
The Visual Computer (1998) 14:31±37
� Springer-Verlag 1998 31

Fast algorithms
for clipping lines
and line segments in E2

Duc Huy Bui, Vaclav Skala

Department of Informatics and Computer Science,
University of West Bohemia, Univerzitni 22, Box 314,
306 14 Plzen, Czech Republic
bui@kiv.zcu.cz http://herakles.zcu.cz/�bui
skala@kiv.zcu.cz http://herakles.zcu.cz/�skala

New modifications of the Cohen-Suther-
land algorithm for clipping lines and line
segments in E2 are presented. The suggest-
ed algorithms are based on a technique of
coding the line direction together with the
end points of the clipped line segment.
They solve all cases more effectively.
The algorithms are convenient for clip-
pings lines or line segments by rectangle.
Theoretical considerations and experimen-
tal results are also presented.

Key words: Line clipping ± Computer
graphics ± Algorithm complexity ± Geo-
metric algorithms ± Algorithm complexity
analysis

1 Introduction

Many algorithms for clipping a line or a line seg-
ment by rectangular area have been published
[Ska94], [Ska96], [Ska97]. Line clipping by rect-
angular window is often restricted to the use of
the Cohen-Sutherland (CS) algorithm [Fol90] or
its modifications that use a small clipping window
or a more sophisticated coding technique [Sob87],
etc. Solving the line clipping problem is a bottle-
neck in many packages and applications. It would
be desirable to use a faster, though even more
complex algorithm.
The CS algorithm, based on coding the end-points
of the given line segment, is simple and robust. It
detects all the cases when the line segment is com-
pletely inside a given rectangle and some cases
when the line segment is outside (Fig. 1).
It is well known that segments AB and CD are han-
dled in a very simple way. However, the line seg-
ments EF and GH are not recognized at all, and
full intersection computations are necessary. In
the worst case, (see line segment IJ in Fig. 1), all
intersection points with each boundary line on
which the rectangle edges lie are computed (Algo-
rithm 1).

global var xmin, xmax, ymin, ymax: real; {clipping
window size definition}

{operators land and lor are bitwise and and or
are operators}

procedure CS_Clip (xA, yA, xB, yB: real);
var x, y: real;

c, cA, cB: integer;
procedure CODE (x, y: real; var c: integer);
{implemented as a macro}
begin c:=0;

if x<xmin then c:=1 else if x>xmax then c:=2;
if y<ymin then c:=c+4 else if y>ymax then
c:=c+8;

end {of CODE};

begin CODE (xA, yA, cA); CODE (xB, yB, cB);
if (cA land cB)¹0 then EXIT; {the line segment
is outside the clipping rectangle}
if (cA lor cB)=0 then begin DRAW_LINE
(xA, yA, xB, yB); EXIT; end; {the line segment
is inside of the clipping rectangle}
repeat if cA¹0 then c=cA else c=cB;

if (c land �0001�)¹0 then {divide line at the
left edge}
begin y:=yA+(xmin�xA)*(yB�yA)/(xB�xA);

x:=xmin;
end

Correspondence to: D.H. Bui



32

else if (c land �0010�)¹0 then
begin y:=yA+(xmax�xA)*(yB�yA)/(xB�xA);

x:=xmax;
end
else if (c land �0100�)¹0 then
begin x:=xA+(ymin�yA)*(xB�xA)/(yB�yA);

y:=ymin;
end
else if (c land �1000�)¹0 then

begin x:=xA+(ymax�yA)*(xB�xA)/(yB�yA);
y:=ymax;

end;
if c=cA then begin xA:=x; yA:=y; CODE
(xA, yA, cA); end

else begin xB:=x; yB:=y; CODE (xB, yB, cB);
end;

if (cA land cB)¹0 then EXIT;
until (cA lor cB)=0;
DRAW_LINE (xA, yA, xB, yB);

end {of CS_Clip};

Algorithm 1 ± the Cohen-Sutherland algorithm

The Liang-Barsky (LB) algorithm is a well-known
algorithm for line clipping [Fol90]. It is based on
clipping a given line by each boundary line on
which the rectangle edge lies. The given line is
represented parametrically. At the beginning, the
parameter t is limited by interval (�¥, +¥), and
then this interval is subsequently truncated by all

the points intersecting each boundary line of the
clipping rectangle (Algorithm 2). An additional
trivial rejection test (function TEST) is used to
avoid calculating all four parametric values for
the lines, that do not intersect the clipping rectan-
gle.

global var xmin, xmax, ymin, ymax: real;
{clipping window size}
{given values}

function TEST (p, q: real;
var t1, t2: real):boolean;

var r:real;
begin TEST:=true;

if p<0 then
begin r:=q/p;

if r>t2 then TEST:=false
else if r>t1 then t1:=r

end else
if p>0 then
begin r:=q/p;

if r<t1 then TEST:=false
else if r<t2 then t2:=r;

end else if q<0 then TEST:=false
end {of TEST};

procedure LB_Clip (xA, yA, xB, yB: real);
var t1, t2, Dx, Dy:real;

1

2
Fig. 1. A rectangle and line segments in various positions

Fig. 2. Line segments in characteristic situations



33

begin
t1:=�¥; t2:=+¥; Dx:=xB�xA;

if TEST(�Dx, xA�xmin, t1, t2) then
if TEST(Dx, xmax�xA, t1, t2) then

begin
Dy:=yB�yA;
if TEST(�Dy, yA�ymin, t1, t2) then

if TEST(Dy, ymax�yA, t1, t2) then
begin xB:=xA+(x*t2;

yB:=yA+Dy*t2;
xA:=xA+Dx*t1;
yA:=yA+Dy*t1;

DRAW_LINE(xA, yA, xB, yB)
end

end
end {of LB_Clip};

Algorithm 2 ± the Liang-Barsky algorithm

2 Proposed methods

The line segment suggested algorithm (LSSA) for
line-segment clipping is based on the CS algo-
rithm, but the arithmetic sum of end point codes
and a new coding technique for the line segment
direction are used in order to remove cases that
the original CS algorithm is unable to recognize.
Let us assume characteristic situations from
Fig. 2.1 and denote cA, cB as CS codes of line-seg-
ment end points; a, g, h, w, as corner areas, and b,
q, x, d as side areas.
By testing the arithmetic sum of the end-point
codes, we can distinguish the following situations:

± One end point of the line segment is inside the
clipping rectangle, and the second one is in the
side area (the cases cA+cBÎ{1, 2, 4, 8}). In
these cases, one intersection point is computed.

± The end points of the line segment are in the op-
posite side areas (the cases cA+cBÎ{3, 12}). In
these cases two intersection points are computed
(the clipping edges have already been deter-
mined).

± One end point of the line segment is in the cor-
ner area of the clipping rectangle, and the sec-
ond one is in the side area (the cases
cA+cBÎ{7, 11, 13, 14}). In these cases, one clip-
ping edge (if it exists) has already been deter-
mined, and the second one is opposite or neigh-
boring it.

± When cA+cBÎ{5, 6, 9, 10}, there are two possi-
ble situations:
1. The end points of the line segment are in the
nearby side areas, i.e., (d, b), (d, x), (q, b), (q, x).
Two clipping edges (if they exist) have already
been determined.
2. One end point of the line segment is inside of
the clipping rectangle, and the second one is in
the corner area. Only one intersection point
can lie on the horizontal or vertical edge of
the clipping rectangle.

± The end points of the line segment are in the op-
posite corner areas (the cases cA+cB=15). The
comparison of the directions of the given line
and the clipping rectangle diagonal decides
which edges (horizontal or vertical) are used to
compute the intersection points.

Recognizing all these cases avoids unnecessary
calculation and causes considerable speed-up. A
detailed description of the proposed algorithm is
shown in Algorithm 3.

procedure LSSA_Clip (xA, yA, xB, yB: real);
var Dx, Dy, k, m, r: real; cA, cB: integer;

procedure CODE (x, y: real; var c: integer);
{implemented as a macro}
begin c:=0; if x<xmin then c:=1 else if x>xmax
then c:=2;
if y<ymin then c:=c+4 else if y>ymax then
c:=c+8;
end {of CODE};

begin
CODE (xA, yA, cA); CODE (xB, yB, cB);
if (cA land cB)<>0 then EXIT; {the line
segment is outside}
if (cA lor cB)=0 then {the line segment is inside
the clipping rectangle}

begin DRAW_LINE(xA, yA, xB, yB); EXIT;
end;

Dx:=xB�xA; Dy:=yB�yA;
case cA+cB of {see Fig. 3}

1: if cA=1 then begin xA:=xmin; yA:=(xmin�xB)*
Dy/Dx+yB; end
else begin xB:=xmin; yB:=(xmin�xA)* Dy/
Dx+yA; end;

3: begin k:= Dy/Dx; yA:=(xmin�xA)*k+yA;
xA:=xmin;
yB:=(xmax�xB)*k+yB; xB:=xmax; end;

5: begin k:= Dy/Dx; r:=(xmin�xA)*k+yA;
if r<ymin then case cA of



34

0: begin xB:=xB+(ymin�yB)/k; yB:=ymin;
end;

5: begin xA:=xA+(ymin�yA)/k; yA:=ymin;
end;

else EXIT;{the line segment is outside}
end

else case cA of
0: begin xB:=xmin; yB:=r; end;
1: begin xB:=xB+(ymin�yB)/k; yB:=ymin;

xA:=xmin; yA:=r; end;
4: begin xA:=xA+(ymin�yak)/k; yak:=ymin;

xB:=xmin; yB:=r; end;
5: begin xA:=xmin; yA:=r;end; end;

end;
7: case cA of

1: begin k:=(y/(x; yA:=(xmin�xB)*k+yB;
if yA<ymin then EXIT; {the line segment is
outside}
xA:=xmin; yB:=(xmax�xmin)*k+yA;
if yB<ymin then begin xB:=(ymin�yB)/
k+xmax; yB:=ymin; end else xB:=xmax;

end; {similarly for cases cA=2, 5, 6}
end;

15: case cA of
5: if Dy*(xmax�xmin)< Dx*(ymax�ymin) then
begin k:= Dy/Dx; yA:=(xmin�xB)*k+yB;
if yA>ymax then EXIT; {the line segment is
outside}
yB:=(xmax�xmin)*k+yA;
if yB<ymin then EXIT; {the line segment is
outside}
if yA<ymin then begin xA:=(ymin�yA)/
k+xmin; yA:=ymin; xB:=xmax; end
else begin xA:=xmin;

if yB>ymax then begin xB:=(ymax�yB)/
k+xmax; yB:=ymax; end

else xB:=xmax;
end;

end else
begin m:= Dx/Dy; xA:=(ymin�yB)*m+xB;
if xA>xmax then EXIT; {the line segment
is outside}

xB:=(ymax�ymin)*m+xA;
if xB<xmin then EXIT; {the line segment
is outside}
if xA<xmin then begin yA:=(xmin�xA)/
m+ymin; xA:=xmin; yB:=ymax; end

else begin yA:=ymin;
if xB>xmax then begin yB:=(xmax�xB)/
m+ymax; xB:=xmax; end
else yB:=ymax;

end;
end
{similarly for cases cA=6, 9, 10}

end;
{cases 2, 4, 8 are similar to case 1, cases 6, 9,
10 are similar as case 5}
{cases 11, 13, 14 are similar as case 7, case 12
is similar to case 3}

end {of case cA+cB};
DRAW_LINE (xA, yA, xB, yB); {EXIT means
leave the procedure}

end {of LSSA_Clip};

Algorithm 3 ±
the LSSA algorithm for line-segment clipping

In many applications it is necessary to clip lines
instead of line segments. It can be shown that
the CS algorithm is faster than the LB algorithm
for line segment clipping; but for line clipping,
the LB algorithm is more convenient and faster.
Therefore, a similar consideration was made for
the LB algorithm that resulted in a new algorithm
for line clipping called the line suggested algo-
rithm (LSA). The LSA algorithm is based on a
new coding technique for line direction. The com-
parison of the directions of the given line and the
diagonal of the clipping rectangle decides which
edges (horizontal or vertical) are used to compute
the intersection points between the line and the
clipping window (Algorithm 4). This comparison
is used to avoid calculating the intersection points
that do not lie on the boundary edges of the clip-
ping rectangle.

procedure LSA_Clip (xA, yA, xB, yB: real);
var Dx, Dy, k, m: real;
begin Dx:=xB�xA;

if Dx=0 then begin
if DxA<xmin) or (xA>xmax) then EXIT;
{the line is outside of the clipping rectangle}

yA:=ymin; yB:=ymax; DRAW_LINE(xA, yA,
xB, yB); end;

Dy:=yB�yA;
if Dx>0 then

if Dy>0 then
if (Dy*(xmax�xmin)<Dx*(ymax�ymin)) then
begin k:=Dy/Dx; yA:=(xmin�xB)*k+yB;
if yA>ymax then EXIT; {the line is outside
of the clipping rectangle}
yB:=(xmax�xmin)*k+yA;



35

if yB<ymin then EXIT; {the line is outside
of the clipping rectangle}
if yA<ymin then begin xA:=(ymin�yA)/k+xmin;
yA:=ymin; xB:=xmax; end
else begin xA:=xmin; if yB>ymax then begin
xB:=(ymax�yB)/k+xmax; yB:=ymax; end

else xB:=xmax; end;
end else
begin m:=Dx/Dy; xA=(ymin�yB)*m+xB;

if xA>xmax then EXIT; {the line is outside
of the clipping rectangle}
xB:=(ymax�ymin)*m+xA;
if xB<xmin then EXIT; {the line is outside
of the clipping rectangle}
if (xA<xmin) then begin yA:=(xmin�xA)/
m+ymin; xA:=xmin; yB:=ymax; end
else begin yA:=ymin; if xB>xmax then begin
yB:=(xmax�xB)/m+ymax; xB:=xmax; end

else yB:=ymax; end;
end; {similarly for the other cases}
DRAW_LINE(xA, yA, xB, yB);

end; {of LSA_Clip}

Algorithm 4 ± the LSB algorithm for line clipping

3 Theoretical considerations and
experimental results

It is necessary to derive the expected theoretical
properties of the proposed algorithms and prove
their superiority to traditional algorithms. It should
be mentioned here that algorithm efficiency can
differ from computer to computer because of dif-
ferent instruction times. For a PC 586/133 MHz,
we have the following timing: 6.7, 11.2, 2.3, 2.3,
and 19.9 S, for 128.106 operations (:=,<, �, *, /).
For algorithm efficiency considerations for CS
and the LSSA algorithms, we must consider sever-
al situations (Fig. 3). It can be seen that the line
segments s1 and s2 are handled exactly as in the
original CS algorithm. For the other cases, it is
necessary to derive CS and LSSA algorithm com-
plexities and compare them. Let us introduce a co-
efficient of efficiency n1 as

n1 � TCS

TLSSA
:

All significant cases are shown in Fig. 3.

Table 1. Comparison of the Cohen-Sutherland and the line segment suggested algorithms

Case Theoretical considerations Experimental results

CS LSSA n1 CS
t[s]

LSSA
t[s]

n1

= < � � / t[s] = < � � / t[s]

s1 2 10 0 0 0 125,40 2 10 0 0 0 125,40 1,00 150,28 150,28 1,00
s2 4 9 2 0 0 132,20 4 9 2 0 0 132,20 1,00 151,70 151,70 1,00
s3 11 17 6 1 1 300,00 8 12 6 1 1 223,90 1,34 238,41 210,71 1,13
s4 12 17 6 1 1 306,70 9 12 6 1 1 230,60 1,33 238,90 213,85 1,12
s5 9 17 4 1 1 282,00 7 11 5 1 1 203,70 1,38 236,98 206,10 1,15
s6 19 27 9 2 2 494,60 12 12 8 1 2 275,10 1,80 355,44 245,39 1,45
s7 21 33 14 3 3 608,80 13 13 10 2 2 299,90 2,03 462,58 272,58 1,70
s8 9 22 5 1 1 340,30 7 12 6 1 1 217,20 1,57 250,88 222,53 1,13
s9 17 32 10 2 2 539,50 10 12 8 1 2 261,70 2,06 361,15 258,90 1,39
s10 16 27 10 2 2 476,80 10 10 8 1 2 239,30 1,99 327,53 237,91 1,38
s11 24 37 14 3 3 673,70 13 12 8 2 2 284,10 2,37 440,28 267,75 1,64
s12 9 20 5 1 1 317,90 7 11 6 1 1 206,00 1,54 240,33 211,87 1,13
s13 16 30 9 2 2 508,10 12 12 8 1 2 275,10 1,85 356,70 257,20 1,39
s14 9 20 4 1 1 315,60 7 12 5 1 1 214,90 1,47 248,96 221,54 1,12
s15 19 26 10 2 2 485,70 9 11 6 1 1 219,40 2,21 327,47 210,00 1,56
s16 11 19 5 1 1 320,10 8 12 6 1 1 223,90 1,43 240,33 221,54 1,08
s17 24 39 15 3 3 698,40 12 12 9 2 1 259,90 2,69 442,86 231,87 1,91
s18 31 49 20 4 4 890,90 13 15 11 4 1 309,40 2,88 554,78 266,81 2,08
s19 16 32 10 2 2 532,80 11 10 9 2 1 230,80 2,31 358,79 223,46 1,61
s20 24 42 15 3 3 732,00 12 13 9 2 1 271,10 2,70 465,93 245,39 1,90
s21 15 28 8 2 2 476,70 11 10 7 2 1 226,20 2,11 353,46 222,53 1,59



36

For experimental verification of the proposed algo-
rithm, all cases were tested, and 64.106 different
line segments were randomly generated for each
case considered. Table 3 shows that the LSSA al-
gorithm is theoretically and experimentally signif-

icantly faster in all considered nontrivial cases
(different from s1 and s2). It can be seen that the
LSSA algorithm is approximately 1.1 to 2.0 times
faster.

3

4

Fig. 3. Line segments ± significant cases

Fig. 4. Line segments ± basic cases

Table 2. Comparison of the Liang Barsky algorithm and the line suggested algorithm

Case Theoretical considerations Experimental results

LB LSA n2 LB
t[s]

LSA
t[s]

n2

= < � � / t[s] = < � � / t[s]

l1 10 13 6 0 4 305,60 5 6 8 4 1 148,10 2,06 303,46 191,65 1,58
l2 15 14 10 4 4 368,70 8 7 10 4 2 203,80 1,81 349,18 236,98 1,47
l3 16 14 10 4 4 375,40 7 8 8 4 1 183,90 2,04 351,10 216,26 1,62
l4 15 14 10 4 4 368,70 8 8 10 4 2 215,00 1,71 349,18 248,08 1,41
l5 9 9 5 0 3 232,00 4 5 6 3 1 123,30 1,88 241,32 167,58 1,44
l6 10 13 6 0 4 305,60 4 5 6 3 1 123,30 2,48 303,41 167,14 1,82
l7 9 9 5 0 3 232,00 5 6 8 4 1 148,10 1,57 241,32 191,21 1,26
l8 12 13 10 4 2 297,80 3 3 1 0 0 56,00 5,32 297,64 98,74 3,01
l9 3 3 2 0 0 58,30 1 2 1 0 0 31,40 1,86 101,65 85,71 1,19
l10 3 6 3 0 0 94,20 1 3 1 0 0 42,60 2,21 134,40 96,81 1,39



37

Similarly, to consider the efficiency of the LB and
new LSA algorithms, we must recognize the fun-
damental situations shown in the Fig. 3.
Let us introduce the coefficient of efficiency n2 as:

n2 � TLB

TLSA
:

The theoretical estimations and the experimental
results are presented in Tabel 2. This table shows
that the LSB algorithm is significantly faster than
the LB algorithm in all cases ± from 1.2 to 3.0
times faster, approximately.
A theoretical comparison with the Nicholl algo-
rithm [Nic87] was also done. Although the Nicholl
algorithm achieves an efficiency similar to that of
the proposed algorithm for the line segment clip-
ping, it unfortunately cannot be used for clipping
a given line generally.

4 Conclusion

The new line-segment clipping algorithm (LSSA)
and the line clipping algorithm (LSA) against a
given rectangle in E2 were developed, verified,
and tested. The proposed LSSA and LSA algo-
rithms are convenient for those applications in
which many lines or line segments must be
clipped. The proposed approach gives similar algo-
rithms for line and line-segment clipping. The pro-
posed algorithms claim superiority to the CS and
LB algorithms, and experiments proved that the
speed-up can be considered up to twice as fast
for line segment clipping and three times as fast
for line clipping in some cases.
Our modifications of the well-known algorithms
proved that the approach ªtest first and compute
after all testsº can bring a significant speed-up
even with the familiar algorithms. There is hope
that these modifications of the CS algorithm can
be implemented in hardware, too.

Acknowledgements. The authors would like to express their
thanks to all who contributed to this work, especially to recent
Ms and PhD students of the Computer Graphics courses at the
University of West Bohemia in Pilsen, who stimulated this
work. This work was supported by The Ministry of Education
of the Czech Republic ± projects PG 97193, PG 97185 and
VS 97155.

References

[Fol90] Foley DJ, van Dam A, Feiner SK, Huges JF. Computer
Graphics ± Principles and Practice. Addison Wesley, pub-
lishing 2nd ed., 1990, USA

[Nic87] Nicholl TM, Lee DT, Nicholl RA (1987) An efficient
new algorithm for 2-D line clipping: its development and
analysis. SIGGRAPH Proceedings, 21:253±262

[Ska94] Skala V (1994) O(lg N) Line clipping algorithm in E2.
Comput Graph 18:517±524

[Ska96] Skala V (1996) An efficient algorithm for line clipping
by convex and non-convex polyhedra in E3. Comput Graph
Forum 15:61±68

[Ska97] Skala V (1997) A fast algorithm for line clipping by
convex polyhedron in E3. Comput Graph 21:209±214

[Sob87] Sobleow MS, Pospisil P, Yang YH (1987) A fast two
dimensional line clipping algorithm via line encoding. Com-
put Graph 11:459±467

BUI DUC HUY is a PhD stu-
dent of Computer Science at the
Department of Computer Science
and Engineering, University of
West Bohemia in Pilsen, Czech
Republic. He graduated from
the University of West Bohemia
in Pilsen in 1995. His current re-
search interests are algorithms
for computer graphics, medical
and technical data visualisation
and scientific computation, dis-
tributed and parallel processing.

V�CLAV SKALA is a Profes-
sor of Computer Science at the
Department of Computer Science
and Engineering, University of
West Bohemia in Pilsen, Czech
Republic. He graduated at the In-
stitute of Technology in Pilsen in
1975 and received his Ph.D in
1981. He is the Co-chair and or-
ganizer of the annual conferences
WSCG ± The International Con-
ference in Central Europe on
Computer Graphics and Visuali-
sation held in Pilsen, Czech Re-
public, and a member of EURO-
GRAPHICS, ACM, and IEEE.
His current research interests

are algorithms for computer graphics, medical and technical da-
ta visualisation and scientific computation, distributed and par-
allel processing.


