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Abstract

Algorithms for Point-in-polygon problem solution are very often used espe-
cially in computer graphics applications. The naive implementation has O(N)
processing time complexity or O(lg N) complexity if a convex polygon is con-
sidered. A new algorithm of O(1) processing complexity was developed. The
important feature of the algorithm is that preprocessing complexity is O(N) and
memory requirements depend on geometrical properties of the given polygon.
Usage of the algorithm is expected in applications where many points are tested
whether resides in the given polygon or not. The presented approach can be
considered as alternative to the parallel processing usage. Experimental results
are included, too.
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1. Introduction

Point-in-Polygon algorithms are very often used in many applications, espe-
cially within many computer graphics packages. In some applications a number
of edges of given convex polygon can be very high. In some cases there is criti-
cal processing time even if number of edges is small because very high number of
points are processed. Therefore it is necessary to use faster algorithms with O(N)
or O(lg N) complexities, where N is a number of edges of the given polygon.

Nevertheless if N is small an algorithm with O(N) complexity is often used.
Such a naive algorithm can be described by alg.l. Let us consider a convex
polygon with the anticlockwise orientation and define following functions

Fi(x) = (i + by + ¢) 1=0,....N—1
Gi(x) = (ux + viy + w;) 1=0,....N =2
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where

Fi(x) = 0 is an equation for the oriented line on which the line segment x; xj 1 lies,
see fig.1 (+ means addition modulo N). If x lies inside of the polygon then

Gj(x) = 0 is an equation for the oriented line on which the line segment xq xj,1 lies
see fig.2, i.e. Fy(x) = Go(x) and lines orientations are shown on fig.1 and
fig.2 (will be used in the following algorithms),

N is a number of edges of the given convex polygon.

F,(x)=0

Fy(x)<0  Fy(x)=0 Gy(x)<0 G, (x)=0
Definition of F;(x) functions Definition of G;(«) functions
Figure 1 Figure 2

procedure PRECOMPUTE; { O(N) preprocessing time }
begin for 1 := 0 to N - 1 do

COMPUTE_COEFF (1, X141, a1, b1, C1) ;

{ compute coefficients for F; (x) }
end { PRECOMPUTE };

function POINT_IN POLYGON (x: point): Dboolean;
{ algorithm with 0(N) processing time }
begin POINT_IN_POLYGON := false;
for i :=0 to N -1 do
if Fi(x) < 0 then EXIT; { exit from procedure }
{ point x must lie on the same side for all edges }
POINT_IN_POLYGON := true; { point INSIDE of the polygon }
end { POINT_IN POLYGON };

Algorithm 1
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2. Algorithms with O(lg N) complexities

It has been proved that algorithms with processing complexity O(lg N) exist,
see [PRE85a]. The original algorithm is based on a presumption that a special
point xp exists so that it is inside of the given polygon, see fig.3.

Figure 3 Figure 4

The answer if a given point lies inside the given convex polygon can be given in
O(lg N) time using binary search over indices i, j asking whether the given point
x lies inside wedge xjxpx; using O(N) space. O(N) preprocessing time is needed
for finding any convenient point xp, e.g. a centroid can be taken.

Let us define

S =T — T4, S; = T; — T4, Si41 = Lip1 — Xy

Then the determination whether the point x is inside of the wedge xjxpx; can
be made by using condition

[s x 8], < 0xor [sxs;]. >0

where [a x b]; means z-coordinate of the cross product of a and b usually for the
first stepi=0and j =N - L.

A faster solution can be made if we set point xp equal to xg. In this case, see
fig.4, the algorithm will be faster as we need only O(1) preprocessing complex-
ity. For determination whether a point x is inside of the given polygon a similar
approach can be used as in previous algorithm. More effective processing can be
obtained if vectors s; and §; are precomputed. It means that we have got a little
bit faster algorithm with O(N) preprocessing and O(lg N) processing complex-
ities. But we still need to compute z-coordinate of a cross product two times
for each step. It is possible to use separation functions Gj(x) instead of using
z-coordinate of the cross product. Algorithm with such modification is faster
because it uses as much precomputed values as possible and can be described by
alg.2.
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procedure PRECOMPUTE; { O(N) preprocessing time }
begin for 1 := 0 to N - 1 do
begin COMPUTE_COEFF (xi,Xit1,ai, bi, Ci);
{ compute coefficients for Fi(x) }
if 1 #(N—1) then
COMPUTE_COEFF ( x¢,Xit+1,Ui, Vi, Wi);
{ compute coefficients for G;i(x) }
end { for };
end { PRECOMPUTE };

function POINT_IN POLYGON (x: point): Dboolean;
begin { 0(lg N) processing time }
POINT_IN_POLYGON := false;
1 :=0; j :=N-1;
£:=Gi(x) >0; 7n:=Gj_1(x)>0;
if (noté) orn then EXIT;
{ point outside of the wedge xs5x0x1 ing fig.2. }
while (j - 1) > 1 do

begin
k := (1 +3)/ 2; { implemented as shift to the right }
¢ :=Gg(x) > 0;

if ( then i := k else begin j := k;
end { while };
POINT_IN_POLYGON := Fi(x) > 0;
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{ check whether the point x is inside of the triangle xiXoxj }
end { POINT_IN. POLYGON };

Algorithm 2

AEL,,

Ymin
i i
Figure 6 Figure 7

The second approach [SAL78a] used slab technique, see fig.5. In this case we
have to sort all given vertices x; according to their y-coordinate and associate
a pair of indices of active edges with each slab in the AEL (Active Edge List). In
this case we get O(N) preprocessing time complexity but processing time is still
O(lg N) as we have to search for slab in which the given point x lies using binary
search, see alg.3. If we find a relevant slab (slaby in fig.5) we have only to just
evaluate whether

(Fo(x) > 0) and (F5(x) > 0)

This algorithm is a little faster because for finding a slab only two comparison
are needed instead of cross products computation. There are some small com-
plications caused by horizontal edges at the top and bottom of the given convex
polygon. Those edges must be left out; for details see [SAL78a].There are spe-
cial cases, fig.6, that must be handled carefully. Fig.7 shows the usual situation
during construction of the AEL list, described by alg.3.

procedure PRECOMPUTE; { O(N) preprocessing time }
begin { algorithm uses slabs technique }
Vmin := +00; Ymax = —0OQ;
for i :=0 to N -1 do
begin { find minimal and maximal valus }
1f yi < Ynin then begin ypin := yi;1lnin = 1; end;
1f yi > Ymax then begin ypax := ¥i; lnax := 1; end;
end;

Ymax

Yimin
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{ AEL;x is the active edge list for the i-th slab; k=1,2 }
A= VYmax — Ymin>
{ find all slabs - horizontal edges must be removed }
jmax = 1lpax; jmin = 1pin;
{ remove upper horizontal edge }
if Y(inax+1)modN = ¥max | for top vertices }
then ipax := (imax + 1) mod N
else if Y(jmax—1)modN — Ymax
then jnax := (jmax — 1) mod N;
if Y(i;,~1)modN = Ymin{ for bottom vertices }
then ipin := (ipin — 1) mod N
else if y(j, i +1)modN = Ymin
then jnin := (jmin + 1) mod N;

10 := 1payx; 70 := Jjpax; k :=0;
i/ = (ipax + 1) mod N; j := (jpax — 1) mod N;
Yk *— Vimaxs
AELy 1 := imax; AELy o :=j;
while not ((i = inin) and (j = juin)) do
begin
k :=k + 1;
if yi > yj then
begin y;{ = Vi3 AELkJ = iO; AEL]LQ = j;
i0:=1i;i:= (i + 1) mod I;
end

else if yi < yjthen

begin y;( =75 AELk 1 := 10; AELko := J;
jO:=3; 3 :=(j— 1) mod I;

end

else

begin y;( =75 AELk 1 := 10; AELko := J;
10:=1;1i:=(1 +1)modN;
jO:=3; j:=(j — 1) mod I;

end

end { while };

end { PRECOMPUTE };

function POINT_IN POLYGON (x: point): Dboolean;
begin { 0(log N) processing time }

1:=0; jJ:=N-1; POINT_IN_POLYGON := falce;

if y €< Vmin, ynax > then EXIT;

{ the point x is outside of all slabs, see fig.5 }

while (j —1i)>1 do

begin k :=(i+ j)/2; { implemented as shift to the right }
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if y>y;(thenj =k elseil :=k;
end { while };
{ now test only two edges of the i-th slab from AEL }
POINT_IN POLYGON := (Fygr, (%) > 0) and (Faer, ,(x) > 0);
end { POINT_IN_POLYGON } ’ ’

Algorithm 3

3. Principle of the proposed method

To be able to significantly decrease the processing time complexity it is nec-
essary to find a method that gives a wedge or a slab index directly from y-coor-
dinate with O(1) complexity.

Let us assume a situation shown in fig.8 where slabs are not determined
according to y-coordinates of vertices of the given polygon but as “thin regular
slices”. It can be seen that if slices are “thit enough” there will be only two edges
associated with each slab (if singular cases are not considered).

Let us define

6 =mind{|y: —y; [} A =maz{|y; —y; |}
Vi Vi
1 F ]
§ AEL M list
4 Yimax
/\e3 —{ 4 3}
V \x3 —{ 4, 3, 2}
xs/ / — {4, 5 2}
/ / —{ 5 2}
/ / —{ 5 2}
es/ /ez —{ 5 2}
( / — {5 0 2 }
xo\ sz — {0, 1, 2}
® N_— o —{ 0 1}

X, Y min {ij} indexes of
associated edges

Regular slab definition
Figure 8
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Possible cases when constructing AEL_M list (modified AEL)
Figure 9

Generally, the compexity of 6 and A determination is O(N lg N), but because
vertices define a convex polygon with known order of vertices the complexity is
only O(N), see alg.4.

It slabs are regular with thickness smaller than 6 then there will be usually
2 edges associated with each slab. If a vertex lies inside of a slab there will be
three edges associated with that slab, see fig.9.a. Some special cases exist when
0 =0, see fig.9.b. In those cases four edges are associated with the slab. In case
of regular slabs it is possible to compute the index i of the relevant slab as

y _ Ymazx—Y
o o= et M

where M is a number of slabs, i.e.

— Ymazx —Ymin é
M = dmer—tmin — =

After substitution, the index of the slab for the given y-coordinate is determined
as

0= (Ymaz — ¥)/0
Of course, it is necessary to evaluate condition
Fi(x) >0 vk
where k are indices of edges associated with the selected slab, i.e.

k €e{AEL;1,AFEL; s, resp.AEL; 5, AEL; 4 if a slab contains a vertex }

procedure PRECOMPUTEMODIF; { O(N) preprocessing time }

begin { algorithm for using regular slabs technique }
PRECOMPUTE; { see alg.3 }
{ values y', A and AELy - determined by PRECOMPUTE procedure }
6 =+o00; { valute 6 - a minimal defference in y-coordinates }
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for 1 :=1 to N - 1 do
if 6>y} —yi_q then 6:=y} —yi_y;
j:=0; i :=0; M:=1int(A/6)+ 1;
while j <k do { compute Modified AEL - AEL M }
begin y := ypax — O x 1;
AELM; ; := AEL;¢; AELM; 5 := AELjo;

AEL M 3:= —1; AELMj4:= —1; { element not used }
if (y—96) <yjyq then
begin q := 2;

if AELj; +* AELj;1,1 then

begin AEL Mj 4 := AELjy11; 9:=q+ 1; end;

if AELj2 +* AELjt1,2 then AEL Mjq:= AELj i1 2;
j =3+ 1

i:=1+1; {1 <M, i.e. i-th slab is computed }
end { while };
6_inv:=1/6;
end { PRECOMPUTEMODIF };

function POINT_IN POLYGON (x: point): Dboolean;
begin { 0(1) processing time }
1:=0; J::=N-1; POINT_IN_POLYGON := false;
if y €< Vmin, ynax > then EXIT;
{ point outside of the polygon; above or below }
{ determine a relevant regular slab index i }
1 = (Ymax — ¥) * 6_inv;
{ now test only two edges from Active Edge List AEL }
{ F (x) should be implemented as a macro }
if FAEL—Mi,l(X) < 0 then EXIT; { EXIT from procedure }
if FapLm; (%) < 0 then EXIT;
if AELMj3 # —1 then
{*} begin if Faprm; 4(x) <O then EXIT; { element not used }
(x} if AELM;j4# —1 then
if Faerw;,(x) <0 then EXIT;
{*} end;
POINT_IN POLYGON := true; { the point x is inside }
end { POINT_IN POLYGON };

Algorithm 4

It can be seen that the proposed algorithm, see alg.4, has the following complex-
ities

— for preprocessing time
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O(N) for determination of 6, A,

O(M) for finding edges associated with slabs,
~ for memory requirements

O(M) for storing associated edges for each slab
— for processing time

O(1) for index of a slab computation and determination whether the
given point is inside of the given polygon.

It is obvious that preprocessing time complexity and memory requirements de-
pend also on geometrical properties of the given polygon. If the ratio

A
M:?

is very high it is possible to limit number of slabs. In this case we obtain more
than four associated edges for a selected slab that might result into an algorithm
with O(N) processing complexity, see fig.10.

Sy

N
\/ If the point x is in that slab

the algorithm complexity is
O(N)

The influence of limited number of slabs to algorithm complexity

o X

Figure 10

Let us assume that
§=10"3 and A=10°
then we would need

M = 10°

10
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slabs for polygon representation! On the other hand if we limit number of slabs
to M =3 we can get for the third slab N - 2 edges to test, i.e. the algorithm
would have complexity O(N) in this case. Nevertheless we can decide according
to M which algorithm should be used, i.e. with O(lg N) or O(N) complexities
according to convex polygon shape.

4. Experimental results

For experiments regular and irregular convex polygons were used and 5000
points were randomly generated outside and inside of the polygon. Results ob-
tained in experiments are shown in tab. 1 — 4 and numbers are related to the
processing time in seconds. All experiments were made on PC 486/50MHz. It is
necessary to point out that if 6 is taken as 6/¢ (¢ > 1) the proposed algorithm
is faster, see tab. 5. It is caused by the fact that if ¢ is taken smaller then it is
not necessary to test the third or fourth edges, i.e. lines in alg.4 marked by {x}
are not executed. Of course, it is necessary to see that decreasing 6 value causes
additional memory requirements.

N | 3 ] 4 | 5 [10]2 | 5 | 100
Algy [1.04 [ 132 [1.65 [ 3.18 [ 6.15 [ 15.22 | 30.32

Algs 1 0.99 1 0.99 | 1.10 | 1.05 | 1.26 | 1.42 | 1.53
Algy | 1.15 1 1.10 | 1.32 | 1.31 | 1.27 | 1.10 | 1.10

Point inside of a regular polygon

Table 1

N | 3 | 4| 5 | 10] 2 | 5 | 100
Algy [0.66 [ 0.88]0.88 [ 1.37 [ 2.31 [ 4.01 [ 7.58

Algs 1 0.33 | 0.28 | 0.27 | 0.28 | 0.38 | 0.38 | 0.43
Algy | 0.11 | 0.16 | 0.17 | 0.11 | 0.11 | 0.11 | 0.11

Point outside of a regular polygon

Table 2
N | 3] 4] 5 |10 |2 | 5 | 100
Alg, [0.77 | 1.33 [ 1.64 [ 3.19 [ 6.15 | 9.17 | 12.24

Algs [ 0.89 1 0.99 [ 0.94 | 1.20 | 1.27 | 1.32 | 1.43
Algy | 1.16 | 1.16 | 1.10 | 1.16 | 1.15 | 1.10 | 1.10

Point inside of an irregular polygon

Table 3

11
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N | 3] 4] 5 ] 10| 2 | 5 | 100
Alg; [ 0.61[0.82]0.93 | 1.87 [ 3.57 [ 4.45 | 5.93

Algs | 0.38 | 0.44 | 0.49 | 0.61 | 0.66 | 0.66 | 0.66
Algy | 0.11 | 0.11 | 0.11 | 0.11 | 0.10 | 0.11 | 0.11

Point outside of an irregular polygon
Table 4
g |1 ]2]4]10
speed-up | 1.0 | 1.3 | 1.4 | 1.45

Choice of q to the proposed algorithm speed up
Table 5

5. Conclusion

The new modifications of Point-in-Polygon algorithm was developed for con-
vex polygon case. The algorithm claims the preprocessing complexity O(N) and
the processing complexity O(1), see tab.1. — 4. If number of slabs is limited, algo-
rithm complexity depends on geometrical properties of the given polygon. The
proposed O(1) algorithm is convenient for cases when many points are tested
against a polygon that is constant. Such problems are often solved in geoscience
programs in which a number of edges can be higher than 50 and number of tested
points can reach 10%. It is possible to show that test Point-in-convex polygon is
k dual to the test whether a line intersects the convex polygon, i.e. dual to the
line clipping problem. There is a hope that similar approach can be taken for
developing a new line clipping algorithm with O(1) complexity. The presented
approach shows also a possibility how some problems can be speed up without
using parallel processing.
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