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ABSTRACT 

Algorithm complexity is very often used for comparison of different algorithms in order to 
assess theirs properties. Nevertheless there are some other factors like actual speed for the 
expected applications, memory needed and others that might influence the final behaviour of 
the proposed algorithm. The aim of this contribution is to demonstrate some thoughts and 
connection between algorithm complexity, speed and discuss the influence of possible 
pre-processing to the final algorithm complexity. It will be also shown how some precise 
formulations could lead to better and faster algorithms to decrease algorithm complexity. 
The influence of pre-processing will be analysed according to the algorithm complexity 
change. 

Keywords: algorithm complexity, computer graphics, line clipping, optimal algorithm, 
geometric algorithms. 
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INTRODUCTION 

The fundamental problem in algorithm design 
is to use all known data properties as much as 
possible in order to get an algorithm with 
better efficiency. Sometimes it is quite 
difficult as some features or dependencies are 
not known in their explicit forms. If those 
factors are used in algorithm design it is 
possible not only to improve algorithms 
property but sometimes also to change the 
algorithms complexity. Line clipping 

algorithms have been studied heavily in the 
past because they are the bottleneck of all 
fundamental graphics packages and pipelines. 
There have been several attempts more or less 
successful to develop faster algorithms almost 
with a complexity O(N). It can be shown that 
the optimal algorithm (without 
pre-processing) is of O(lg N) complexity for 
the E2 case. Some new algorithms and 
modifications have been developed,  see 
[Skala94c]. 

EDU+COMPUGRAPHICS'97 Proceedings, Algarve, Portugal, pp.30-34, 1997.



Clipping problem solutions in E2, resp. in E3 
can be classified as clipping by 

• orthogonal window, 
• convex polygon, resp. polyhedron, 
• non-convex polygon, resp. polyhedron 

and as  

• line segment clipping 
• line clipping 

Clipping problem solution seems to be quite 
a simple problem as its formulation is to find 
a part of the given line or line segment that is 
inside of the given polygon or polyhedron. 

CLIPPING BY A RECTANGULAR 
WINDOW 

Very famous and popular algorithm for 
clipping by rectangular window in E2 is the 
Cohen-Sutherland (CS) algorithm for a line 
segment clipping and Liang-Barsky (LB) 
algorithm for a line clipping.  

The CS algorithm rely on the coding 
scheme of the end-points that enables to 
detect some trivial cases, like line segment is 
totally outside or inside of the clipping 
window, see Fig.1. 

 

Coding scheme  

Figure 1 

The CS algorithm is very simple and stable. 
In spite of that there are some cases that are 

not handled properly and as cases I, H and F, 
see Fig.1, are not distinguished and some 
computation is wasted. Several attempts have 
been made to speed up the CS algorithm. It is 
obvious that everybody can easily distinguish 
those cases and find directly which edges are 
intersected. 

Let us assume characteristic situations from 
Fig.2 and denote cA, cB as CS codes of line 
segment’s end points; α,γ,η,ω areas as corner 
areas and β,θ,ξ,δ as side areas. 

Figure 2 

By testing arithmetic sum of end points’ 
codes we can distinguish the following 
situations: 

- One end point of  the line segment is inside 
of the clipping rectangle and the second one 
is in the side area (the cases 
cA + cB ∈ {1,2,4,8}). In these cases one 
intersection point is computed. 

- The end points of the line segment are in the 
opposite side areas (the cases 
cA + cB ∈{3,12}). In these cases two 
intersection points are computed (the 
clipping edges are already determined). 

- One end point of the line segment is in the 
corner area of the clipping rectangle and the 
second one is in the side area (the cases 
cA + cB ∈{7,11,13,14}). In these cases one 
clipping edge (if exists) is already 
determined and the second one is opposite 
or neighbouring to it. 
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- The cases when cA + cB ∈{5,6,9,10}. There 
are two possible situations: 

a) The end points of the line segment are in 
the near-by side areas, i.e. (δ,β), (δ,ξ), 
(θ,β), (θ,ξ). Two clipping edges (if exist) 
are already determined. 

b) One end point of the line segment is 
inside of the clipping rectangle and the 
second one is in the corner area. The only 
one intersection point can lie on the 
horizontal or vertical edge of clipping 
rectangle. 

- The end points of the line segment are in the 
opposite corner areas (the cases 
cA + cB =15). The comparison between 
directions of the given line and the clipping 
rectangle’s diagonal decides which edges 
(horizontal or vertical) are used to compute 
the intersection points.  

Distinguishing all those cases enables 
avoidance of unnecessary calculation and 
causes considerable speed up and led to the  
LSSB algorithm. Experimental results proved 
that expected speed up is in interval 
<1.00, 2.08>, see [Bui-Skala97] for details. 

Line clipping is a similar problem to the line 
segment clipping problem solution discussed 
in the previous section. In spite of simplicity 
the CS algorithm cannot be used for clipping 
lines directly as there are no end points as we 
deal with lines. The well known algorithm for 
the line clipping is the Liang-Barsky 
algorithm (LB). It is based on clipping of the 
given line by each boundary line on which the 
rectangle edge lies. The given line which 
passes the points (xA, yA) and (xB, yB) is 
parametrically represented. At the beginning 
the parameter t is limited by interval (−∞,+∞) 
and then this interval is subsequently 
truncated by all the intersection points with 
each boundary line of the clipping rectangle. 
Development of the LSSB algorithm led to 
the similar thoughts and as the result the LSB 
algorithm was derived and experimental 
verification showed that the expected speed 
up is in <1.2 , 3.0>, see [Bui-Skala97] for 
details.  

From the above presented algorithms it can be 
seen that the algorithms complexity have not 
been changed but the speed up is substantial 
and in both cases the precise coding and 
deeper understanding of the problem has lead 
to the faster algorithms. 

CLIPPING BY CONVEX POLYGON 

Many algorithms for the line clipping by 
convex polygon has been proposed, 
nevertheless the Cyrus-Beck (CB) algorithm 
is the most used, simple to implement and 
stable. The CB algorithm relies on a brute 
force as it computes intersections all edges (or 
lines on which the edges lie) with the given 
line or a line on which the given line 
segments lies. It leads to ineffective 
algorithm, as N-2 computed intersection 
points are lost because the only two can be 
valid.  

In algorithm design there is always the very 
old rule “Make tests first and then compute”. 
There were several attempts to find an 
intersection detection method, the one used 
the cross product of two vectors and brought 
significant speed up of the CB algorithm 
known as an ECB algorithm, for details see 
[Skala93]. Nevertheless the detection function 
can be replaced by the separation function 
with better speed up. Experiments proved the 
speed up can be expected in <1.37 , 2.85>. 

The ECB algorithm does not use the known 
order of vertices of the given clipping 
polygon for a principal speed up of the 
algorithm, though it has the complexity O(N). 
This understanding led to understanding that 
such knowledge could be used to decrease the 
algorithm complexity. 

It can be shown that the test whether a line 
intersects the convex polygon is the dual 
problem to the test whether a point is inside of 
the convex polygon, which has optimal 
complexity of O(lg N). This has led to the 
question if there is a line clipping algorithm 
with O(lg N) complexity. Let us assume the 
situation from Fig.3. 
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Principle of the O(lg N) algorithm 

Figure 3 

It can be seen that if we select an index k as  

k = (1 + N ) / 2 

as in Fig.3 we need only lg N steps to find 
which edges are intersected on each chain of 
the edge segments. Although some other 
cases are a little bit more complicated it can 
be shown that the whole algorithm is of 
O(lg N) complexity, see Algorithm 1. It is 
necessary to point out that for effective 
implementation values F(xi) should be stored 
in separate variables as they are used several 
times. 

Algorithm 1 

procedure CLIP 2D lg ( x A , xB ); 
{initialisation for a clipping window xn := 
x0 } 
 
function macro F( x ): real; 
{implemented as an in-line function } 
begin  F := A * x + B * y + C; end { F }; 
 
function Solve ( i , j ): real; 
{finds two nearest vertices on the opposite} 
{sides of the given line p} 
begin  while ( j - i ) ≥ 2 do { j ≥ i always } 
 begin  k := ( i + j ) div 2; {shift right } 
  if ( ( ) * ( ))F Fi kx x < 0  then  

j := k else i := k; 
  end { while }; 
  Solve := Intersection ( p  , xi  , x j  ); 
  {gives the value t for an point of the} 

{line p with the given segment xi x j } 
end { Solve }; 
 
begin {determine A, B, C values for the F(x) 
} 

A y y:= −1 2 ;  B x x:= −2 1 ; 
C x y x y: * *= −1 2 2 1 ; i := 0; j := n;  
{ for lines tmin := −∞ ; tmax:= ∞ ;}  
{ for line segments tmin:= 0 ; tmax:= 1; } 
 while ( j - i ) ≥ 2 do 
 begin k:= (i + j) div 2;{shift to the right} 

if ( ( ) * ( ))F Fi kx x < 0  then 
begin t1  := Solve ( i , k ) ;  

  {finds an intersection on x xi k  chain} 
  t2  := Solve ( k , j );  
  {finds an intersection on x xk j  chain} 
/*  if t1  > t2  then  

      begin t:= t2 ; t2 := t1 ; t1 := t  end;  
 {compute< > ∩ < >t t1 2 0,    1, } 
  t1 :=max( tmin , t1 ); t2 :=min( tmax , t2 ); 
 if ∅>=< 21  , tt  then EXIT  
 { exit procedure CLIP 2D lg }; 
 if t t1 2≤  then LINE ( x( )t1 , x( )t2 );                

*/{for segment clipping include those 
lines}  

end { if }; 

if F i( )x > 0  then  
begin   
 if F Fi k( ) ( )x x<  then  
 begin Delete_chain( i, j ); 
  if F Fi i( ) ( )x x+ <1  then 
   begin j := k;  
     Delete_chain( k, j ); end  
  else 
  begin i := k;  
     Delete_chain ( i, k); end 
 end else  
 begin if F Fk k( ) ( )x x+ >1  then 
  begin j := k;  
     Delete_chain ( k , j ); end  
  else 
  begin i := k;  
     Delete_chain ( i , k ); end  
  end 
    end 
   else 
   begin  
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{similarly for opposite line orientation} 
   end 

    end { while } 
end { CLIP-2D-lg } 
This approach enabled to speed up clipping 
line significantly and it is even faster than CB 
algorithm for N > 3 (for N = 100 the speed up 
is over 10).  

Nevertheless an algorithm for the test whether 
a point is inside of the convex polygon with 
O(1) expected complexity was developed 
[Skala94b] and it led to a question whether a 
line clipping algorithm with O(1) expected 
run-time complexity exists and what would be 
the complexity of pre-processing. Such 
algorithm was developed recently. The 
algorithm is based on the dual space 
representation and on non-orthogonal space 
subdivision, [Skala96b]. It  was theoretically 
and experimentally proved that the algorithm 
has O(1) expected run-time complexity with   
pre-processing complexity O(N2), see 
[Skala-Lederbuch96].  

Similar approach has been applied to E3 
problems and several experimental attempts 
have also been done for the case of line and 
line segment clipping in E3. These thoughts 
and experiments led to new algorithms for  

• line clipping by convex polyhedron with 
O(N) complexity [Skala96a], based on an 
idea that the given line p can be defined as 
an intersection of two nonparallel planes 
ρ1 and ρ2 . If the planes ρ1 and ρ2 intersect 
the triangle than the detailed computation 
is made. Expected speed up is up to 3,17 
and the algorithm can be easily modified 
for non-convex polyhedron, too. 

• line clipping by convex polyhedron with 
complexity O(N1/2), based on the 
knowledge of all neighbours for each 
facet of the given polyhedron [Skala97a]. 
The expected speed up for polyhedron 
with 500 facets is about 4,5-4,9 against 
Cyrus-Beck algorithm. 

• line clipping in E3 with expected 
complexity O(1) with similar results to the 
E2 case, [Skala-Lederbuch-Sup96d]. The 
algorithm is based on two orthogonal 

projections to E2 co-ordinate system and 
on pre-processing of the given 
polyhedron. The experiments proved that 
the algorithm solves the problem very 
close to the constant time independently 
to the number of facets of the given 
polyhedron. It is obvious that such 
algorithm is convenient for cases when 
the clipping polyhedron is constant and 
many lines are clipped. 

It is generally known that pre-processing will 
decrease the run-time complexity and 
computational geometry study this 
phenomena heavily. Nevertheless this 
approached proved that many fundamental 
algorithms do not use all known information 
known on the solved problem, that can lead to 
significant decrease of the run-time 
complexity.  

QUESTIONS TO BE ANSWERED 

Let us suppose we have an algorithm for the 
given problem. There are several questions to 
be answered: 

• Is the algorithm the optimal one? 
• What is the trade off between memory, 

run-time and pre-processing complexities?  
• What is the lowest possible run-time 

complexity if the most sophisticated 
pre-processing is used? 

• What kind of pre-processing complexity 
(time and memory) we can expect if we 
need faster solution of the given problem? 

• Is the usage of pre-processing and 
parallel & distributed processing a "dual 
problem" in some sense if we need to 
speed up the solution? 

Generally speaking - if we need to solve 
a problem in a limited time we have two 
choices  

• to use parallel and distributed processing, 
but there is a limit for the total speed up,  

• to use pre-processing if the major part of 
the problem is "constant" for many 
computed cases. 
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Those approaches seem to be hot topics 
nowadays especially in the field of the large 
data sets exploration parallel and distributed 
processing. 
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