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Abstract 
New faster line clipping algorithm in E2 against a convex 
polygon with O(lgN) complexity is presented. The main 
advantage of the presented algorithm is the principal 
acceleration of the line clipping problem solution. 
A comparison of the proposed algorithm with others 
shows a significant improvement in run-time. 
Experimental results for selected known algorithms are 
also shown. 
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1 Introduction 
Many algorithms for clipping lines against convex or 
non-convex polygons in E2 with many modifications 
derived from well known Liang-Barsky's [LIA83a], 
[LIA84a] and Cyrus-Beck's [CYR79a] algorithms have 
been published, see [SKA89a], [SKA89b] and 
[FOL90a]. All of them have the same complexity O(N), 
with an exception of Rappaport's algorithm [RAP91a] 
for convex polygon clipping, that has O(lgN) complexity. 
Their speed is determined by more or less clever 
implementation of tests and intersection computation. 
The convexity feature of the clipping polygon and the 
possibility of binary search usage over polygon vertices, 
because of known vertices order, have been used for 
principal speed up of the ECB line clipping algorithm 
[SKA93a] that resulted into new line clipping algorithm 
with complexity O(lgN), see [SKA94a]. It has been 
expected that an algorithm for line clipping against 
convex polygon with complexity O(lgN) exists, see 
[CHA87a] and the algorithm for a line segment clipping 
with O(lgN) complexity was published in [RAP91a]. The 
known algorithms for clipping lines against a general 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa a 

 
 
1 {bui|skala} @kiv.zcu.cz 

http://iason.zcu.cz/{~bui|~skala} 
2 Affiliated with the Multimedia Technology Research 

Centre, University of Bath, U.K. 
3 This work was supported by The Ministry of Education 

of the Czech Republic: project VS 97155 and project 
GA AV A2030801. 

4 Univerzitni 22, Box 314, 306 14 Plzeň, Czech Republic 
convex polygon do not make tests similar to 
Cohen-Sutherland's clipping algorithm. The main reason 
seems to be the computational cost of such tests for 
convex polygons. If a clipping algorithm is to be 
effective, it is necessary to distinguish the cases where 
lines pass through a given polygon from those where 
lines do not intersect the polygon. Cyrus-Beck's (CB) 
algorithm solves this problem by direct computation of 
points of intersections, the ECB algorithm uses the 
separation theorem for Cyrus-Beck's algorithm to 
achieve a speed up of approx. 1.2 - 2.5 times. The ECB 
algorithm does not use the known order of vertices of the 
given clipping polygon and it has the complexity O(N). 
The former O(lgN) algorithm [SKA94a] shows that a line 
can be clipped in O(lgN) steps, but the algorithm also 
takes O(lgN) steps to reject the line when it does not 
intersect the polygon. A new criterion can be used to 
eliminate the unnecessary computation for the cases 
when lines do not intersect the polygon and it leads to a 
faster O(lgN) algorithm.  

2 Algorithm’s principle 
Let us suppose that we have a given convex clipping 
polygon anti-clockwise oriented and  the line p is 
determined by two end-points 
 

xA = [xA, yA]T  , xB = [xB, yB]T 

 
The convex polygon is represented by N+1 

points 
xi = [xi, yi]T , i = 0, ... ,N 

where: points x0 and xN are identical (column notation is 
used), xi and yi are co-ordinates of the vertex xi. 
The notation x xi k  is used for a polyline from xi to xk, 
i.e. it is a chain of line segments from xi to xk. 

 
Let us define the separation function F(x) in the 

form 
F(x)= Ax + By +C  

 
where F(x)= 0 is an equation for the given line p and 
assume that the line has the orientation shown in 
Figure 1, x is defined as x = [x, y]T.  
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It can be seen in Figure 2, the oriented distance d 

of the point x from the line p can be determined as 
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It means that the value of the function F(x)  is 

actually proportional to the distance d of the point x from 
the given line p.  First of all, let us consider the chain 

ji xx , where 0 ≤ i < j < N. There are two following 

possible cases: 
• In the first case, the points xi and xj  are on the 

opposite sides of the line p, i.e. F(xi) * F(xj) < 0, 
there must be just one intersection point with the line 
p on the chains ji xx  (because the given polygon is 

convex), i.e. there must exist an index m so that 
F(xm) *F(xm+1) < 0  i ≤ m < j, see Figure 3. It is 
obvious that in this case the intersection point can be 
found in O(lgM) steps using binary search over 

vertices, where M is a number of line segments in 
the chain ji xx . 

• Unfortunately, in the second case when the points xi 
and xj are on the same side of the line p, the situation 
is more complex to solve. Let us concentrate on the 
point xk, where k = ( i + j ) div 2. The condition 
F(xi) * F(xk) < 0 shows that the point xk is on one 
side of the line p, whereas xi and xj are on the 
opposite side. This also derives that there must be 
just one intersection point on the chains x xi k and 
x xk j

for each chain, because the given polygon is 

convex. The intersection point on each chain can be 
again found in O(lgM) steps using binary search 
over vertices, where M is a number of line segments 
in the given chain, see Figure 4. The worse case will 
happen when all of three points xi, xj and xk lie on 
the same side of the line p. It is possible to 
distinguish all three fundamental sub-cases 
supposing the previously shown orientation of the 
separation function F(x). 
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xi and xj  are on the opposite sides of the line p  xi and xj  are on the same side of the line p 
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Figure 3       Figure 4 
 
a) The point xi is the closest point to the line p, 

i.e. F(xi) = min {F(xi), F(xj), F(xk)}. In this case, 
if F(xi+1) < F(xi) then the chain x xi k  can intersect 
the line p, see Figure 5. This condition actually 
expresses that we are getting closer to the line p, 
i.e. the oriented distance d is smaller, therefore, the 
chain x xk j

 can be removed by the assignment j=k. 

When this condition is not true, the whole chain 

ji xx  is on one side of the line p, i.e. there is no 

intersection point on this chain and the chain is 
rejected, see Figure 6. 

 
b) Similarly for the case when the point xj is the closest 

point to the line p, i.e. 
F(xj) = min {F(xi), F(xj), F(xk)}, see Figures 7-8, the 
intersection points can lie only the chain x xk j  or 

do not exist at all. The condition F(xj-1) < F(xj)  
decides that the chain x xi k  can be removed and 
the index i must be changed to k, see Figure 7. 

 
c) A little bit more complex situation is shown by 

Figure 9-10, where the point xk is the closest point to 
the line p, i.e. F(xk) = min {F(xi), F(xj), F(xk)}. In 
Figure 9 the chain x xk j

 can be removed, similarly 

in Figure 10 the chain x xi k  can be removed, too. In 
the first, resp. second, case index j, resp. index i, 
must be changed to k. Theses cases can be 
distinguished by using criterion F(xk+1) < F(xk) . 
Actually we must distinguish whether we are getting 
closer to the given line p or not. 

It is very easy to derive the similar conditions for those 
cases when the line p has an opposite orientation.  
 
The above mentioned analysis leads to a new algorithm. 
The proposed algorithm contains the following basic 
steps: 
 
• The algorithm starts with i = 0; j = n - 1  
  
• If the points x0 and xn-1 are on the opposite sides of 

the line p, i.e. F(x0) * F(xn-1) < 0 then one 
intersection point is on the edge 01xx −n  and the 

second one is on the chains 10 −nxx  

 
• If the points x0 and xn-1 are on the same side of the 

line p, the algorithm continues with the process to 
subsequently shorten the chain ji xx . This process 

is repeated until the whole chain is rejected or 
F(xi) * F(xk) < 0. If this condition becomes true we 
will obtain two chains x xi k and jk xx , that 

intersects the line p and binary search over vertices 
can be used again as we get a similar situation 
shown in Figure 3.  

 
 Now it can be seen that all parts of the proposed 
algorithm are of complexity O(lgM), where M is 
a number of edges in the given chain because we have 
used the binary search over vertices of the clipping 
convex polygon for all steps. Therefore the algorithm has 
O(lgN) complexity and it is described by Algorithm 1.  
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Figure 5        Figure 6 
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Figure 7       Figure 8 
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procedure CLIP_2D_log (xA, xB); 
{N+1 points xi = [xi, yi]T , i = 0, ... ,N represent the convex polygon}  
{the line p or line segment is determined by two points  xA = [xA, yA]T , xB = [xB, yB]T} 
 
function macro F(x): real;    { should be implemented as an in-line function } 
begin   
 F := A * x + B * y + C;  
end { F }; 
 
function INTERSECTION (p, xi , xj ): real;  { should be implemented as an in-line function } 
begin   

INTERSECTION := ((xj – xi) * (yi – yA) – (yj – yi) * (xi – xA)) / ((xj – xi) * (yB – yA) – (yj – yi) * (xB – xA));  
end { INTERSECTION }; 
 
function SOLVE ( i , j, i_GT_0 ): real; { finds two nearest vertices on the opposite sides of the given line p } 
{ i_GT_0 is a boolean parameter indicating whether F(xi) > 0   } 
begin  if i_GT_0 then while ( j - i ) ≥ 2 do { j ≥ i always } 
   begin  k := ( i + j ) div 2; { shift to the right } 
    if F(xk) < 0  then j := k else i := k 

   end { while } 
  else  while ( j - i ) ≥ 2 do { j ≥ i always } 
   begin  k := ( i + j ) div 2; { shift to the right } 
    if F(xk) < 0   then i := k else j := k 

   end { while }; 
{ compute the value t of an intersection point of the line p with the polygon edge xi xj } 
SOLVE := INTERSECTION (p, xi , xj );  

end { SOLVE }; 
 
begin  { determine the A, B, C values for the separation function F(x) } 
  A := yA – yB; B := xB – xA; C := xA * yB – xB * yA;  
 i := 0;   j := N-1;  
 { for lines   tmin :=  −∞; tmax :=  +∞;}  
 { for line segments  tmin :=  0; tmax :=  1;} 
 Fc := F(xi) ; { proportional distance of the closer point } 
 { for the polygon orientation shown in Figure 1 } 
 if Fc > 0 then 
 begin  { for the orientation of line p shown in Figure 3 } 
  if F(xN-1) < 0 then 
  begin  { see Figure 3 } 

    t1 := SOLVE ( 0 , N-1, TRUE ) ; { find an intersection on 10 −nxx  chain } 

    t2 := INTERSECTION (p, xN-1 , x0); {find an intersection on 01xx −n edge} 

   { for the line segment clipping include the next 5 lines}  
   { if t1 > t2 then begin t := t2 ; t2 := t1  ; t1 := t end;}  

   {compute  <t1, t2> as <t1, t2> ∩<0, 1> } 
    { t1 := max (tmin , t1 ); t2 := min (tmax , t2 );    } 
    { if <t1, t2> ≠ ∅ then draw line segment             }  
    { if  t1 ≤ t2 then  SHOW-LINE(x(t1) , x(t2));        } 
  EXIT { exit procedure CLIP_2D_log } 

  end { if }; 
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if F(xN-1) < Fc  then  

  begin  Fc := F(xN-1);  
    i_closer_j := FALSE  { vertex xj  is closer than vertex xi } 

  end else i_closer_j := TRUE; { vertex xi  is closer than vertex xj } 
  while ( j - i ) ≥ 2 do 

   begin  k := ( i + j ) div 2; { shift to the right } 
    if F(xk) < 0   then 
   begin  { see Figure 4} 

    t1 := SOLVE ( i , k, TRUE ) ; { find an intersection on x xi k  chain } 

     t2 := SOLVE ( k , j, FALSE ); {find an intersection on x xk j  chain } 

    { for the line segment clipping include the next 5 lines}  
    { if t1 > t2 then begin t := t2 ; t2 := t1  ; t1 := t end;}  

    {compute  <t1, t2> as <t1, t2> ∩<0, 1> } 
     { t1 := max (tmin , t1 ); t2 := min (tmax , t2 );    } 
     { if <t1, t2> ≠ ∅ then draw line segment              } 
     { if t1 ≤ t2 then  SHOW-LINE(x(t1) , x(t2));          } 
    EXIT { exit procedure CLIP_2D_log } 
   end { if }; 
   if F(xk) > Fc  then { Figures 5-8} 

    begin { DELETE CHAIN ( i , j ) removes the chain jixx } 

    if i_closer_j then { Figures 5-6} 
     if F(xi+1) < F(xi) then 
       j := k { DELETE CHAIN ( k , j ); {Figure 5}  

else EXIT { exit procedure CLIP_2D_log }{Figure 6} 
    else if F(xj-1) < F(xj) then 
       i := k { DELETE CHAIN ( i , k ); {Figure 7}  

else EXIT { exit procedure CLIP_2D_log}  {Figure 8} 
   end 
    else {Figures 9-10} 
   begin if F(xk+1) > F(xk) then 
    begin  j := k; { DELETE CHAIN ( k , j ); } {Figure 9} 
     i_closer_j := FALSE  { vertex xj  is closer than vertex xi } 

end else 
    begin  i := k; { DELETE CHAIN ( i , k );} {Figure 10} 

i_closer_j := TRUE  { vertex xi  is closer than vertex xj } 
end; 

    Fc := F(xk) ; 
    end 
   end { while } 
 end else   
 begin  { for an opposite orientation of the line situations are solved similarly } end 
end { CLIP_2D_log } 
 

Algorithm 1: O(lgN) algorithm
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3 Experimental results 
The new proposed O(lgN) algorithm was verified 
experimentally on Pentium Pro, 200MHz, 128MB RAM, 
512KB CACHE. The proposed algorithm has been tested 
against the Cyrus-Beck's (CB) and the former O(lgN)  
(FL) algorithms on data sets of line segments (105) with 
end-points that have been randomly and uniformly 
generated inside a circle in order to eliminate an 
influence of rotation. Convex polygons were generated 
as N-sided convex polygons inscribed into a smaller 
circle.  

To compare these algorithms, let us introduce 
coefficients of the effectivity ν  as 

ν 1 =
T
T
CB  , 

T
TFL=2ν  

where: TCB  , FLT  , T  are execution times needed by 

the CB, FL and the proposed O(lgN)  algorithms. 

Description of the CB and FL algorithms can be 
found in [SKA94a] together with their theoretical and 
experimental comparisons. The Table 1 and Table 2 
present the obtained results. In these tables, the first row 
shows the number of polygon edges and the first column 
the percentage q of intersecting lines.  

 
 It can be seen that, see Table 1, that the 
proposed algorithm is significantly faster then CB 
algorithm, specially for the high N. This is expectable 
because the proposed algorithm runs with O(lgN) 
complexity, whereas the complexity of CB algorithm is 
O(N). 
 

Table 2 shows that the proposed O(lgN)  
algorithm relatively improves the former one 
significantly, especially for the cases when the given line 
does not intersect the clipping polygon.  

 
ν1 N 
q 3 4 5 6 7 8 9 10 30 50 100 
0% 2.85 3.85 4.67 5.68 5.48 6.15 7.00 8.33 20.85 30.84 36.01

10% 2.93 3.18 3.97 4.82 5.48 5.37 6.97 8.33 18.48 27.67 33.42
20% 3.04 3.18 4.00 4.85 4.76 6.33 6.08 7.24 19.02 27.57 33.83
30% 2.33 3.15 4.00 4.18 4.76 4.61 5.23 7.03 16.26 24.58 31.51
40% 2.33 2.39 3.00 3.50 4.11 4.64 5.25 6.23 16.59 24.56 29.76
50% 2.33 2.36 3.47 3.61 4.14 4.08 4.60 5.61 14.87 24.67 31.45
60% 2.16 2.39 3.00 3.50 4.11 4.16 4.60 5.00 13.33 20.47 29.71
70% 1.97 2.36 2.69 3.08 3.62 4.16 4.82 5.00 12.30 20.47 27.96
80% 1.75 2.08 2.69 2.80 3.29 3.69 4.18 5.00 12.32 19.03 27.96
90% 1.91 1.91 2.40 2.57 3.02 3.80 3.83 4.98 11.28 18.76 26.56

100% 1.54 1.73 2.40 2.57 3.29 3.80 3.85 5.00 10.56 17.48 25.12
 

Table 1: Comparison between the CB algorithm and the proposed algorithm 
 

ν2 N 
q 3 4 5 6 7 8 9 10 30 50 100 
0% 1.41 1.63 1.81 1.96 1.67 1.82 2.00 1.33 1.41 1.39 1.49

10% 1.57 1.48 1.67 1.67 1.85 1.58 2.00 1.30 1.25 1.35 1.40
20% 1.81 1.52 1.85 1.85 1.58 2.00 1.74 1.29 1.42 1.33 1.48
30% 1.48 1.48 1.82 1.58 1.74 1.48 1.61 1.26 1.22 1.31 1.31
40% 1.52 1.11 1.36 1.36 1.48 1.48 1.61 1.11 1.24 1.31 1.30
50% 1.67 1.25 1.74 1.50 1.50 1.42 1.42 1.12 1.11 1.29 1.44
60% 1.45 1.25 1.39 1.39 1.50 1.42 1.42 1.00 1.08 1.00 1.30
70% 1.54 1.36 1.35 1.32 1.42 1.44 1.45 1.00 1.00 1.00 1.27
80% 1.25 1.10 1.35 1.20 1.31 1.29 1.40 1.00 1.08 1.01 1.22
90% 1.40 1.09 1.29 1.20 1.20 1.11 1.28 1.00 1.00 1.07 1.22

100% 1.22 1.00 1.31 1.18 1.40 1.11 1.28 1.00 1.00 1.00 1.20
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Table 2: Comparison between the FL algorithm and the proposed algorithm 
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Graph 1: Comparison between the FL algorithm and the proposed algorithm 
 

4 Conclusion 
The new efficient algorithm of O(lgN) complexity for 
clipping lines against convex polygon in E2 has been 
developed, verified and tested. Edges of the given 
convex polygon can be arbitrarily oriented. The 
algorithm also proved the applicability of computational 
geometry principles even for small N although it deals 
mostly with the cases for large N. The proposed 
algorithm can be easily modified for polygon clipping by 
convex polygon with complexity O(M*lgN).  The 
superiority of the suggested algorithm over the CB and 
FL algorithms was proved experimentally. 
 Some related reports are available in the on-line 
form at the URL: 

http://herakles.zcu.cz/publication.htm 
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