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ABSTRACT 

A new approach to the error estimation in isosurface construction using different 
tetrahedronization schemes in volume visualization will be presented. A special attention is 
devoted to small objects of voxel size. Error estimation is made for existing 5, 6 and 12 
tetrahedra per a cube compared with new 12, 24 and 48 tetrahedra schemes. The theoretical 
error estimation with experimental results on CT and MRI images will be shown. The 
proposed approach brings better visual results of the final images and is convenient for 
parallel processing and hardware implementation. 
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1. INTRODUCTION 

The volume visualization algorithms can be 
divided into two basic categories: Direct 
volume rendering and surface fitting.  

Direct volume rendering methods are 
characterized by direct mapping the scene 
elements to the display unit. The most 
commonly used algorithm belonging to this 
category is ray casting. It is based on casting 
a ray through each pixel of a 2D display device 
to the voxel scene. As the ray travels through 
the scene, it intersects a sequence of cells, each 
having defined density (or opacity), until it 
leaves the scene or until the sum of the 
densities reaches some limit value. The sum of 
densities defines the final color of the 
corresponding pixel. The main disadvantage of 
the direct volume rendering methods is that 
each time the image is to be rendered, the 
entire dataset must be traversed [Yagel92]. 

Surface fitting algorithms make use of 
a completely different idea. With a common 

assumption that all the voxels inside an object 
have greater value than those outside, the 
surface boundary of the object can be defined 
by an isosurface. An isosurface is a surface 
associated with a constant threshold value 
which separates voxels with values greater than  
or equal to the threshold from voxels with 
values less than it. 

Marching cubes (MC) presented by [Lorensen-
Cline87] is an example of a surface fitting 
algorithm. The basic notion is that for each 
eight neighbouring voxels in a dataset we 
define a cubic cell, vertices of which are 
represented by the eight voxels. If one or more 
voxels of the cell have values less than the 
user-defined threshold, and one or more of 
them have values greater than this value, we 
know the cell must contribute some component 
of the isosurface. There exist 256 different 
arrangements of voxels, since each of the eight 
cell vertices can lie on both sides of the 
isosurface. Due to geometrical symmetries 
(mirroring, rotations), this amount can be 
reduced to 15 basic configurations, see Fig. 1. 
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By determining which edges of the cube cell 
are intersected by the isosurface, we can create 
triangular patches which divide the cube into 
regions within the isosurface and regions 
outside. By connecting the patches from all 
cubes on the isosurface boundary, we get a 
surface representation. 

.  

Marching cubes configurations 

Fig. 1 

 
One obvious problem with marching cubes is 
ambiguity in creating triangle patches in case 
when four or more intersection points are to 
create two or more neighbouring triangles. 
There is also a possibility of gaps in the 
triangle-represented isosurface. 

Marching tetrahedra (MT) algorithm presented 
in [Doi-Koide91] is a modification of the 
marching cubes. The basic idea is that each cell 
is subdivided into several tetrahedra first, and 
then the intersections of the isosurface and 
tetrahedra edges are computed. This partialy 
solves the ambiguity problems, because 
maximum number of the intersections between 

the isosurface and tetrahedra edges is four, that 
is, at most two triangles will be created. 

One of the most important features that any 
visualization algorithm must have is accuracy. 
The visualization process should represent the 
original data without any loss of information. If 
the vizualization algorithm uses any kind of 
approximation, the error of such approximation 
has to be minimized. This is extremely 
important when medical data are to be 
visualized. We decided to determine how the 
approximations used in MT algorithm affect 
the accuracy of vizualization, and find a way 
how to minimize the overall error of the 
results. The error is evaluated as a volume 
difference between the objects and their 
representation by MT algorithm. A special 
attention is devoted to small objects of voxel 
size. 

The next section of the paper describes several 
commonly used tetrahedronization schemes 
and presents some new schemes, which were 
supposed to give good results. In section 3, the 
theoretical error estimation is shown in two-
dimensional case for simplicity. The idea is 
then extended to 3D space in Section 4. 
Finally, the estimated values are compared 
with experimentally achieved errors and the 
test results are presented.  

2. TETRAHEDRONIZATION METHODS 

One of the essential elements of the MT 
algorithm is a tetrahedronization scheme, 
i.e. a way how the cell is subdivided into 
tetrahedra. The common schemes [Kolcun94] 
divide the cell into five or six tetrahedra, see 
Fig. 2.  
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Commonly used tetrahedronization 
schemes 

Fig. 2 

 

The commonly used 5-6 tetrahedra schemes 
have several disadvantages. One of them is that 
the tetrahedra are uneven, mutualy different 
and asymmetric, result of which is that the 
generated boundary representation is not 
visually acceptable. 

We propose three tetrahedronization schemes, 
that fulfil the following requirements: 

• The subdivision is symmetrical. 

• There is no information loss in comparison 
with the original voxel scene. This is very 
important in medicine, where no changes of 
original data are permitted. 

• Tetrahedra are of at most two shapes: the 
less different shapes the tetrahedra have, the 
more simple is a possible hardware 
implementation. 

The new subdivision schemes are shown in 
Fig. 3. In addition to the values in the original 
eight cell vertices, some new vertices are used. 
In Fig. 3a, the centers of each cell side are 

given a value that is an average value of the 
nearest 4 vertices values. In Fig. 3b, also the 
value of the cell’s center of gravity is computed 
as an average value from the known 8 vertices 
as a result of trilinear interpolation in the cell. 
Subdivision into 48 tetrahedra can be achieved 
from the scheme in Fig. 3b by adding centers 
of the cell edges and thus splitting each 
tetrahedron in two. 

Such interpolations have no influence on the 
eight known values. This fact is important 
especially when this approach is used for 
medical data visualization purposes. Since we 
have no information about values between the 
cell vertices, linear interpolations seems 
suitable enough. Thus, instead of five or six 
tetrahedra schemes used in the original 
algorithm, we use 24 and 48-tetrahedral 
subdivision.  

 

Two schemes of subdivision into 

24 tetrahedra 

Fig. 3a 
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Two schemes of subdivision into 
24 tetrahedra 

Fig. 3b 

3. ERROR ESTIMATION IN 2D 

Since the problem of error estimation in three-
dimensional space is extremely difficult to 
present in a simple, comprehensive way, we 
decided to reduce it to 2D space, so that it can 
be easily understood from the drawings. 

First, it is necessary to define assumptions 
needed for the estimation. Let the visualized  
object be defined as a circle with radius r. The 
scene is a continuous function h defined as 
a distance from the circle boundary. 

 ( ) ryxyxh −+= 22,  

The discretized scene is a matrix of points 
having coordinates i,j and value hi,j, 

rjihij −+= 22  

The circle center has coordinates [0,0]. The 
MT algorithm2 is used to find the boundary of 
the circle, i.e. isosurface with h=0. Then, the 
real circle surface area SR=πr2 is compared 
with the surface area SD of the approximating 
polygon, where the relative error e is evaluated 
as 
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 The most simple case to explain can be seen in 
Fig. 4a. The circle radius is less than 1, 
an object of one-voxel size is approximated. 
The MT algorithm uses a simple 
triangularization scheme where each 4-voxel 
cell is divided by one of its diagonals into two 
triangles. The aim is to find a point xp such that 
h(xp ,0) = 0. Using linear interpolation on the 
edge h00-h10, the value of xp is computed as 
follows: 

r
hh

h
x p =

−
=

1000

00  

Now, it is possible to compute the surface area 
of both the real body (circle) and the 
approximated one. Also we can estimate an 
error e.  
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Fig. 4b shows similar situation, but the other 
diagonal is used for division this time. It is 
necessary to find a point up on the diagonal that 
approximates the intersection point between 
the circle and the diagonal, while xp stays 
unchanged.  

                                                 
2 MT algorithm is reduced to 2D case. A cube divided 
into tetrahedra is replaced with a square divided into 
triangles. 
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The x- and  and y-coordinate of up is computed 
using linear interpolation on the edge h00-h11:  

21100
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=  

 

 

Single-voxel sized object 

Fig. 4 

 

It is obvious that up lies on the circle boundary. 
The error in this case is  

1.022
−≈

−
=

π
πe  

Thus, the value of the error alternates between 
10% and 36%, depending on used diagonal. 
We presumed that such asymmetry can be 
avoided when some different triangularization 
scheme is used. In 2D case, this reduces to 
scheme shown in Fig 4c. Both cell diagonals 
are used, so that the cell is subdivided into four 
triangles. New point C lies in the center of the 
cell and its value hC is computed as mean value 
of the four voxels.  
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The coordinates of up has changed, since it is 
computed using linear interpolation on the line 
segment h00-hC. 
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This error value is less than the previous, still 
the average error is surprisingly greater than in 
the previous case.  

Let us suppose now that the circle radius lie in 
the interval )2(1, . In Fig. 5, the same cell is 
shown. The circle intersect the cell edges in 
points xr, yr . In this case,  
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It can be shown that xp  - xr  < 0 for any r from 
the interval )2(1, . If the interpolation on the 
diagonal is computed, as in Fig. 5b, the 
intersection point up has obviously coordinates  
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Situation for r > 1 

Fig. 5 

 

 

 

 

Situation in neighbouring cell 

Fig. 6 

 

In order to determine the volume of the 
approximated sphere, also the neighbouring 
cells must be taken into account, as presented 
in Fig.6. Situation in Fig. 6a) again shows the 
most simple case, where the diagonal has no 
influence on the approximation.  

In this case, the values in the four voxel 
vertices evaluate as follows: 
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It can be shown that 
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Even in such simple case that was shown here, 
the resulting error cannot be easily estimated, 
since it varies dependingly on the value of r. 
Still, there exist a common rule saying that  

Rbca SSSS <<< . 

Sa, Sb, Sc represent surface areas of the   
approximations shown in Fig. 5a, 6a, Fig. 5b, 
6b and Fig. 5c, 6c, respectively. 

4. 3D CASE 

Since the particular situations in three-
dimensional space are very difficult to imagine, 
let us have a look only at the easiest one. The 
radius of the visualized sphere is r < 2 2 and 
cube division into 5 tetrahedra is used. Since 
this scheme is assymetrical, both mutualy 
symmetrical cases have to be considered - see 
Fig. 7a,b. The schemes consisting of more 
tetrahedra could not be graphicaly presented 
here because of their complexity. 

 It can be proved that the approximation error 
is 68.2% in case a), 29.7% in case b) and 
finally 54.4% for selected 24 tetrahedra 
subdivision. 

 

Simple 3D case for r<√2/2 and 
5 tetrahedra subdivision 

Fig. 7 

5. TEST RESULTS 

Regarding the volume error measuring, we 
generated 200 voxel scenes with sphere radius 
increasing from 0.0 to 20.0 units by 0.1 and the 
voxel values represented by both integer and 
real numbers. For each scene, the real sphere 
volume was computed, as well as the volume 
of the approximations. The relative error was 
computed as  

R

RD

S
SSe −

= . 

The results of the experiments are presented in 
the Chart 1 for integer voxel values and Chart 2 
for real values of the scene voxels. 

The results of the test tend to the same 
behaviour that was estimated theoreticaly in 
the previous sections. Concerning only on the 
volume accuracy, it proves useless to 
implement tetrahedronization schemes 
containing 24 or even 48 tetrahedra. The idea 
to add new points to the existing eight cell 
vertices does not seem good enough. The new 
points bring some error, since the linear 
interpolations are used  to compute their 
values.  
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Still, the images generated by MT algorithm 
are visually obviously better for 24 and 48 
schemes, as shown in section 6. The reason of 
this has to be sought in features of human 
vision. A human eye is not able to percept 
volume accuracy, but is sensitiveto edges and 
changing gradient of the surface. We supposed 
that some different criterion should explain 
why better results were achieved with 24 and 
48 tetrahedra subdivision. 

We implemented a similar test, but this time, 
we measured the surface area of the sphere and 
its approximations instead of volume. The 
results that we achieved can be seen in Chart 3 
for integer data and Chart 4 for real voxel 
values. Now, the schemes having 24 or 48 
tetrahedra per one cell provide for real voxel 
values evidently better results then the 
commonly used schemes.  
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Chart1 - Relative volume error for integer data 
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Chart 2 - Relative volume error for real data 
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Chart 3 - Relative surface area error for integer data 
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Chart 4 - Relative surface area error for real data 

6. RESULTS FOR MRI DATA 

The implemented MT algorithm was tested not 
only for volume and surface area accuracy, but 
also from the visual point of view. Fig. 8 and 
Fig. 9 show samples of 256x256x109 MRI 
scaned head visualized using different 
tetrahedronization schemes. The used 

24 scheme gives results looking significantly 
better than commonly used schemes, especially 
when small details are rendered (see nose, ear 
and lips in Fig. 8 or detailed view of an ear in 
Fig. 9). 

 

 

 

Two views of a MRI cadaver head. The left one was created using a scheme with 
6 tetrahedra, the right one by 24-tetrahedra scheme  

Fig. 8 
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Four views of an ear, detail from Fig. 8. The new schemes 
produce evidently better visual results. 

Fig. 9

7. CONCLUSION 

We presented a new approach to the 
estimation of errors in the construction of 
isosurfaces by surface-fitting algorithms. We 
proposed  several tetrahedronization schemes 
that make use of added points to achieve 
better visual results. An error estimation was  
made for existing 5, 6 and 12 tetrahedra per a 
cube and compared with new 24 and 48 
tetrahedra schemes. As a measure of the error 
we chose a relative volume error. Both 
theoretical estimation and experiments proved 
that it is useless to implement 24 or 48 
tetrahedra schemes, when only the volume 
criterion is taken into account. We also 
showed that there is a coherence between 
visual quality of the resulting images and 
surface area accuracy. In the future work, 
an adaptive MT algorithm is to be proposed, 
which will approximate the objects more 
accurately both in volume and surface area. 
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