
Trading Time for Space� An O��� Average Time Algorithm for
Point�in�Polygon Location Problem

Theoretical Fiction or Practical Usage�

V�aclav Skala
Department of Computer Science

University of West Bohemia
Univerzitn�� ��� Box ��	

�
� �	 Plze�n
Czech Republic

Abstract

Algorithms for Point
in
polygon problem solution are very often used espe

cially in computer graphics applications� The naive implementation has O�N�
processing time complexity or O�lg N� complexity if a convex polygon is con

sidered� A new algorithm of O��� processing complexity was developed� The
important feature of the algorithm is that preprocessing complexity is O�N� and
memory requirements depend on geometrical properties of the given polygon�
Usage of the algorithm is expected in applications where many points are tested
whether resides in the given polygon or not� The presented approach can be
considered as alternative to the parallel processing usage� Experimental results
are included� too�

Keywords� Point
in
Polygon Algorithm� Data Structures� AlgorithmComplex

ity� Geometry�

�� Introduction

Point
in
Polygon algorithms are very often used in many applications� espe

cially within many computer graphics packages� In some applications a number
of edges of given convex polygon can be very high� In some cases there is criti

cal processing time even if number of edges is small because very high number of
points are processed� Therefore it is necessary to use faster algorithms with O�N�
or O�lg N� complexities� where N is a number of edges of the given polygon�

Nevertheless if N is small an algorithm with O�N� complexity is often used�
Such a naive algorithm can be described by alg��� Let us consider a convex
polygon with the anticlockwise orientation and de�ne following functions

Fi�x� � �aix� biy � ci� i �
� � � � � N � �
Gi�x� � �uix� viy � wi� i �
� � � � � N � �

�

Machine Graphics and Vision, Vol.5., No.3., pp. 483-494, , ISSN 1230-0535, 1996.

where

Fi�x� � � is an equation for the oriented line on which the line segment xi xi�� lies�
see �g�� �� means addition modulo N�� If x lies inside of the polygon then
Fi�x� �
 � i�

Gi�x� � � is an equation for the oriented line on which the line segment x� xi�� lies
see �g��� i�e� F��x� � G��x� and lines orientations are shown on �g�� and
�g�� �will be used in the following algorithms��

N is a number of edges of the given convex polygon�

De�nition of Fi�x� functions De�nition of Gi�x� functions
Figure � Figure �

procedure PRECOMPUTE� f O�N� preprocessing time g
begin for i �� � to N � 	 do

COMPUTE COEFF�xi� xi��� ai� bi� ci��
f compute coefficients for Fi �x� g

end f PRECOMPUTE g�

function POINT IN POLYGON �x� point�� boolean�

f algorithm with O�N� processing time g
begin POINT IN POLYGON �� false�

for i �� � to N � 	 do

if Fi�x� � � then EXIT� f exit from procedure g
f point x must lie on the same side for all edges g

POINT IN POLYGON �� true� f point INSIDE of the polygon g
end f POINT IN POLYGON g�

Algorithm �

�

Machine Graphics and Vision, Vol.5., No.3., pp. 483-494, , ISSN 1230-0535, 1996.

�� Algorithms with O�lg N� complexities

It has been proved that algorithms with processing complexity O�lg N� exist�
see �PRE��a�� The original algorithm is based on a presumption that a special
point xA exists so that it is inside of the given polygon� see �g���

Figure � Figure 	

The answer if a given point lies inside the given convex polygon can be given in
O�lg N� time using binary search over indices i� j asking whether the given point
x lies inside wedge xixAxj using O�N� space� O�N� preprocessing time is needed
for �nding any convenient point xA� e�g� a centroid can be taken�

Let us de�ne

s � x� xA� si � xi � xA� �si�� � xi�� � xi

Then the determination whether the point x is inside of the wedge xixAxj can
be made by using condition

�s x si�z � � xor �s x sj�z �

where �a x b�z means z
coordinate of the cross product of a and b usually for the
�rst step i � � and j � N � ��

A faster solution can be made if we set point xA equal to x�� In this case� see
�g�	� the algorithm will be faster as we need only O��� preprocessing complex

ity� For determination whether a point x is inside of the given polygon a similar
approach can be used as in previous algorithm� More e�ective processing can be
obtained if vectors si and �si are precomputed� It means that we have got a little
bit faster algorithm with O�N� preprocessing and O�lg N� processing complex

ities� But we still need to compute z
coordinate of a cross product two times
for each step� It is possible to use separation functions Gi�x� instead of using
z
coordinate of the cross product� Algorithm with such modi�cation is faster
because it uses as much precomputed values as possible and can be described by
alg���

�

Machine Graphics and Vision, Vol.5., No.3., pp. 483-494, , ISSN 1230-0535, 1996.

y	 AEL

y� 	 �
y� � �
y� � �
y� � �
y�
 �

� �z �

indexes of associated
edges for each slab

Figure �

procedure PRECOMPUTE� f O�N� preprocessing time g
begin for i �� � to N � 	 do

begin COMPUTE COEFF�xi� xi��� ai� bi� ci��
f compute coefficients for Fi�x� g
if i �� �N� 	� then

COMPUTE COEFF� x�� xi��� ui� vi� wi��
f compute coefficients for Gi�x� g

end f for g�
end f PRECOMPUTE g�

function POINT IN POLYGON �x� point�� boolean�

begin f O�lg N� processing time g
POINT IN POLYGON �� false�

i �� �� j �� N�	�

� �� Gi�x� � �� � �� Gj���x� � ��

if �not �� or � then EXIT�

f point outside of the wedge x�x�x	 ing fig
�
 g
while �j � i� � 	 do

begin

k �� �i
 j� � �� f implemented as shift to the right g
� �� Gk�x� � ��

if � then i �� k else begin j �� k�

end f while g�
POINT IN POLYGON �� Fi�x� � ��

	

Machine Graphics and Vision, Vol.5., No.3., pp. 483-494, , ISSN 1230-0535, 1996.

f check whether the point x is inside of the triangle xix�xj g
end f POINT IN POLYGON g�

Algorithm �

Figure � Figure �

The second approach �SAL��a� used slab technique� see �g��� In this case we
have to sort all given vertices xi according to their y
coordinate and associate
a pair of indices of active edges with each slab in the AEL �Active Edge List�� In
this case we get O�N� preprocessing time complexity but processing time is still
O�lg N� as we have to search for slab in which the given point x lies using binary
search� see alg��� If we �nd a relevant slab �slab� in �g��� we have only to just
evaluate whether

�F��x� �
� and �F��x� �
�

This algorithm is a little faster because for �nding a slab only two comparison
are needed instead of cross products computation� There are some small com

plications caused by horizontal edges at the top and bottom of the given convex
polygon� Those edges must be left out� for details see �SAL��a��There are spe

cial cases� �g��� that must be handled carefully� Fig�� shows the usual situation
during construction of the AEL list� described by alg���

procedure PRECOMPUTE� f O�N� preprocessing time g
begin f algorithm uses slabs technique g

ymin �� ��� ymax �� ���

for i �� � to N � 	 do

begin f find minimal and maximal valus g
if yi � ymin then begin ymin �� yi� imin �� i� end�

if yi � ymax then begin ymax �� yi� imax �� i� end�

end�

�

Machine Graphics and Vision, Vol.5., No.3., pp. 483-494, , ISSN 1230-0535, 1996.

f AELi�k is the active edge list for the i�th slab� k�	�� g
� �� ymax� ymin�

f find all slabs � horizontal edges must be removed g
jmax �� imax� jmin �� imin�

f remove upper horizontal edge g
if y�imax��	modN � ymax f for top vertices g

then imax �� �imax � 	� mod N
else if y�jmax��	modN � ymax

then jmax �� �jmax� 	� mod N�
if y�imin��	modN � ymin f for bottom vertices g

then imin �� �imin � 	� mod N
else if y�jmin��	modN � ymin

then jmin �� �jmin � 	� mod N�
i� �� imax� j� �� jmax� k �� ��

i �� �imax � 	� mod N� j �� �jmax � 	� mod N�
y

�

k �� yimax�

AELk�l �� imax� AELk�� �� j�

while not ��i � imin� and �j � jmin�� do

begin

k �� k
 	�

if yi � yj then

begin y
�

k �� yi� AELk�� �� i�� AELk�� �� j�

i� �� i� i �� �i� 	� mod N�
end

else if yi � yjthen

begin y
�

k �� yj� AELk�� �� i�� AELk�� �� j�

j� �� j� j �� �j� 	� mod N�
end

else

begin y
�

k �� yj� AELk�� �� i�� AELk�� �� j�

i� �� i� i �� �i � 	� mod N�
j� �� j� j �� �j� 	� mod N�

end

end f while g�
end f PRECOMPUTE g�

function POINT IN POLYGON �x� point�� boolean�

begin f O�log N� processing time g
i �� �� j �� N � 	� POINT IN POLYGON �� falce�

if y ��� ymin� ymax � then EXIT�

f the point x is outside of all slabs� see fig
� g
while �j� i� � 	 do

begin k �� �i� j�	�� f implemented as shift to the right g

�

Machine Graphics and Vision, Vol.5., No.3., pp. 483-494, , ISSN 1230-0535, 1996.

if y � y
�

k then j �� k else i �� k�

end f while g�
f now test only two edges of the i�th slab from AEL g
POINT IN POLYGON �� �FAELi���x� � �� and �FAELi���x� � ���

end f POINT IN POLYGON g

Algorithm �

	� Principle of the proposed method

To be able to signi�cantly decrease the processing time complexity it is nec

essary to �nd a method that gives a wedge or a slab index directly from y
coor

dinate with O��� complexity�

Let us assume a situation shown in �g�� where slabs are not determined
according to y
coordinates of vertices of the given polygon but as �thin regular
slices�� It can be seen that if slices are �thit enough� there will be only two edges
associated with each slab �if singular cases are not considered��

Let us de�ne

 � minfj yi � yj jg � � maxfj yi � yj jg

�i�j �i�j
i �� j

Regular slab de�nition

Figure �

�

Machine Graphics and Vision, Vol.5., No.3., pp. 483-494, , ISSN 1230-0535, 1996.

�a� Simple singularity �b� Singularity with
�

Possible cases when constructing AEL M list �modi�ed AEL�

Figure

Generally� the compexity of
 and � determination is O�N lg N�� but because
vertices de�ne a convex polygon with known order of vertices the complexity is
only O�N�� see alg�	�

If slabs are regular with thickness smaller than
 then there will be usually
� edges associated with each slab� If a vertex lies inside of a slab there will be
three edges associated with that slab� see �g� �a� Some special cases exist when

 �
� see �g� �b� In those cases four edges are associated with the slab� In case
of regular slabs it is possible to compute the index i of the relevant slab as

i � ymax�y

 M

where M is a number of slabs� i�e�

M � ymax�ymin

�
�

�

After substitution� the index of the slab for the given y
coordinate is determined
as

i � �ymax � y�	

Of course� it is necessary to evaluate condition

Fk�x� �
 �k

where k are indices of edges associated with the selected slab� i�e�

k �fAELi��� AELi��� resp�AELi��� AELi�� if a slab contains a vertex g

procedure PRECOMPUTE MODIF� f O�N� preprocessing time g
begin f algorithm for using regular slabs technique g

PRECOMPUTE� f see alg
� g
f values y�� � and AELk � determined by PRECOMPUTE procedure g

 � ��� f valute
 � a minimal defference in y�coordinates g

�

Machine Graphics and Vision, Vol.5., No.3., pp. 483-494, , ISSN 1230-0535, 1996.

for i �� 	 to N � 	 do

if
 � y�i � y�i�� then
 �� y�i � y�i���

j �� �� i �� �� M �� int��	
� � 	�
while j � k do f compute Modified AEL � AEL M g
begin y �� ymax �
 � i�

AEL Mi�� �� AELj��� AEL Mi�� �� AELj���
AEL Mi�� �� �	� AEL Mi�� �� �	� f element not used g

if �y�
� � y�j�� then

begin q �� ��

if AELj�� �� AELj���� then

begin AEL Mi�q �� AELj����� q �� q� 	� end�

if AELj�� �� AELj���� then AEL Mi�q �� AELj�����
j �� j
 	�

end f if g�
i �� i
 	� f i � M� i
e
 i�th slab is computed g

end f while g�

 inv �� 		
�

end f PRECOMPUTE MODIF g�

function POINT IN POLYGON �x� point�� boolean�

begin f O�	� processing time g
i �� �� j �� N � 	� POINT IN POLYGON �� false�

if y ��� ymin� ymax � then EXIT�

f point outside of the polygon� above or below g
f determine a relevant regular slab index i g
i �� �ymax � y� �
 inv�
f now test only two edges from Active Edge List AEL g
f F �x� should be implemented as a macro g
if FAEL Mi��

�x� � � then EXIT� f EXIT from procedure g

if FAEL Mi��
�x� � � then EXIT�

if AEL Mi�� �� �	 then

f�g begin if FAEL Mi��
�x� � � then EXIT� f element not used g

f�g if AEL Mi�� �� �	 then

if FAEL Mi��
�x� � � then EXIT�

f�g end�

POINT IN POLYGON �� true� f the point x is inside g
end f POINT IN POLYGON g�

Algorithm �

It can be seen that the proposed algorithm� see alg�	� has the following complex

ities

! for preprocessing time

Machine Graphics and Vision, Vol.5., No.3., pp. 483-494, , ISSN 1230-0535, 1996.

O�N� for determination of
���

O�M� for �nding edges associated with slabs�

! for memory requirements

O�M� for storing associated edges for each slab

! for processing time

O��� for index of a slab computation and determination whether the
given point is inside of the given polygon�

It is obvious that preprocessing time complexity and memory requirements de

pend also on geometrical properties of the given polygon� If the ratio

M �

�

is very high it is possible to limit number of slabs� In this case we obtain more
than four associated edges for a selected slab that might result into an algorithm
with O�N� processing complexity� see �g��
�

If the point x is in that slab
the algorithm complexity is
O�N�

The in"uence of limited number of slabs to algorithm complexity

Figure �

Let us assume that

 � �
�� and � � �
�

then we would need

M � �
�

�

Machine Graphics and Vision, Vol.5., No.3., pp. 483-494, , ISSN 1230-0535, 1996.

slabs for polygon representation# On the other hand if we limit number of slabs
to M �� we can get for the third slab N
 � edges to test� i�e� the algorithm
would have complexity O�N� in this case� Nevertheless we can decide according
to M which algorithm should be used� i�e� with O�lg N� or O�N� complexities
according to convex polygon shape�

� Experimental results

For experiments regular and irregular convex polygons were used and �

points were randomly generated outside and inside of the polygon� Results ob

tained in experiments are shown in tab� � ! 	 and numbers are related to the
processing time in seconds� All experiments were made on PC 	��$�
MHz� It is
necessary to point out that if
 is taken as
	q �q � �� the proposed algorithm
is faster� see tab� �� It is caused by the fact that if
 is taken smaller then it is
not necessary to test the third or fourth edges� i�e� lines in alg�	 marked by f�g
are not executed� Of course� it is necessary to see that decreasing
 value causes
additional memory requirements�

N
 � � ��
� �� ���

Alg� ��
	 ���� ���� ���� ���� ����� �
���
Alg�
�
� ���
 ��
� ���� ��	� ����
Alg� ���� ���
 ���� ���� ���� ���
 ���

Point inside of a regular polygon

Table �

N
 � � ��
� �� ���

Alg�
���
���
��� ���� ���� 	�
� ����
Alg�
���
���
���
���
���
���
�	�
Alg�
���
���
���
���
���
���
���

Point outside of a regular polygon

Table �

N
 � � ��
� �� ���

Alg�
��� ���� ���	 ��� ���� ��� ����	
Alg�
��
�
� 	 ���
 ���� ���� ��	�
Alg� ���� ���� ���
 ���� ���� ���
 ���

Point inside of an irregular polygon

Table �

��

Machine Graphics and Vision, Vol.5., No.3., pp. 483-494, , ISSN 1230-0535, 1996.

N
 � � ��
� �� ���

Alg�
���
���
� � ���� ���� 	�	� �� �
Alg�
���
�		
�	
���
���
���
���
Alg�
���
���
���
���
��

���
���

Point outside of an irregular polygon

Table �

q �
 � ��

speed
up ��
 ��� ��	 ��	�

Choice of q to the proposed algorithm speed up

Table �

�� Conclusion

The new modi�cations of Point
in
Polygon algorithm was developed for con

vex polygon case� The algorithm claims the preprocessing complexity O�N� and
the processing complexity O���� see tab��� ! 	� If number of slabs is limited� algo

rithm complexity depends on geometrical properties of the given polygon� The
proposed O��� algorithm is convenient for cases when many points are tested
against a polygon that is constant� Such problems are often solved in geoscience
programs in which a number of edges can be higher than �
 and number of tested
points can reach �
�� It is possible to show that test Point
in
convex polygon is
k dual to the test whether a line intersects the convex polygon� i�e� dual to the
line clipping problem� There is a hope that similar approach can be taken for
developing a new line clipping algorithm with O��� complexity� The presented
approach shows also a possibility how some problems can be speed up without
using parallel processing�
Acknowledgments

The author would like to express his thanks to Ms� I� Kolingerova for critical
comments� Mr� P� Lederbuch for implementation and testing algorithms and to
all who contributed to this work� especially to students of Computer Graphics
courses at the University of West Bohemia in Plzen who stimulated this work
and for many suggestions they proposed�

�� References

�CHE��a� Chen� M�� Townsesnd� P�� E%cient and Consistent Algorithms for the Con

stainment of Points in Polygon and Polyhedra� EUROGRAPHICS&�� Con

ference Proceedings� � ���

��

Machine Graphics and Vision, Vol.5., No.3., pp. 483-494, , ISSN 1230-0535, 1996.

�HUB�
a� Hubl� J�� A Point
by
point Clipping Algorithm� Technical Report� Muchen�
� ��

�LAN��a� Lane� J�� Magedson� B�� Rarick� M�� An E%cient Point in Polyhedron Al

gorithm� Computer Vision� Graphics and Image Processing� Vol� ��� pp�
��� ! ���� � �	�

�PRE��a� Preperata� P� F�� Shamos� M� I�� Computational Geometry� An Introduc

tion� Springer Verlag� � ���

�SAL��a� Salomon� K�� An E%cient Point
in polygon Algorithm� Computers ' Geo

sciences� Vol� 	� pp� ��� ! ���� � ���

�SKA��a� Skala� V�� Line Clipping in E� with O��� Processing Complexity� Accepted
for publication in Computers ' Graphics� Pergmon Press� Vol��
� No�	�
� �

��

Machine Graphics and Vision, Vol.5., No.3., pp. 483-494, , ISSN 1230-0535, 1996.

