

Module 1 Module 1 object

Function 1 <{——__]
- Method 1
Function2 —0o_[] M:thgd 2

Module 2

Function 1 < Module 2 object
Function 2 [~
. “\\k Method 1

T Method 2

DLL library 2

Module 3 object

Module 1
Function 1 & /—~: ﬁztgog é
Function2 &4t || °

Figure 3

As we have mentioned above all the functions
of modules from the DLL library are mapped
into the object representation (Figure 3).

The internal representation of modules that are
connected into the net, see figure 4, and ready
for the execution.

Each module can have only one data on each
of its outputs. It means that before the next
execution of the designed net of modules all
old outputs must be marked as used or already
deleted.

For the execution of the designed net users can
choose from two possibilities, sequential or
parallel execution.

The process of controlling module execution is
very simple and can be split to three steps.

In the first step we select modules that can be
executed, it means modules with no input data
(loaders of data or data generators). We add
references to all this modules into a list, which
contains all modules that ready for execution.
The second step is different for sequential and
parallel execution.

For sequential execution we take all modules
from list mentioned before one by one and
execute them sequentially. When any module

finish, we update list of modules ready to
execution. If there is no module ready to
execute in the list, the computation process is
finished.

For paralle] execution we execute all modules
that are ready for execution in parallel using
threads. In this case is execution of modules
a little bit more complicated. For each module
in list we create a thread which is used to
execute the module. Now we can execute all
modules, which are ready, in one time. The
operating system automatically distributes the
computation of modules to all available
processors. Only modules, which are used for
data visualisation on the screen of computer
(renderers), must be executed in standard way
without threads, because of a restriction in MS
Windows operating system and MEC?.

In the last step are freed all data which has
been generated during execution of the module
net. This can be also done immediately after
the execution of the module(s) which were
working with that data.

Loader

Output ——p» Renderer |

.

Renderer 2
Some L1 Qutput | L
Comput

ation L

Output 2
P \ Saver

Figure 4

3. Future work

For future we want to improve computation
control system to enable some construction
from high programming languages (cycle,
condition etc.).

The most important thing on which we are
working on is an improvement of the MVE
into distributed system.

? Microsoft Foundation Class Library

Some improvements to the editor will be done
to give users more adjustable environment and
higher level of interactivity. Some changes in
the module section are needed in order to
enable automatic update of visualised scene
after any change in setting of any module,
which affects the visualised data.

4. Conclusion

We have presented the modular visualisation
system MVE, which was created for
visualisation of large data sets but it usable for
any graphics or non-graphics modular
application.

Its power is in its simplicity, which gives to all
users strong tool for their work in this area of
interest. It is useful when more people are
working on any project where they need to
share some parts of their code.

6. Appendices

A1+ Test.mve - Editor
Eile- View - Options- Help

5. Acknowledgement

The authors would like to thanks to all who
contributed to this work, especially to
MSc. and PhD. students, who prepared others
modules and use the MVE, at the University of
West Bohemia in Plzen, to all who have
stimulated this work and development. Theirs
invaluable critical comments and suggestions
improved the manuscript significantly.

References

[1] Stead,G.A.: Simplifying the Visualization
Process, The University of Leeds, 1995

[2] Skala,V.&others: Computer Graphics and
Visualization in Parallel and Distributed
Environment, Technical Report, Computer
Sci.Dept., Univ.of West Bohemia, Plzen, 1999
{3] Chen, M., Kaufmann,A E., Yagel,R.(Ed.):
Volume Graphics, Springer Verlag, 2000

[4] Skala,V.(Ed.): WSCG'99 Int.Conf. on
Computer Graphics, Visualization and
Interactive Digital Media'99, Plzen, 1999

Dod 2

1oL

Module name
MarchingCubes
MarchingT etrahedrad
MarchingT etrahedrat
MarchingT etrahedral

Renderer i
Triangtel oader ——‘—‘—“I
TrChar Volume 1

YWolumel oader

Triangles L¢

<} { »

» Volume <
Setup 4 Triangles »

e b

4 i

Beady

Selup I
[Tienges T

I
Setup
ESETT]

o
)

A.1. This picture shows the editor with designed net of modules for volume data visualisation with
two different methods (MarchingCubes & MarchingTetrahedra)

; ot Betup |
s | e]

4 Triangles |»

Selup j
[Trangies ¢

. Bemp
¥ Volume ¢

¢ Triangles 1

A.2. How can system look after the execution of modules, if visualised simple triangular mesh and
volume data.

