
fast algorithms for line segment and line clipping in e2 Page:1 18.8.2010

Fast Algorithms for Line Segment and Line Clipping in E2

Duc Huy Bui, Václav Skala
Department of Informatics and Computer Science1

University of West Bohemia
Univerzitní 22, Box 314

306 14 Plzen
Czech Republic

 bui@kiv.zcu.cz skala@kiv.zcu.cz
http://herakles.zcu.cz/~bui http://herakles.zcu.cz/~skala

1Supported by the grant UWB-156/1995-6 and the grant MSMT-PG97185

Abstract

 New modifications of the Cohen-
Sutherland algorithm for the line and line
segment clipping in E2 are presented. The
suggested algorithms are based on a new
coding technique based on coding of the line
direction together with coding of end-points
of the clipped line segment. It allows to solve
all cases more effectively. The proposed
algorithms are convenient for line or line
segment clipping by the rectangle. Theoretical
considerations and experimental results are
also presented.

Keywords: Line Clipping, Computer
Graphics, Algorithm Complexity, Geometric
Algorithms, Algorithm Complexity Analysis.

1. Introduction

Many algorithms for clipping a line or
clipping a line segment by rectangular area
have been published so far, see [Ska94],
[Ska96] , [Ska97] for main references. The
line clipping by rectangular window is often
restricted to the usage of Cohen-Sutherland
algorithm (CS) [Fol90] or its modifications
that are based on some presumptions like
small clipping window or more sophisticated
coding technique [Sob87] etc. Line clipping
problem solution is a bottleneck of many
packages and applications. It would be
desirable to use a faster algorithm even
though it is more complex.

The CS algorithm based on coding of
the end-points of the given line segment is
a very well known algorithm. It is simple and
robust. It enables to detect all the cases when
the line segment is completely inside of the
given rectangle and some cases when the line
segment is outside, see fig.1.1.

Figure 1.1

 It is well known that the segments AB
and CD are handled in a very simple way.
However the line segments EF and GH are
not distinguished at all and full intersection
computations must be done. In the worst case,
see line segment IJ in fig.1.1, all intersection
points with each boundary line on which the
rectangle edges lie are computed, see alg.1.1.

SSCG'97 Int.Conf., Bratislava, 1997.

fast algorithms for line segment and line clipping in e2 Page:2 18.8.2010

global var xmin, xmax, ymin, ymax: real; { clipping window size definition }
 { operators land, resp. lor are bitwise and, resp. or operators }

procedure CS_Clip (xA, yA, xB, yB: real);
var x, y: real;
 c, cA, cB: integer;
procedure CODE (x, y: real; var c: integer); { implemented as a macro }
begin c := 0;
 if x < xmin then c := 1 else if x > xmax then c := 2;
 if y < ymin then c := c + 4 else if y > ymax then c := c + 8;
end { of CODE };

begin CODE (xA, yA, cA); CODE (xB, yB, cB);
 if (cA land cB) ≠ 0 then EXIT; { the line segment is outside the clipping rectangle }
 if (cA lor cB) = 0 then begin DRAW_LINE (xA, yA, xB, yB); EXIT; end;
 { the line segment is inside of the clipping rectangle }
 repeat if cA ≠ 0 then c = cA else c = cB;
 if (c land ‘0001’) ≠ 0 then { divide line at the left edge }
 begin y := yA + (xmin - xA)*(yB - yA) / (xB - xA);
 x := xmin;
 end
 else if (c land ‘0010’) ≠ 0 then
 begin y := yA + (xmax - xA)*(yB - yA) / (xB - xA);
 x := xmax;
 end
 else if (c land ‘0100’) ≠ 0 then
 begin x := xA + (ymin - yA)*(xB - xA) / (yB - yA);
 y := ymin;
 end
 else if (c land ‘1000’) ≠ 0 then
 begin x := xA + (ymax - yA)*(xB - xA) / (yB - yA);
 y := ymax;
 end;
 if c = cA then begin xA := x; yA := y; CODE (xA, yA, cA); end
 else begin xB := x; yB := y; CODE (xB, yB, cB); end;
 if (cA land cB) ≠ 0 then EXIT;
 until (cA lor cB) = 0;
 DRAW_LINE (xA, yA, xB, yB);
end { of CS_Clip };

Cohen-Sutherland algorithm
Algorithm 1.1

The well known algorithm for the line
clipping is the Liang-Barsky algorithm (LB)
[Fol90]. It is based on clipping of the given
line by each boundary line on which the
rectangle edge lies. The given line is
parametricaly represented. At the beginning
the parameter t is limited by interval (−∞,+∞)
and then this interval is subsequently

truncated by all the intersection points with
each boundary line of the clipping rectangle,
see alg.1.2. It can be seen that an additional
trivial rejection test (function TEST) is used
to avoid calculation of all four parametric
values for lines, which do not intersect the
clipping rectangle.

SSCG'97 Int.Conf., Bratislava, 1997.

fast algorithms for line segment and line clipping in e2 Page:3 18.8.2010

global var xmin, xmax, ymin, ymax: real;
 { clipping window size }
 { given values }

function TEST (p, q : real;
 var t1, t2 : real):boolean;
var r : real;
begin TEST := true;
 if p < 0 then
 begin r := q / p;
 if r > t2 then TEST := false
 else if r > t1 then t1:= r
 end else
 if p > 0 then
 begin r := q / p;
 if r < t1 then TEST := false
 else if r < t2 then t2:= r;
 end else if q < 0 then TEST := false
end { of TEST };

procedure LB_Clip (xA, yA, xB, yB: real);
var t1, t2, Δx, Δy : real;
begin
 t1:= −∞; t2:= +∞; Δx := xB - xA;
 if TEST(−Δx, xA - xmin, t1, t2) then
 if TEST(Δx, xmax - xA, t1, t2) then
 begin
 Δy := yB - yA;
 if TEST(−Δy, yA - ymin, t1, t2) then
 if TEST(Δy, ymax - yA, t1, t2) then
 begin xB := xA + Δx * t2;
 yB := yA + Δy * t2;
 xA := xA + Δx * t1;
 yA := yA + Δy * t1;
 DRAW_LINE(xA, yA, xB, yB)
 end
 end
end { of LB_Clip };

Liang-Barsky algorithm
Algorithm 1.2

2. Proposed methods
 The proposed algorithm (LSSB) for
the line segment clipping is based on the CS
algorithm but the arithmetic sum of end
points’ codes and a new coding technique for
the line segment direction are used in order to
remove cases, which the original CS
algorithm is unable to distinguish.

Let us assume characteristic situations
from fig.2.1 and denote cA, cB as CS codes of
line segment’s end points; α,γ,η,ω areas as
corner areas and β,θ,ξ,δ as side areas.

Figure 2.1
By testing arithmetic sum of end points’

codes we can distinguish the following
situations:
- One end point of the line segment is inside

of the clipping rectangle and the second one
is in the side area (the cases
cA + cB ∈ {1,2,4,8}). In these cases one
intersection point is computed.

- The end points of the line segment are in the
opposite side areas (the cases
cA + cB ∈{3,12}). In these cases two
intersection points are computed (the
clipping edges are already determined).

- One end point of the line segment is in the
corner area of the clipping rectangle and the
second one is in the side area (the cases
cA + cB ∈{7,11,13,14}). In these cases one
clipping edge (if exists) is already
determined and the second one is opposite
or neighboring to it.

- The cases when cA + cB ∈{5,6,9,10}. There
are two possible situations:
a) The end points of the line segment are in

the near-by side areas, i.e (δ,β), (δ,ξ),
(θ,β), (θ,ξ). Two clipping edges (if exist)
are already determined.

b) One end point of the line segment is
inside of the clipping rectangle and the
second one is in the corner area. The only
one intersection point can lie on the

SSCG'97 Int.Conf., Bratislava, 1997.

fast algorithms for line segment and line clipping in e2 Page:4 18.8.2010

horizontal or vertical edge of clipping
rectangle.

- The end points of the line segment are in the
opposite corner areas (the cases
cA + cB =15). The comparison between
directions of the given line and the clipping
rectangle’s diagonal decides which edges

(horizontal or vertical) are used to compute
the intersection points.

 Distinguishing all those cases enables
avoidance of unnecessary calculation and
causes considerable speed-up. Detailed
description of the proposed LSSB algorithm
is shown in alg. 2.1.

procedure LSSB_Clip (xA, yA,xB,yB: real);
var Δx, Δy, k, m, z : real; cA , cB : integer;
 procedure CODE (x,y: real; var c: integer); { implemented as a macro }
 begin c := 0; if x < xmin then c := 1 else if x > xmax then c := 2;
 if y < ymin then c := c + 4 else if y > ymax then c:= c + 8;
 end { of CODE };
begin
 CODE (xA, yA, cA); CODE (xB, yB, cB);
 if (cA land cB) <> 0 then EXIT; { the line segment is outside }
 if (cA lor cB) = 0 then { the line segment is inside of the clipping rectangle }
 begin DRAW_LINE(xA, yA, xB, yB); EXIT; end;
 Δx := xB - xA; Δy := yB - yA;
 case cA + cB of { see figure 3.k }
 1: if cA = 1 then begin xA := xmin; yA := (xmin - xB)* Δy / Δx + yB; end
 else begin xB := xmin; yB := (xmin - xA)* Δy / Δx + yA; end;
 3: begin k := Δy / Δx; yA := (xmin - xA)* k + yA; xA := xmin;
 yB := (xmax - xB)* k + yB; xB := xmax; end;
 5: begin k := Δy / Δx; z := (xmin - xA)* k + yA;
 if z < ymin then case cA of
 0: begin xB := xB + (ymin - yB)/k; yB := ymin; end;
 5: begin xA := xA + (ymin - yA)/k; yA := ymin; end;
 else EXIT;{ the line segment is outside } end
 else case cA of
 0: begin xB := xmin; yB := z; end;
 1: begin xB := xB + (ymin - yB)/k; yB := ymin; xA := xmin; yA := z; end;
 4: begin xA := xA + (ymin - yak)/k; yak := yin; xB := xmin; yB := z; end;
 5: begin xA := xmin; yA := z;end; end;
 end;
 7: case cA of
 1: begin k := Δy / Δx; yA := (xmin - xB)* k + yB;
 if yA < ymin then EXIT;{ the line segment is outside }
 xA := xmin; yB := (xmax - xmin)* k + yA;
 if yB < ymin then begin xB := (ymin - yB)/k + xmax; yB := ymin; end else xB := xmax;
 end; { similarly for cases cA = 2, 5, 6 }
 end;
 15: case cA of
 5: if Δy*(xmax - xmin) < Δx*(ymax - ymin) then
 begin k := Δy / Δx; yA := (xmin - xB)* k + yB;
 if yA > ymax then EXIT; { the line segment is outside }
 yB := (xmax - xmin)* k + yA;
 if yB < ymin then EXIT; { the line segment is outside }
 if yA < ymin then begin xA := (ymin - yA)/k + xmin; yA := ymin; xB := xmax; end

SSCG'97 Int.Conf., Bratislava, 1997.

fast algorithms for line segment and line clipping in e2 Page:5 18.8.2010

 else begin xA := xmin;
 if yB > ymax then begin xB := (ymax - yB)/k + xmax; yB := ymax; end
 else xB := xmax;
 end;
 end else
 begin m := Δx /Δy; xA := (ymin - yB)* m + xB;
 if xA > xmax then EXIT; { the line segment is outside }
 xB := (ymax - ymin)* m + xA;
 if xB < xmin then EXIT; { the line segment is outside }
 if xA < xmin then begin yA := (xmin - xA)/m + ymin; xA := xmin; yB := ymax; end
 else begin yA := ymin;
 if xB > xmax then begin yB := (xmax - xB)/m + ymax; xB := xmax; end
 else yB := ymax;
 end;
 end
 { similarly for cases cA = 6, 9, 10 }
 end;
 { cases 2, 4, 8 are similar as case 1, cases 6, 9, 10 are similar as case 5 }
 { cases 11, 13, 14 are similar as case 7, case 12 is similar case 3 }
 end { of case cA + cB };
 DRAW_LINE (xA, yA, xB, yB);{ EXIT means leave the procedure }
end {of LSSB_Clip };

LSSB algorithm for line segment clipping
Algorithm 2.1

 In many applications it is necessary to
clip lines instead of line segments. It can be
shown that CS algorithm is faster than the
Liang-Barsky algorithm (LB) for line segment
clipping, but for line clipping the LB
algorithm is more convenient and faster.
Therefore, a similar consideration was made
for the LB algorithm that resulted in a new
algorithm for line clipping denoted as LSB
algorithm. The proposed LSB algorithm for
line clipping is based on a new coding

technique for line direction. The comparison
between directions of the given line and
clipping rectangle’s diagonal decides which
edges (horizontal or vertical) are used to
compute the intersection points between the
line and the clipping window, see alg.2.2.
This comparison is used to avoid the
calculation of the intersection points that do
not lie on the boundary edges of the clipping
rectangle.

procedure LSB_Clip (xA, yA,xB,yB: real);
var Δx, Δy, k, m: real;
begin Δx := xB - xA;
 if Δx = 0 then begin
 if (xA < xmin) or (xA > xmax) then EXIT; { the line is outside of the clipping rectangle}
 yA := ymin; yB := ymax; DRAW_LINE(xA, yA, xB, yB); end;
 Δy := yB - yA;
 if Δx > 0 then
 if Δy > 0 then
 if (Δy*(xmax - xmin) < Δx*(ymax - ymin)) then
 begin k := Δy / Δx; yA := (xmin - xB)* k + yB;
 if yA > ymax then EXIT; { the line is outside of the clipping rectangle}
 yB := (xmax - xmin)* k + yA;
 if yB < ymin then EXIT; { the line is outside of the clipping rectangle}

SSCG'97 Int.Conf., Bratislava, 1997.

fast algorithms for line segment and line clipping in e2 Page:6 18.8.2010

 if yA < ymin then begin xA := (ymin - yA)/k + xmin; yA := ymin; xB := xmax; end
 else begin xA := xmin; if yB > ymax then begin xB := (ymax - yB)/k + xmax; yB := ymax; end
 else xB := xmax; end;
 end else
 begin m := Δx /Δy; xA := (ymin - yB)* m + xB;
 if xA > xmax then EXIT; { the line is outside of the clipping rectangle}
 xB := (ymax - ymin)* m + xA;
 if xB < xmin then EXIT; { the line is outside of the clipping rectangle}
 if (xA < xmin) then begin yA := (xmin - xA)/m + ymin; xA := xmin; yB := ymax; end
 else begin yA := ymin; if xB > xmax then begin yB := (xmax - xB)/m + ymax; xB := xmax; end
 else yB := ymax; end;
 end; { similarly for the other cases }
 DRAW_LINE(xA, yA, xB, yB);
end; { of LSB_Clip }

LSB algorithm for line clipping
Algorithm 2.2

3. Theoretical considerations and
experimental results

It is necessary to derive the expected
theoretical properties of the proposed
algorithms and prove their superiority over
traditional algorithms. It should be mentioned
here that algorithm efficiency can differ from
computer to computer because of different
instruction timing. For the used
PC 586/133 MHz we have for 128.106
operations (:= , < , ± , * , /) the following
timing (6.7, 11.2, 2.3, 2.3, 19.9). For
algorithm efficiency considerations between
CS and new LSSB algorithms we must

consider several situations, see fig.3.1. It can
be seen that the line segments s1 and s2 are
handled exactly as in the original CS
algorithm. For the other cases it is necessary
to derive CS and LSSB algorithms
complexities and compare them. Let us
introduce the coefficient of efficiency ν1 as

ν 1 =
T

T
CS

LSSB

All significant cases are shown in fig.3.1.

Figure 3.1.

s2

s1

s3

s4

s5

s6

s7

s15

s14

s9

s10

s8 s11

s12

s13

s17

s18

s20
s19

s21

s16

SSCG'97 Int.Conf., Bratislava, 1997.

fast algorithms for line segment and line clipping in e2 Page:7 18.8.2010

 Theoretical considerations Experimental results
case C S LSSB ν1 CS LSSB ν1

 = < ± x / t[s] = < ± x / t[s] t[s] t[s]
s1 2 10 0 0 0 125,40 2 10 0 0 0 125,40 1,00 150,28 150,28 1,00
s2 4 9 2 0 0 132,20 4 9 2 0 0 132,20 1,00 151,70 151,70 1,00
s3 11 17 6 1 1 300,00 8 12 6 1 1 223,90 1,34 238,41 210,71 1,13
s4 12 17 6 1 1 306,70 9 12 6 1 1 230,60 1,33 238,90 213,85 1,12
s5 9 17 4 1 1 282,00 7 11 5 1 1 203,70 1,38 236,98 206,10 1,15
s6 19 27 9 2 2 494,60 12 12 8 1 2 275,10 1,80 355,44 245,39 1,45
s7 21 33 14 3 3 608,80 13 13 10 2 2 299,90 2,03 462,58 272,58 1,70
s8 9 22 5 1 1 340,30 7 12 6 1 1 217,20 1,57 250,88 222,53 1,13
s9 17 32 10 2 2 539,50 10 12 8 1 2 261,70 2,06 361,15 258,90 1,39
s10 16 27 10 2 2 476,80 10 10 8 1 2 239,30 1,99 327,53 237,91 1,38
s11 24 37 14 3 3 673,70 13 12 8 2 2 284,10 2,37 440,28 267,75 1,64
s12 9 20 5 1 1 317,90 7 11 6 1 1 206,00 1,54 240,33 211,87 1,13
s13 16 30 9 2 2 508,10 12 12 8 1 2 275,10 1,85 356,70 257,20 1,39
s14 9 20 4 1 1 315,60 7 12 5 1 1 214,90 1,47 248,96 221,54 1,12
s15 19 26 10 2 2 485,70 9 11 6 1 1 219,40 2,21 327,47 210,00 1,56
s16 11 19 5 1 1 320,10 8 12 6 1 1 223,90 1,43 240,33 221,54 1,08
s17 24 39 15 3 3 698,40 12 12 9 2 1 259,90 2,69 442,86 231,87 1,91
s18 31 49 20 4 4 890,90 13 15 11 4 1 309,40 2,88 554,78 266,81 2,08
s19 16 32 10 2 2 532,80 11 10 9 2 1 230,80 2,31 358,79 223,46 1,61
s20 24 42 15 3 3 732,00 12 13 9 2 1 271,10 2,70 465,93 245,39 1,90
s21 15 28 8 2 2 476,70 11 10 7 2 1 226,20 2,11 353,46 222,53 1,59

Table 3.1

For experimental verification of the

proposed algorithm all cases were tested and
64.106 different line segments were randomly
generated for each considered case. Table 3.1
shows that the LSSB algorithm is
theoretically and experimentally significantly
faster in all considered non-trivial cases
(different from s1 and s2). It can be seen that
the speed-up varies from 1.1 to 2.0
approximately.
Similarly, for algorithm efficiency
considerations between LB and new LSB
algorithms we must distinguish fundamental
situations shown in the fig.3.2.

Let us introduce the coefficient of
efficiency ν2 as :

ν 2 =
T
T

LB

LSB

The theoretical estimation and
experimental results are presented in tab.3.2.
This table shows, that the LSB algorithm is
significantly faster than LB algorithm in all

cases. It can be seen that the speed up varies
from 1.2 to 3.0 approximately

A theoretical comparison with the
Nicholl algorithm [Nic87] was also done.
Although the Nicholl algorithm achieves the
similar efficiency as the proposed algorithm
for the line segment clipping, unfortunately it
cannot be used for clipping of the given line
generally.

Figure 3.2

l3
l1

l4

l5 l7

l8
l10

l9
l6

l2

SSCG'97 Int.Conf., Bratislava, 1997.

fast algorithms for line segment and line clipping in e2 Page:8 18.8.2010

 Theoretical considerations Experimental results

case L B LSB ν2 LB LSB ν2

 = < ± x / t[s] = < ± x / t[s] t[s] t[s]
l1 10 13 6 0 4 305,60 5 6 8 4 1 148,10 2,06 303,46 191,65 1,58
l2 15 14 10 4 4 368,70 8 7 10 4 2 203,80 1,81 349,18 236,98 1,47
l3 16 14 10 4 4 375,40 7 8 8 4 1 183,90 2,04 351,10 216,26 1,62
l4 15 14 10 4 4 368,70 8 8 10 4 2 215,00 1,71 349,18 248,08 1,41
l5 9 9 5 0 3 232,00 4 5 6 3 1 123,30 1,88 241,32 167,58 1,44
l6 10 13 6 0 4 305,60 4 5 6 3 1 123,30 2,48 303,41 167,14 1,82
l7 9 9 5 0 3 232,00 5 6 8 4 1 148,10 1,57 241,32 191,21 1,26
l8 12 13 10 4 2 297,80 3 3 1 0 0 56,00 5,32 297,64 98,74 3,01
l9 3 3 2 0 0 58,30 1 2 1 0 0 31,40 1,86 101,65 85,71 1,19
l10 3 6 3 0 0 94,20 1 3 1 0 0 42,60 2,21 134,40 96,81 1,39

Table 3.2.

4. Conclusion

 The new line segment clipping
algorithm (LSSB) and line clipping algorithm
(LSB) against a given rectangle in E2 were
developed, verified and tested. The proposed
LSSB and LSB algorithms are convenient for
those applications, where many lines or line
segments must be clipped. The proposed
approach gives similar algorithms for line and
line segment clipping. The proposed
algorithms claim superiority over the CS and
LB algorithm and experiments proved, that
the speed up can be considered up to 2 times
for line segment clipping and 3 times for line
clipping in some cases.
 The presented modifications of the
well-known algorithms proved, that the
approach “test first and compute after all
tests“ can bring a significant speed-up even
with the known algorithms. There is a hope,
that the presented modifications of the CS
algorithm can be implemented in hardware,
too.

5. Acknowledgments

 The authors would like to express their
thanks to all who contributed to this work,
especially to recent Ms. and Ph.D. students of
Computer Graphics courses at the
University of West Bohemia in Pilsen, who
stimulated this work.

6. References

[Fol90] Foley,D.J., van Dam,A., Feiner,S.K.,
Huges,J,F.: Computer Graphics -
Principles and Practice, Addison
Wesley, 2nd ed., 1990.

[Nic87] Nicholl,T.M., Lee D.T., Nicholl
R.A.: An Efficient New Algorithm
for 2-D Line Clipping: Its
Development and Analysis,
Computers & Graphics, Vol.21,
No.4, Pergamon Press,

 pp.253-262, 1987.
[Ska94] Skala,V.: O(lg N) Line Clipping

Algorithm in E2,
Computers & Graphics, Vol.18,
No.4, Pergamon Press, pp.517-524,
1994.

 [Ska96] Skala,V.: An Efficient Algorithm for
Line Clipping by Convex and Non-
Convex Polyhedra in E3, Computer
Graphics Forum, Vol.15, No.1,
pp.61-68, 1996.

[Ska97] Skala,V.: A Fast Algorithm for Line
Clipping by Convex Polyhedron in
E3, Computers_&_Graphics, Vol.21,
No.2, pp.209-214,1997.

[Sob87] Sobleow,M.S.,Pospisil,P.,Yang,Y.H.:
A Fast Two Dimensional Line
Clipping Algorithm via Line
Encoding, Computers & Graphics,
Vol.11, No.4, pp.459-467, 1987.

SSCG'97 Int.Conf., Bratislava, 1997.

