
Proceedings of ALGORITMY 2000

Conference on Scientific Computing, pp. 379 - 387

379

HASH FUNCTION FOR GEOMETRY RECONSTRUCTION IN RAPID

PROTOTYPING

VÁCLAV SKALA1, MARTIN KUCHAŘ2

Abstract. There are many applications where data structures use a hash function. The hash data

structures are widely used across all fields of computer science. Nevertheless the design or selection

of hash function for data sets with unknown properties is a problem. The Rapid Prototyping uses STL

format, where a set of triangles is used to represent a surface of the object. It is necessary to construct

the regular triangular mesh from the STL data format for many applications. It is a lengthy process for

large data sets as the time complexity of this process is O(N2) or O(N lgN) , where N is a number of

triangles.

The hash table can be used to speed up the process but the speed strongly depends on hash

function properties. This paper describes a new hash function and presents properties obtained on

large data sets.

Keywords: data visualization, hash function, algorithm complexity, computer graphics, triangular

mesh, STL format.

1. Introduction. There are several problems that are related to properties of the

triangular mesh representation that describes a surface of the object. In some

applications the surface is represented as a set of triangles and the Rapid

Prototyping (RP) is one of those. The Rapid Prototyping is a very progressive

technology that enables fast production of a prototype as a true mechanical body. It

is possible to make quite complex shapes of inner parts and with holes, etc. There

are several physical principles used for production of a final product (laminated

paper, stereo-lithography etc.) but all of them are based on the STL format, that is

standard format for data exchanges. The STL format is very simple as all objects

are represented as polyhedra. More precisely, the surface is represented by

polygonal facets, in vast majority of cases by triangular meshes. It contains

information on the face normal and co-ordinates of all vertices, fig.1.

The major problem with the STL file format is that it does not contain any

information on geometry, topology etc. The files created from solid models have

about 10% of anomalies and those created from surface models have about 90% of

problems. Error rates in this range make it clear that automated error checking is

important for all RP operations.

solid

facet normal 0.1 -0.5 1.0

 outer loop

 vertex 15.0 150.0 69.5

1 Supported by the Academy of Sciences of the Czech Republic - project A2030801
2 Supported by the Ministry of Education of the Czech Republic - project VS 97155

Department of Computer Science, University of West Bohemia, Univerzitní 8, Box 314, 306 14

Plzeň, Czech Republic, (e-mail: skala@kiv.zcu.cz and kuchy@students.zcu.cz)

 http://iason.zcu.cz/~{skala | kuchy }

mailto:skala@kiv.zcu.cz
mailto:kuchy@students.zcu.cz

380 V. SKALA, M. KUCHAŘ

 vertex 19.0 148.5 22.15

 vertex 142.22 511.7 655.99

 endloop

 endfacet

facet normal ………….

 outer loop

 vertex 15.0 150.0 69.5

 vertex …………..

 vertex …………..

 endloop

 endfacet

endsolid
FIG. 1 Example of the STL format - one vertex shared

For a reliable RP production some checks are needed but they are not generally

reliable. Another possibility is the geometry reconstruction from the given set of

triangles.

The main problem is to find all triangles that share the same given vertex of the

triangular mesh. This must be made for all vertices of the given mesh. The

reconstruction of the triangular mesh from the given set of triangles is a critical

operation as the co-ordinates of one vertex occur in the STL format several times,

see fig.1 for STL format description.

To be able to reconstruct the triangular mesh it is necessary to read all vertices,

sort them according to one co-ordinate, remove duplicities (the same vertex is

stored several times if the triangle vertex is shared) and create regular triangular

mesh with information on neighbors triangles etc. In triangular mesh a vertex is

shared with triangles properly and stored once, only. This process is of O(N
2
) or

O(N lgN) complexities and it is highly time consuming process if objects

considered are represented by 10
6
 - 10

7
 triangles.

There have been some attempts to subdivide a space into subspaces, but the

obtained results heavily depended on data sets, especially how the vertices were

scattered in space. Some approaches how to overcome the complexity using the

hash function has been published recently and resulted to hopefully expected O(N)

complexity, in general [1].

The basic idea is to obtain O(1) complexity for a query "find all triangles having

a vertex co-ordinates equal to …." as this type of query is to be answered for all

vertices of the given set of triangles. It can be seen that for triangular mesh sizes

under consideration the efficient solution is a very critical point.

2. Original solution. It is known that the hash function has to have some

properties, the most important are:

 to use all cells of the hash table as much as possible,

 HASH FUNCTION FOR GEOMETRY RECONSTRUCTION IN RAPID PROTOTYPING 381

 maximal and average cluster length should be as low as possible (cluster is

usually implemented as a list of primitives for cases when the hash function

gives the same value),

 the hash function must be as simple as possible in order to have very fast

evaluation.

The original hash function was defined [1] as

Index = ((int) ((3 * ((int) (fabs(X) * Q)) / Q + 5 * ((int) (fabs(Y) * Q)) / Q

+ 7 * ((int) (fabs(Z) * Q)) / Q) * SIZE)) % SIZE

where: (int) is the conversion to integer - the fraction part of the float is removed,

 fabs is a Absolute Value function,

% represents modulo operation,

Q defines sensitivity - number of valid decimal digits (numerical error

elimination) - for 3 decimal digits set Q = 1000.0,

SIZE is the size of the hash table that is determined as described later, but

generally as 2
k
 for fast evaluation of the modulo and division

operations

X, Y, Z are co-ordinates of a vertex.

File Number of

triangles

Original number

of vertices

Final number

of vertices

Maximal cluster

length

CTHead.stl 555 411 1 666 233 278 856 356

Gener.stl 500 000 1 500 000 50 002 577

Teapot.stl 159 600 478 800 80 202 110
TABLE 1 Typical characteristic of the original hash function for STL data

Original number of vertices - number of vertices in the STL data

Final number of vertices - number of vertices in the final triangular mesh

The hash function shown about uses very simple formula that is recommended

in all publications usually for small or medium data sets. Nevertheless when the

property of the hash function was experimentally verified it has not proved good

properties for large data sets, see fig. 2 - 4. The experiments proved that the

function has relatively stable properties nearly without influence of the coefficient

Q.

One of disadvantage of the hash function is that the coefficient Q depends on

the data and can lead to mixing some vertices together. Due this fact the small

triangles might be taken as zero-sized triangles and the triangular mesh is not

correct at the end.

382 V. SKALA, M. KUCHAŘ

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Cluster size

N
u

m
b

e
r

o
f

c
lu

s
te

rs

FIG. 2 Original hash function property for precision 7 decimal points

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Cluster size

N
u

m
b

e
r

o
f

c
lu

s
te

rs

FIG. 3 Original hash function property for precision 8 decimal points

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Cluster size

N
u

m
b

e
r

o
f

c
lu

s
te

rs

FIG. 4 Original hash function property for precision 9 decimal points

 HASH FUNCTION FOR GEOMETRY RECONSTRUCTION IN RAPID PROTOTYPING 383

FIG. 5 Randomly generated triangles

FIG. 6 Teapot data set

FIG. 7 CT Head data set

Fig.5 - 7 present some of the

typical data sets used for testing

and evaluation of the proposed

method. The size of the data

sets vary from 478 800 to

1 666 233 vertices.

3. Proposed solution. Data analysis proved that

 it is not reasonable to remove fraction part from co-ordinate value as it helps us

to distinguish co-ordinates better,

 it is necessary to remove all coefficients that depends on data set somehow,

 to use the available memory as much as possible to get larger hash table,

 the hash function should not be static one - it should be dynamic according to

currently available memory, but generally the size of the hash table can be

fixed.

Taking into account required properties of the hash function, several functions have

been derived.

Index = (DWORD) ((α * X + β * Y + γ * Z) * C + 0.5f) & T

384 V. SKALA, M. KUCHAŘ

where:

α, β and γ are coefficients of the hash function 3, 5 and 7,

C coefficient is a scaling coefficient set so that the full range of DWORD

type (4 Bytes) is used, i.e. range of the interval <0, 2
32

 – 1> is used,

T + 1 is the table size and the operator & represents modulo that is realized

as logical operation and with the DWORD type - for fast

computation,

0.5f is a constant that represents actually the rounding operation and gives

better spread out of co-ordinates.

For simplicity assume that all co-ordinates x are from the < 0 , Xmax > interval,

similarly for others. Then we can compute maximal value ξ that can be obtained

from the formula as

ξ = α * Xmax + β * Ymax + γ * Zmax

Because the overflow operation must be avoided and also we must use the

whole size of the table. Therefore the C coefficient must be determined as

C = min { C1 , C2 } where: C1 * ξ <= 2
32

 – 1 C2 = 2
32

 - 2
k

So far we have dealt with the hash function property regardless to the length of

the hash table. It must depend on the size of data we are going to process.

It is well known that the length of the table and estimated length of a cluster is

in relation with the load factor , see [2] for details. There are three times more

vertices than triangles in the STL format. If we consider the load factor = 0,5 we

can expect cluster length about 2,5.

The length T of the hash table can be expressed as

T

avg

v N
q

N
T

1
. & Tv NN 3

where:

NT is a number of triangles,

Nv number of vertices in the STL format,

qavg is average number of triangles that share the same vertex (approx.6)

load factor - = 0,5 used; the lower value used the better spread out.

In practice the value T is chosen as 2
k
 in order to be able to use the logical and

operator instead of modulo as this solution is much faster.

 HASH FUNCTION FOR GEOMETRY RECONSTRUCTION IN RAPID PROTOTYPING 385

File Number of

triangles

Original number

of vertices

Final number of

vertices

Maximal

cluster length

Gener.stl 500 000 1 500 000 500 002 9

CT Head.stl 555 411 1 666 233 278 856 6

Teapot.stl 159 600 478 800 80 202 7
TABLE 2 Typical characteristic of the proposed hash function for STL data

Original number of vertices - number of vertices in the STL data

Final number of vertices - number of vertices in the final triangular mesh

4. Experimental results. The proposed hash function has been tested on

different data sets and tab.2 presents behavior of those data sets. Fig.8 - 10 present

the relation of the cluster length and number of clusters. It can be seen that

maximal cluster length is limited to the length lower than 10, what is very good

result. Also the number of clusters decreases with the cluster length that is a very

good property of the hash function.

File Number of

triangles

Original number

of vertices

Final number of

vertices

Maximal

cluster length

CT Head.stl 555 411 1 666 233 278 856 6

TABLE 3 Proposed hash function behavior for 4-times longer hash table, i.e. = 0,125

Fig.11 shows the influence of the length of the hash table - actually the value of

 has been changed to = 0,125. It means that the setting value lower than 0,5

does not mean dramatic changes in hash function behavior, that is well know

feature of the well designed hash functions.

Gener.stl

202053

3
1

10

100

1000

10000

100000

1000000

0 2 4 6 8 10

Cluster size

N
u

m
b

e
r

o
f

c
lu

s
te

rs

FIG. 8 Proposed hash function property for Gener.stl data file

386 V. SKALA, M. KUCHAŘ

CT Head.stl

806937

6
1

10

100

1000

10000

100000

1000000

0 1 2 3 4 5 6 7

Cluster size

N
u

m
b

e
r

o
f

c
lu

s
te

rs

FIG. 9 Proposed hash function property for CT Head.stl data file

Teapot.stl

192968

1

10

100

1000

10000

100000

1000000

0 1 2 3 4 5 6

Cluster size

N
u

m
b

e
r

o
f

c
lu

s
te

rs

FIG. 10 Proposed hash function property for Teapot.stl data file

CT Head.stl

3

3928781

1

10

100

1000

10000

100000

1000000

10000000

0 1 2 3 4 5 6 7

Velikost shluku

P
o

č
e
t

s
h

lu
k
ů

FIG. 11 Proposed hash function property for if the table is longer 4-times

 HASH FUNCTION FOR GEOMETRY RECONSTRUCTION IN RAPID PROTOTYPING 387

5. Conclusion. This work has been part of the Modular Visualization

Environment (MVE) project. The proposed hash function uses the advantage of

large memory available today as well as the properties of the proposed hash

construction. The hash function has been tested on several data sets and proved

similar behavior. The size of the tested files varied from 10
5
 to 2.10

6
 of triangles

and the proposed hash function proved behavior stability.

6. Acknowledgment. The author would like to thanks to all that contributed to

this work, especially to MSc. and PhD. students at the University of West Bohemia

in Plzen who have stimulated this thoughts and development of this new algorithm.

This paper benefits from several discussions with them a lot. Special thanks belong

to anonymous reviewers of this paper as they shared some valuable insights on this

problem solution. Theirs invaluable critical comments and suggestions improved

the manuscript significantly.

REFERENCES

[1] Glassner,A.: Building Vertex Normals from an Unstructured Polygon List,

Graphic Gems IV, pp.60 – 73, Academic Press, Inc., 1994.

[2] Kofrhage,R.R., Gibbs,N.E.: Principles of Data Structures and Algorithms with Pascal,

Wm. C. Brown Publishers, 1987.

