

ALGORITHMS COMPLEXITY AND LINE CLIPPING PROBLEM
SOLUTIONS

Vaclav Skala1

Department of Informatics and Computer Science
University of West Bohemia, Univerzitní 22, Box 314

306 14 Plzen
Czech Republic

Skala@kiv.zcu.cz http://herakles.zcu.cz
Affiliated with: Multimedia Technology Research Centre, University of Bath, BATH, U.K.

ABSTRACT

Algorithm complexity is very often used for comparison of different algorithms in order to
assess theirs properties. Nevertheless there are some other factors like actual speed for the
expected applications, memory needed and others that might influence the final behaviour of
the proposed algorithm. The aim of this contribution is to demonstrate some thoughts and
connection between algorithm complexity, speed and discuss the influence of possible
pre-processing to the final algorithm complexity. It will be also shown how some precise
formulations could lead to better and faster algorithms to decrease algorithm complexity.
The influence of pre-processing will be analysed according to the algorithm complexity
change.

Keywords: algorithm complexity, computer graphics, line clipping, optimal algorithm,
geometric algorithms.

1 This work was supported by The Ministry of Education of the Czech Republic - projects

PG 97193, PG 97185 and VS 97155

INTRODUCTION

The fundamental problem in algorithm design
is to use all known data properties as much as
possible in order to get an algorithm with
better efficiency. Sometimes it is quite
difficult as some features or dependencies are
not known in their explicit forms. If those
factors are used in algorithm design it is
possible not only to improve algorithms
property but sometimes also to change the
algorithms complexity. Line clipping

algorithms have been studied heavily in the
past because they are the bottleneck of all
fundamental graphics packages and pipelines.
There have been several attempts more or less
successful to develop faster algorithms almost
with a complexity O(N). It can be shown that
the optimal algorithm (without
pre-processing) is of O(lg N) complexity for
the E2 case. Some new algorithms and
modifications have been developed, see
[Skala94c].

EDU+COMPUGRAPHICS'97 Proceedings, Algarve, Portugal, pp.30-34, 1997.

Clipping problem solutions in E2, resp. in E3
can be classified as clipping by

• orthogonal window,
• convex polygon, resp. polyhedron,
• non-convex polygon, resp. polyhedron

and as

• line segment clipping
• line clipping

Clipping problem solution seems to be quite
a simple problem as its formulation is to find
a part of the given line or line segment that is
inside of the given polygon or polyhedron.

CLIPPING BY A RECTANGULAR
WINDOW

Very famous and popular algorithm for
clipping by rectangular window in E2 is the
Cohen-Sutherland (CS) algorithm for a line
segment clipping and Liang-Barsky (LB)
algorithm for a line clipping.

The CS algorithm rely on the coding
scheme of the end-points that enables to
detect some trivial cases, like line segment is
totally outside or inside of the clipping
window, see Fig.1.

Coding scheme

Figure 1

The CS algorithm is very simple and stable.
In spite of that there are some cases that are

not handled properly and as cases I, H and F,
see Fig.1, are not distinguished and some
computation is wasted. Several attempts have
been made to speed up the CS algorithm. It is
obvious that everybody can easily distinguish
those cases and find directly which edges are
intersected.

Let us assume characteristic situations from
Fig.2 and denote cA, cB as CS codes of line
segment’s end points; α,γ,η,ω areas as corner
areas and β,θ,ξ,δ as side areas.

Figure 2

By testing arithmetic sum of end points’
codes we can distinguish the following
situations:

- One end point of the line segment is inside
of the clipping rectangle and the second one
is in the side area (the cases
cA + cB ∈ {1,2,4,8}). In these cases one
intersection point is computed.

- The end points of the line segment are in the
opposite side areas (the cases
cA + cB ∈{3,12}). In these cases two
intersection points are computed (the
clipping edges are already determined).

- One end point of the line segment is in the
corner area of the clipping rectangle and the
second one is in the side area (the cases
cA + cB ∈{7,11,13,14}). In these cases one
clipping edge (if exists) is already
determined and the second one is opposite
or neighbouring to it.

EDU+COMPUGRAPHICS'97 Proceedings, Algarve, Portugal, pp.30-34, 1997.

- The cases when cA + cB ∈{5,6,9,10}. There
are two possible situations:

a) The end points of the line segment are in
the near-by side areas, i.e. (δ,β), (δ,ξ),
(θ,β), (θ,ξ). Two clipping edges (if exist)
are already determined.

b) One end point of the line segment is
inside of the clipping rectangle and the
second one is in the corner area. The only
one intersection point can lie on the
horizontal or vertical edge of clipping
rectangle.

- The end points of the line segment are in the
opposite corner areas (the cases
cA + cB =15). The comparison between
directions of the given line and the clipping
rectangle’s diagonal decides which edges
(horizontal or vertical) are used to compute
the intersection points.

Distinguishing all those cases enables
avoidance of unnecessary calculation and
causes considerable speed up and led to the
LSSB algorithm. Experimental results proved
that expected speed up is in interval
<1.00, 2.08>, see [Bui-Skala97] for details.

Line clipping is a similar problem to the line
segment clipping problem solution discussed
in the previous section. In spite of simplicity
the CS algorithm cannot be used for clipping
lines directly as there are no end points as we
deal with lines. The well known algorithm for
the line clipping is the Liang-Barsky
algorithm (LB). It is based on clipping of the
given line by each boundary line on which the
rectangle edge lies. The given line which
passes the points (xA, yA) and (xB, yB) is
parametrically represented. At the beginning
the parameter t is limited by interval (−∞,+∞)
and then this interval is subsequently
truncated by all the intersection points with
each boundary line of the clipping rectangle.
Development of the LSSB algorithm led to
the similar thoughts and as the result the LSB
algorithm was derived and experimental
verification showed that the expected speed
up is in <1.2 , 3.0>, see [Bui-Skala97] for
details.

From the above presented algorithms it can be
seen that the algorithms complexity have not
been changed but the speed up is substantial
and in both cases the precise coding and
deeper understanding of the problem has lead
to the faster algorithms.

CLIPPING BY CONVEX POLYGON

Many algorithms for the line clipping by
convex polygon has been proposed,
nevertheless the Cyrus-Beck (CB) algorithm
is the most used, simple to implement and
stable. The CB algorithm relies on a brute
force as it computes intersections all edges (or
lines on which the edges lie) with the given
line or a line on which the given line
segments lies. It leads to ineffective
algorithm, as N-2 computed intersection
points are lost because the only two can be
valid.

In algorithm design there is always the very
old rule “Make tests first and then compute”.
There were several attempts to find an
intersection detection method, the one used
the cross product of two vectors and brought
significant speed up of the CB algorithm
known as an ECB algorithm, for details see
[Skala93]. Nevertheless the detection function
can be replaced by the separation function
with better speed up. Experiments proved the
speed up can be expected in <1.37 , 2.85>.

The ECB algorithm does not use the known
order of vertices of the given clipping
polygon for a principal speed up of the
algorithm, though it has the complexity O(N).
This understanding led to understanding that
such knowledge could be used to decrease the
algorithm complexity.

It can be shown that the test whether a line
intersects the convex polygon is the dual
problem to the test whether a point is inside of
the convex polygon, which has optimal
complexity of O(lg N). This has led to the
question if there is a line clipping algorithm
with O(lg N) complexity. Let us assume the
situation from Fig.3.

EDU+COMPUGRAPHICS'97 Proceedings, Algarve, Portugal, pp.30-34, 1997.

Principle of the O(lg N) algorithm

Figure 3

It can be seen that if we select an index k as

k = (1 + N) / 2

as in Fig.3 we need only lg N steps to find
which edges are intersected on each chain of
the edge segments. Although some other
cases are a little bit more complicated it can
be shown that the whole algorithm is of
O(lg N) complexity, see Algorithm 1. It is
necessary to point out that for effective
implementation values F(xi) should be stored
in separate variables as they are used several
times.

Algorithm 1

procedure CLIP 2D lg (x A , xB);
{initialisation for a clipping window xn :=
x0 }

function macro F(x): real;
{implemented as an in-line function }
begin F := A * x + B * y + C; end { F };

function Solve (i , j): real;
{finds two nearest vertices on the opposite}
{sides of the given line p}
begin while (j - i) ≥ 2 do { j ≥ i always }
 begin k := (i + j) div 2; {shift right }
 if (() * ())F Fi kx x < 0 then

j := k else i := k;
 end { while };
 Solve := Intersection (p , xi , x j);
 {gives the value t for an point of the}

{line p with the given segment xi x j }
end { Solve };

begin {determine A, B, C values for the F(x)
}

A y y:= −1 2 ; B x x:= −2 1 ;
C x y x y: * *= −1 2 2 1 ; i := 0; j := n;
{ for lines tmin := −∞ ; tmax:= ∞ ;}
{ for line segments tmin:= 0 ; tmax:= 1; }
 while (j - i) ≥ 2 do
 begin k:= (i + j) div 2;{shift to the right}

if (() * ())F Fi kx x < 0 then
begin t1 := Solve (i , k) ;

 {finds an intersection on x xi k chain}
 t2 := Solve (k , j);
 {finds an intersection on x xk j chain}
/* if t1 > t2 then

 begin t:= t2 ; t2 := t1 ; t1 := t end;
 {compute< > ∩ < >t t1 2 0, 1, }
 t1 :=max(tmin , t1); t2 :=min(tmax , t2);
 if ∅>=< 21 , tt then EXIT
 { exit procedure CLIP 2D lg };
 if t t1 2≤ then LINE (x()t1 , x()t2);

*/{for segment clipping include those
lines}

end { if };

if F i()x > 0 then
begin
 if F Fi k() ()x x< then
 begin Delete_chain(i, j);
 if F Fi i() ()x x+ <1 then
 begin j := k;
 Delete_chain(k, j); end
 else
 begin i := k;
 Delete_chain (i, k); end
 end else
 begin if F Fk k() ()x x+ >1 then
 begin j := k;
 Delete_chain (k , j); end
 else
 begin i := k;
 Delete_chain (i , k); end
 end
 end
 else
 begin

EDU+COMPUGRAPHICS'97 Proceedings, Algarve, Portugal, pp.30-34, 1997.

{similarly for opposite line orientation}
 end

 end { while }
end { CLIP-2D-lg }
This approach enabled to speed up clipping
line significantly and it is even faster than CB
algorithm for N > 3 (for N = 100 the speed up
is over 10).

Nevertheless an algorithm for the test whether
a point is inside of the convex polygon with
O(1) expected complexity was developed
[Skala94b] and it led to a question whether a
line clipping algorithm with O(1) expected
run-time complexity exists and what would be
the complexity of pre-processing. Such
algorithm was developed recently. The
algorithm is based on the dual space
representation and on non-orthogonal space
subdivision, [Skala96b]. It was theoretically
and experimentally proved that the algorithm
has O(1) expected run-time complexity with
pre-processing complexity O(N2), see
[Skala-Lederbuch96].

Similar approach has been applied to E3
problems and several experimental attempts
have also been done for the case of line and
line segment clipping in E3. These thoughts
and experiments led to new algorithms for

• line clipping by convex polyhedron with
O(N) complexity [Skala96a], based on an
idea that the given line p can be defined as
an intersection of two nonparallel planes
ρ1 and ρ2 . If the planes ρ1 and ρ2 intersect
the triangle than the detailed computation
is made. Expected speed up is up to 3,17
and the algorithm can be easily modified
for non-convex polyhedron, too.

• line clipping by convex polyhedron with
complexity O(N1/2), based on the
knowledge of all neighbours for each
facet of the given polyhedron [Skala97a].
The expected speed up for polyhedron
with 500 facets is about 4,5-4,9 against
Cyrus-Beck algorithm.

• line clipping in E3 with expected
complexity O(1) with similar results to the
E2 case, [Skala-Lederbuch-Sup96d]. The
algorithm is based on two orthogonal

projections to E2 co-ordinate system and
on pre-processing of the given
polyhedron. The experiments proved that
the algorithm solves the problem very
close to the constant time independently
to the number of facets of the given
polyhedron. It is obvious that such
algorithm is convenient for cases when
the clipping polyhedron is constant and
many lines are clipped.

It is generally known that pre-processing will
decrease the run-time complexity and
computational geometry study this
phenomena heavily. Nevertheless this
approached proved that many fundamental
algorithms do not use all known information
known on the solved problem, that can lead to
significant decrease of the run-time
complexity.

QUESTIONS TO BE ANSWERED

Let us suppose we have an algorithm for the
given problem. There are several questions to
be answered:

• Is the algorithm the optimal one?
• What is the trade off between memory,

run-time and pre-processing complexities?
• What is the lowest possible run-time

complexity if the most sophisticated
pre-processing is used?

• What kind of pre-processing complexity
(time and memory) we can expect if we
need faster solution of the given problem?

• Is the usage of pre-processing and
parallel & distributed processing a "dual
problem" in some sense if we need to
speed up the solution?

Generally speaking - if we need to solve
a problem in a limited time we have two
choices

• to use parallel and distributed processing,
but there is a limit for the total speed up,

• to use pre-processing if the major part of
the problem is "constant" for many
computed cases.

EDU+COMPUGRAPHICS'97 Proceedings, Algarve, Portugal, pp.30-34, 1997.

Those approaches seem to be hot topics
nowadays especially in the field of the large
data sets exploration parallel and distributed
processing.

ACKNOWLEDEMENTS

I would like to express my thanks to all
students of Computer Graphics courses and
colleagues at the University of West Bohemia
in Plzen that have stimulated this thoughts
and development of new algorithms, for their
suggestions and critical comments.

REFERENCES

Skala,V.1993 An Efficient Algorithm for Line
Clipping by Convex polygon,
Computers&Graphics, Vol.17, No.4,
pp.417-421.

Kolingerova, I.1994 3D-Line Clipping
Algorithms - A Comparative Study, Visual
Computer, Vol.11, No.2, pp.96-104.

Skala,V. 1994 O(lgN) Line Clipping
Algorithm in E2, WSCG´94 International
Conference, conference proceedings,
pp.174-191.

Skala,V. 1994 Point-in-Polygon with O(1)
Complexity, TR 68/94, Univ. of West
Bohemia, Plzen.

Skala,V.1994 O(lg N) Line Clipping
Algorithm in E2, Computers & Graphics,
Pergamon Press,Vol.18, No.4.

Skala,V. 1994 An Algorithm for Line Clipping
by Convex Polyhedron in E3 with O(N1/2)
Complexity, Preprint No.67, Univ.of West
Bohemia, Plzen.

Skala,V., Kolingerova,I., Blaha,P. 1995
A Comparison of 2D Line Clipping
Algorithms, Machine Graphics&Vision,
Vol.3,No.4, pp.625-633.

Skala,V. 1996 An Efficient Algorithm for Line
Clipping by Convex and Non-Convex
Polyhedra in E3, Computer Graphics
Forum, Vol.15,No.1,pp.61-68.

Skala,V. 1996 Line Clipping in E2 with O(1)
Processing Complexity, Computers &
Graphics, Vol.20, No.4, pp.523-530.

Skala,V., Lederbuch,P. ,Sup,B.1996
A Comparison of O(1) and Cyrus-Beck
Line Clipping Algorithm in E2 and E3,
SCCG96 Conference proceedings,
Comenius Univ. Bratislava, Slovak
Republic, pp.27-44.

Skala,V. 1996 Line Clipping in E3 with
Expected Complexity O(1), Machine
Graphics and Vision, Poland Academy of
Sciences, Vol.5, No.4, pp.551-562.

Skala,V., Lederbuch,P.1996 A Comparison of
a New O(1) and the Cyrus-Beck Line
Clipping Algorithms in E2, in
COMPUGRAPHICS'96 Int.Conf., Paris.

Skala,V. 1997 A Fast Algorithm for Line
Clipping by Convex polyhedron in E3,
Computers & Graphics, No.2,Vol.21,
pp.209-214.

Bui, D.H., Skala,V.1997 Fast Algorithms for
Line Segment and Line Clipping in E2,
submitted for publication in The Visual
Computer.

EDU+COMPUGRAPHICS'97 Proceedings, Algarve, Portugal, pp.30-34, 1997.

