
A Comparison of O(1) and Cyrus-Beck Line Clipping Algorithms
in E2 and E3

Václav Skala, Pavel Lederbuch, Bohumír Sup1

Department of Information Technology and Computer Science
University of West Bohemia

Univerzitní 22, Box 314
306 14 Plzeò

Czech Republic

1 Supported by the grant UWB-156

skala@kiv.zcu.cz
lederbuc@kiv.zcu.cz

sup@kiv.zcu.cz

http://yoyo.zcu.cz/~skala
http://ody.zcu.cz/~lederbuc

http://yoyo.zcu.cz/kiv_info/sup_e.html

Abstract

 A comparison of a new algorithm for line clipping in E2 and E3 by
convex polygon and/or polyhedron with O(1) processing complexity and Cyrus-
Beck algorithm is presented. The new algorithm in E2 is based on dual space
representation and space subdivision technique. The principle of algorithm in E3
is based on the projection of polyhedron to three orthogonal E2 coordinate
systems. Algorithms have optimal complexities O(1) and demonstrates that
preprocessing can be used to speed up the line clipping significantly. Obvious
applications are for one polygon and/or polyhedron and many clipped lines.
Detailed theoretical estimations and experimental results are also presented.

Keywords: Line Clipping, Convex Polygon, Convex Polyhedron, Computer Graphics,

Algorithm Complexity, Geometric Algorithms, Algorithm Complexity Analysis,
Preprocessing.

Symbols:
 E2 an Euclidean space
 D(E2) dual representation of an Euclidean space
 x, y point coordinates in E2
 a, b, c line coefficients in E2
 k, q, m, p line coefficients in E2, point coordinates in semidual space
 P polygon and/or polyhedron
 N number of edges and/or facets
 M number of clipped lines
 Pr probability of intersection of a polygon by clipped line
 r line to be clipped
 nk, nq, nm, np number of steps for subdivision in the specified directions
 TCB processing time of CB algorithm
 TO(1) processing time of a new algorithm
 Tprep preprocessing time of a new algorithm
 ν1, ν2 efficiency coefficients

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

1. Introduction
 Many algorithms for line clipping in E2 and E3 were developed, see [Ska94a],
[Ska95a]. Algorithms for line clipping are mostly based on the Cyrus-Beck (CB) algorithm
and its modifications. The aim of the line clipping algorithm is to find a part of the given line
which is inside of the given polygon and/or polyhedron. Algorithms for line clipping are
mostly restricted to line clipping against convex polygon and/or polyhedron. Since the line
clipping problem solution is a bottleneck of many packages and applications it is convenient
to use the fastest algorithm. Algorithm comparisons and description can be found in [Kol94],
[Ska94a], [Ska94b], [Ska95a]. Those comparisons included algorithms with algorithm
complexity between O(N) and O(1). In the tested algorithm we are using the pre-processing
for speeding up problem solution, it decreases algorithm processing complexity. We are using
algorithm for two dimensional line clipping with expected O(1) complexity as next
simplification. Acceleration of algorithm processing is dependent on the memory consuming.

2. Dual space representation
 Any line r E∈ 2 can be described by an equation

ax by c+ + = 0
and it can be rewritten as

y kx q= + , | |k ≠ ∞
or

x my p= + , | |m ≠ ∞
 It means that the line r E∈ 2 can be represented using asymmetrical model of space
representation as a point D r k q D E() [,] ()= ∈ 2 or D r m p D E() [,] ()= ∈ 2 , see Fig. 2.2.
This representation model has very interesting features and usage that can be found in
[Sto89], [Nie95], [Kol94], [Zac95], [Zac96]. Generally it is possible to show the relation
between fundamental geometric primitives by the Table 2.1. In the following we will consider
situations in E 2 only.

Space Euclidean rep. Dual representation

E2
line

point
point
line

E3

plane
line

point

point
line

plane
Table 2.1. Representation of geometrical primitives

It can be shown that a polygon P E∈ 2 , see Fig. 2.1.a, can be represented by an infinite area
in dual space D(E2).
 The test whether a line r E∈ 2 intersects a convex polygon P E∈ 2 is dual to the well
known Point-in-Polygon test. Algorithms for Point-in-Polygon test usually have O(N) or
O(log2 N) complexities. Solution of the line clipping problem in E2 generally consists of two
steps:
 - test whether a line intersects the polygon.
 - selection of polygon edges which are intersected by the given line and computation of

intersection points.

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

Fig. 2.1. Dual space representation of polygon in E2

 It means that the line clipping problem solution is more complex than the Point-in-
Polygon test. Nevertheless, the O(log2 N) complexity of the Point-in-Polygon test leads to
the new O(log2 N) line clipping algorithm development, see [Ska94a].
 But there are two problems that must be solved, when dual space representation is
used:
- zones in dual space are infinite and it is difficult to represent them,
- it is necessary to find fast method for determination in which zone the point D(r) lies.
 Let us consider a modified boundary rhomb box so that the given polygon is inside of
a rectangle, Fig. 2.2. It can be seen that q and p values of lines which intersects the polygon
are limited.
 The given line r E∈ 2 can be represented as

y kx q= + if | |k ≤ 1
resp.

x my p= + if | |m < 1

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

Fig. 2.2. Semidual space representation

 If this representation is used then k and m values are limited. Then values [k, q],
resp. [m, p] are from the limited area <-1,1> for k and m and <-h,h> 2 for q and p. We will
denote those two limited spaces as semidual spaces, see Fig. 2.2.
 Several sophisticated techniques for detection in which zone a point D(r) lies have
been developed as a part of computational geometry, see [Pre85a]. One possibility is to use
the space subdivision technique. If semidual spaces for (k,q or (m,p) are subdivided into small
rectangles, it is possible to pre-compute Active Edge List (AEL) of polygon edges that
interfere-in semidual space with the given rectangle. If rectangles are small enough then each
AEL will contain only two polygon edges. Each rectangle in the semidual space
representation corresponds to an infinite „butterfly“ zone in E2, see Fig. 2.2.
 It is necessary to emphasise that the rhomb that bounds the polygon must be as small
as possible. Generally the limits for q and p axis can be different. It decreases the memory
requirements significantly.

2 h are values of y axis intersecting by rhomb box

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

3. Space subdivision in E2
 The space subdivision technique is used to detect the zone in which a point D(r) lies.
Semidual spaces for (k, q), resp. (m, p) are subdivided into small rectangles. Each rectangle is
a dual representation of a zone in E2, see Fig. 2.2a. For each zone in E2 is possible to compute
list of polygon edges that interfere with it. The list of those edges is named Active Edge List
(AEL), see [Ska94c] for details. It is necessary to point out that number of members of AEL
depends on the geometric shape of the given polygon and also on the number of subdivision
steps in (k, q), resp. (m, p) spaces. If rectangles are small enough (it means that subdivision is
high) then each list contains only two edges of the given polygon.
 It is necessary to find a criterion for semidual spaces subdivisions so that just one pair
of polygon edges is in the AEL.
 For (k, q) semidual space we use the equation

y kx q= +
Then
 n a yq > 2 / Δ where Δy y yi j= −min {| |} i j n, ,∈ 0 & i j≠ & Δy > 0

 n kk > 2 / Δ where Δk k ki j= −min {| |} i j n, ,∈ 0 & i j≠ & Δk > 0
Similarly for (,)m p semidual space

x my p= +
and
 n a xp > 2 / Δ where Δx x xi j= −min {| |} for all i j, & i j≠ & Δx > 0
 n mm > 2 / Δ where Δm m mi j= −min {| |} for all i j, & i j≠ & Δm > 0
It means that the nk and nq, resp. nm and np values depend on geometric shape of the given
polygon.
 These conditions guarantee that each list of AEL contains up to three edges. It is
necessary to point out that these conditions can extremely increase subdivisions of semidual
spaces and memory requirements can be above system possibilities. That is why these
conditions cannot be realized. Then it is essential to find an optimal level of subdivision
which subdivide the semidual spaces sufficiently, but on the other hand which do not exceed
above available memory. Experimental results of space subdivision for a polygon with N = 10
are presented in Fig. 3.1.,Fig. 3.2.

0

2

4

6

8

10

1 10 100 1000 10000

nq

nu
m

be
r o

f e
dg

es

1
10
100
1000

Fig. 3.1. Number of edges in AEL dependent on subdivision in the direction of q

(N = 10, nk is 1, 10, 100 and 1000)

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

0
2
4
6
8

10

1 10 100 1000 10000
nk

nu
m

be
r o

f e
dg

es
1
10
100
1000

Fig. 3.2. Number of edges in AEL dependent on subdivision in the direction of k

(N = 10, nq is 1, 10, 100 and 1000)

 The experimental results show that subdivision in the direction of q, resp. p is more
significant than subdivision in the direction of k, resp. m. Figures 3.1. and 3.2. shows that
adequate number of subdivision steps in q direction is 10 multiple N and in k direction is N.

 The construction time of AEL is presented in Table 3.1. and Fig. 3.3.

nq \ N 3 5 10 20 50
1 0,00 0,00 0,06 0,10 0,22
2 0,06 0,05 0,05 0,11 0,28
5 0,05 0,06 0,11 0,28 0,55

10 0,11 0,11 0,28 0,49 1,15
20 0,17 0,27 0,44 0,87 2,20
50 0,44 0,66 1,20 2,25 5,39
100 0,88 1,32 2,36 4,45 10,76
200 1,75 2,59 4,67 8,90 21,48
500 4,40 6,49 11,70 22,14 53,61

1000 8,90 13,24 23,95 45,48 110,07
Table 3.1. Preprocessing time of AEL

(subdivision in the direction of k : nk = 10)

0

20

40

60

80

100

120

1 10 100 1000

nq

tim
e

[s
] 3

5
10
20
50

Fig. 3.3. Preprocessing time of AEL

(subdivision in the direction of k: nk = 10)

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

4. Theoretical consideration of O(1) algorithm in E2
 The O(1) algorithm has been tested and compared with the Cyrus-Beck algorithm. The
reason for the choice of CB algorithm is that this algorithm is numerically very stable and its
behaviour does not depend on geometric properties of the given polygon and clipped lines.
 Let us consider that N is a number of edges of the given polygon. Theoretical
complexity of CB algorithm, see [Ska93], is

T NCB = +590 621*
Theoretical complexity of O(1) algorithm can be estimated as, see [Ska95b]

TO()1 2020=

Let us introduce algorithm efficiency coefficients as

ν1 =
T
T

CB

O(1)

 , ν 2
1

=
+

T
T T

CB

O prep()

then expected efficiency of the O(1) algorithm is described by Table 4.1, see [Ska95b] for
details.

N 3 4 5 10 50
ν1 1.3 1.6 1.9 3.4 15.7

Table 4.1. Theoretical estimation of efficiency

5. Experimental results of O(1) algorithm and comparison with CB
algorithm in E2
 Experimental results of processing time are presented in Table 5.1, Table 5.2 and
Fig. 5.1.

N 3 4 5 10 20 50
TCB 0,99 1,26 1,59 3,13 6,59 15,38
Tprep 0,44 0,55 0,66 1,20 2,25 5,39
TO(1) 0,50 0,50 0,50 0,54 0,55 0,55

Tprep+TO(1) 0,94 1,05 1,16 1,74 2,80 5,94
ν1 2,0 2,5 3,2 5,8 12,0 28,0
ν2 1,1 1,2 1,4 1,8 2,4 2,6

Table 5.1. Experimental results of processing times
 (M=10.000, Pr=0%, coefficients of O(1): nk=10, nq=50)

N 3 4 5 10 20 50

TCB 0,99 1,32 1,65 3,13 6,15 15,32
Tprep 0,44 0,55 0,66 1,20 2,25 5,39
TO(1) 1,32 1,32 1,32 1,32 1,32 1,49

Tprep+TO(1) 1,76 1,87 1,98 2,52 3,57 6,88
ν1 0,8 1,0 1,3 2,4 4,7 10,3
ν2 0,6 0,7 0,8 1,2 1,7 2,2

Table 5.2. Experimental results of processing times
(M=10.000, Pr=100%, coefficients of O(1): nk=10, nq=50)

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

0

2

4

6

8

10

12

14

16

3 4 5 10 20 50
N

tim
e

[s
] CB

O(1)
O(1)+prep

Fig. 5.1. Experimental results of processing times

(related to values in Table 5.1)

A comparison of theoretical estimations and experimental results is presented in Table 5.3.

N 3 4 5 10 50
ν1 (theoret.) 1,3 1,6 1,9 3,4 15,7

ν1 (exp. Pr=0%) 2,0 2,5 3,2 5,8 28,0
ν1 (exp. Pr=100%) 0,8 1,0 1,3 2,4 10,3

Table 5.3. Theoretical and experimental efficiencies

 Dependence of a processing time of O(1) algorithm on a probability that clipped lines
intersect the given polygon for N=10 is shown in Table 5.4 and Fig. 5.2. Experimental results
show that O(1) algorithm is faster than CB algorithm if number of clipped lines is greater
than 5000. The limit value is the same for all probabilities of intersection of a polygon by
clipped line.

M 1000 2000 3000 4000 5000 10000 20000 50000 100000
TCB 0,28 0,60 0,88 1,21 1,48 3,02 5,99 15,05 30,10
Tprep 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20
TO(1) 0,06 0,11 0,16 0,22 0,27 0,50 1,04 2,58 5,16

TO(1)+Tprep 1,26 1,31 1,36 1,42 1,47 1,70 2,24 3,78 6,36
ν1 4,7 5,5 5,5 5,5 5,5 6,0 5,8 5,8 5,8
ν2 0,2 0,5 0,6 0,9 1,0 1,8 2,7 4,0 4,7

Table 5.4. Processing times for different number of clipped lines
Polygon with N = 10, coefficients of O(1) : nk=10, nq=50

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

0

1

2

3

4

5

6

1000 2000 3000 4000 5000 10000 20000

Number of clipped lines M

tim
e

[s
]

CB
Prep
O(1)
O(1)+Prep

Fig. 5.2. Processing times for different number of clipped lines

 The processing time of the proposed O(1) algorithm depends on a probability of
intersection of the given polygon. It is also presented in Table 5.5 and Fig. 5.3. The time
complexity of the CB algorithm is nearly constant, but the more clipped lines intersect the
polygon, the more processing time is needed in O(1) algorithm. It is due to the test whether
a line intersects a polygon is faster for a line does not intersecting the given polygon than for
a line which intersects it.

Pr 0 10 20 30 40 50 60 70 80 90 100
TCB 3,02 3,08 3,02 3,07 3,08 3,07 3,13 3,07 3,08 3,14 3,19
Tprep 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20
TO(1) 0,54 0,60 0,66 0,71 0,82 0,88 0,99 1,05 1,21 1,21 1,32

TO(1)+Tprep 1,74 1,80 1,86 1,91 2,02 2,08 2,19 2,25 2,41 2,41 2,52
ν1 1,7 1,7 1,6 1,6 1,5 1,5 1,4 1,4 1,3 1,3 1,3
ν2 5,6 5,1 4,6 4,3 3,8 3,5 3,2 2,9 2,5 2,6 2,4

Table 5.5. Processing times for different probability of intersection
N = 10, M = 10.000, coefficients of O(1) : nk=10, nq=50

0
0,5

1
1,5

2
2,5

3
3,5

0 10 20 30 40 50 60 70 80 90 100
Pr

tim
e

[s
]

CB
Preproc
O(1)
O(1)+Prep

Fig. 5.3. Processing times for different probability of intersection

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

6. Principle of the proposed algorithm in E3
 In the Table 2.1 you can see, fundamental relation between geometric primitives. If
we look at row „E3“, we cannot simplify our problem with using duality. In E3 is dual
representation of Euclidean line again the line. It is main reason for simplification. As we can
see in the Table 2.1 in row „E2“ dual representation of Euclidean line is the point. With this
simplification we can use Point-in-Polygon test algorithm in dual representations of polygon
and lines. This algorithm is known with algorithm complexity O(1).
 Let us assume that a convex polyhedron P is defined by triangular facets (generally it
is not necessary). The triangular facets were used for simplification of problems with polygon
construction and description.
 Let us assume that the given polyhedron P E∈ 3 is projected to the three orthogonal
E2 planes, see Fig.6.1 (only one projection is shown; only the front facets are shown). The
planes are defined as xy, xz and yz where x,y,z are axes. If we use semidual space (see
chapter 2) we have six E2 representation of given polyhedron. This representations are:

 xy xz yz
k,q 1 3 5
m,p 2 4 6

Table 6.1.

The table show six planes with its numbers. On this number we will reference in
algorithm 6.1.

Fig. 6.1. Semidual representation of convex polyhedron

 Let us assume the semidual representation for [k,q] values. Then the semidual space
can be split into small rectangles using space subdivision technique. Each rectangle in
semidual space represents an infinite „butterfly“ zone in E 2 space. There are six Active

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

Facets Lists (AFL) of facets associated with each „butterfly“ zone. The AFL contain
information on all facets that interfere with the zone. The AFL can be represented as a list of
pointers but such an implementation would be quite memory consuming as its length can be
estimated as (N).
 It is necessary to point out that we must prepare both (k,q) and (m,p) semidual
representations for all three planes ρ i i+ =, , ,1 2 3 . It means that we need six semidual
representations altogether. For each clipped line r we must select two planes ρ i1

 and ρ i2
 and

appropriate semidual representations, i.e. (k,q) or (m,p), for each selected plane. The proposed
algorithm is described by Alg.6.1.
 We must select two planes ρ i1

 and ρ i2
, i i1 2≠ for the given line r E∈ 3 . The

criterion for selecting two planes we can derive from singular case. In some cases the line can
be parallel or „almost parallel“ with some axis. In these cases the line projection to the one of
the three planes is wrong conditioned or does not exist. If our line has smallest angle with
x axis, we select xy and xz projection planes.

O(1) clipping algorithm:
 global constants: a - size of boundary rhomb box for the given polyhedron P,
 nq - number of subdivision for q axis in semidual space representation,
 nk - number of subdivision for k axis in semidual space representation,
 kr,qr - topical arguments value of given line r -

 for all spaces assume nq = np , nk = nm, according to context.

c := 1;
for i := i1, i2 do (* plane index i ∈ {1,2,3} *)
begin
 if |kr | ≥ 1 then j := 2*i - 1 else j := 2*i; (* j is index of the AFL - see Table 3.1 *)
 ii := 2*a / nq*qr; jj := 2 / nk*kr; (* index zone determination *)
 Ωc := AFLj[ii,jj]; c:= c+1;
end;
Ω := Ω1 ∩ Ω2;
for i := 1 to N do (* N - number of selected polyhedron facets *)
 if Ω[i] = 1 then (* i-th bit of AFL *)
 Detail E3 Test (faceti, r); (* computation is done usually for 4 - 6 facets only *)
--

Algorithm 6.1.

 The condition Ω[i] = 1 is true for 4-6 facets only. It is obvious that the algorithm
complexity does not depend on the number of polyhedron facets but on the length of the final
set Ω. Function Detail E3 Test is based on the CB algorithm3 that is performed only for facets
that are included in the final set Ω. If the rectangles are small enough then 4 - 6 facets can be
expected in the final set Ω nearly for all cases.
 Because all steps in Alg.6.1 have O()1 complexity the whole algorithm has
O()1 complexity, too. It is necessary to point out that number of members in AFL depends on
subdivision in (k,q), resp. (m,p) spaces and also on geometric shape of the given polyhedron,

3 This test is practise for original polyhedron in E3

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

see [Ska94c]. For more efficient algorithm of the last loop evaluation from Alg.6.1. see
[Ska93].
 E.g.: For polygon with 2112 facets and subdivision nk=nq=nm=np=15 is average
number of interfering facets about 290 (5000 lines tested). This number was counted
before „∩“ operation. The number of interfering facets is about 5 for final set Ω (after
„∩“ operation).
 Because of that it is more convenient to use binary maps [Ska93]. This technique is
based on a binary vector in which the i-th bit is set to „1“ if the i-th object is in the AFL.
Using this technique the memory requirements are small and the intersection operation is
implemented as the bit-wise operation and, that is very fast in comparison with detail E3 test.

7. Construction of AFL
 An algorithm for setting the AFL directly is quite complicated. A simple solution how
to set up the AFLs for all zones in (k,q) semidual space is described by Alg.7.1.

Construction of AFL algorithm:

 for k:=1 to N do (* N is number of polyhedron facets *)
 if facetk interferes with the zone4 (i,j) defined by corners (i,j) and (i+1,j+1)
 then add facetk into the AFL1[i,j]; (* i,j are indexes in dual space *)
--

Algorithm 7.1

 This algorithm is computed six times - for xy, xz and yz projections and every for both
semidual representations - we compute AFL1..AFL6, see Table 6.1.

8. Theoretical considerations of O(1) algorithm in E3
 The proposed algorithm has been tested and compared with the CB algorithm as the
CB algorithm is very stable and its behaviour does not depend on geometric properties of the
given polyhedron and on clipped lines. Since the proposed algorithm is supposed to be
superior over other modifications of CB algorithm it is necessary to make theoretical
estimation of its efficiency. It is necessary to point out that algorithm efficiency can differ
from computer to computer. For 5.107 operations (:= , < , ± , * , /) we get the following
timing (33 , 50 , 16 , 20 ,114).
 Let us assume that N is number of facets of given polyhedron. For algorithm
efficiency considerations we will consider:

 - CB algorithm complexity, see [Ska93], can be described as

T NCB = (, , , ,) *9 3 6 6 1
 that is for considered timing

T NCB = 777*

- proposed algorithm with O()1 complexity is defined as
T TO CB() (, , , ,) ()1 18 3 8 8 4 2= +

 and using considered timing

4 The „butterfly“ zone and its semidual representations - figure 6.1

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

TO()1 1488 1554 3042= + =
The part „TCB(2)“ is uses of CB algorithm for determining points of intersection.
Let us introduce theoretical algorithm efficiency coefficients as:

ν 1
1

1
1

0 26T
CB

O

T
T

()
()

.
()

= = ν 2
1

25
25

6 39T
CB

O

T
T

()
()

.
()

= =

 This value is approximate. We count with number of processing lines but some parts
are computed only for intersecting or nonintersecting lines. Direction and position are
important too. We reason theoretical number of facets in final set W about 5 (see alg. 3.1), but
in theoretical consideration we reason the best possibility - only two facets in final set W.

9. Experimental results of O(1) algorithm in E3
 Five types of O(1) algorithm tests were made . Some interesting results and graphs are
included in text.

Test 1
 The first test is determining the speed of the algorithm with a various number of the
polygon facets in dependence on subdivision of dual space. In table and in some graphs there
adequate results of CB algorithm are presented . For even type of subdivision of dual space
three graphs are presented. Preprocessing graph, processing graph and sum of preprocessing
and processing consuming time graph. Very interesting is the third graph. This graph shows
an optimal subdivision of the dual space. The shown optimum is relative. It is optimum for
sum of preprocessing and processing time, but in some applications we want to minimize the
time of processing. For this application type, the presented optimum is improper.
 Tables and graphs are included in appendix. The tests are computed for nk=nq, nk=2,
nk=5, nq=5 and nq=10.
 Here are presented two graphs. Fig 9.1 show summary results for polyhedron
consisting of 2112 facets. Fig 9.2 show 3D image of processing time consuming.

Time consuming for 2112 facets

0

20

40

60

80

100

1 2 3 4 5 10 15
Space subdivision k, (q=5)

Ti
m

e
co

ns
um

in
g

[s
ec

]

q=5, Preprocessing
q=5, Processing
q=5, Sum...

Fig. 9.1.

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

k - 1 2 3 4 5 10 15

1 - q
2

3
4

5
10

15

0
20
40
60
80

100
120
140
160
180

Ti
m

e
co

ns
um

in
g

[s
ec

]

Time consuming of processing for 2112 facets

160-180
140-160
120-140
100-120
80-100
60-80
40-60
20-40
0-20

Fig. 9.2.

Test 2
 Results of the second algorithm test shows dependence of speed on number of lines. It

is important that comparation graphs (Fig. 9.3) show ratio ν1 =
T
T

CB

O(1)

 of algorithms. The ratio

increases which means that algorithm O(1) is faster. Because this graph is fundamental, its
copy is presented here (and in appendix too - part Test 2). Horizontal axis shows number of

facets, vertical axis is logarithm of relation ν1 =
T
T

CB

O(1)

.

 In graph we can see - if number of facets is greater than 24 (1000 lines are processed)
- than O(1) algorithm have positive effect is faster than CB algorithm. For number of facets
equal to 24 is ν 1 1E = (E = experimental). This number is fundamental for determining
effectivity of O(1) algorithm. In graph we can see, that the effectivity is not linear. We can
assume, that maximal ofν 1 value is about 4:

ν 1
1

4E
CB

O

T
T

= =
()

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

Com pa ra tion's gra ph
O(1) a nd CB a lgorithm s

0,1

1

10

100

12 24 40 84 144 312 544 1012
Num be r of face ts

Ti
m

e
co

ns
um

in
g

[s
ec

]

1000 O(1)
1000 CB
Poměr 1000

Fig. 6.3.

Test 3
 The third test verified length of AFLs in dependence on subdivision of dual space. It
was computed for various number of facets. The graphs (Fig. 9.4) present different influence
of subdivision k and subdivision q on the length of AFL. The 3D graph shows it significantly.

1 2 3 4 5 10 15

1
2

3

4

5

10

15

-50

200

450

700

950

1200

1450

1700

1950

2200

N
um

be
r o

f f
ac

et
s

Subdivision q

Subdivision k

Number of facets in AFL 1950-2200

1700-1950

1450-1700

1200-1450

950-1200

700-950

450-700

200-450

-50-200

Fig. 6.4.

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

Test 4
 The fourth test shows dependence of algorithm speed on number of intersecting and
nonintersecting lines, see Fig. 9.5.

Time consuming dependence on the number
of intersecting and nonintersecting lines

0

20

40

60

80

100

12 24 40 84 144 312 544 1012 2112Number of facets

Ti
m

e
co

ns
um

in
g

O(1)
Preprocessing
O(1) Processing,
k=2, q=5 0%
O(1) Processing,
k=2, q=5 25%
O(1) Processing,
k=2, q=5 50%
O(1) Processing,
k=2, q=5 75%
O(1) Processing,
k=2, q=5 100%
Cyrus-Beck

Fig. 6.5.

Test 5
 The last test is only different expression of „Test 1“. Fig. 9.6 show time consuming
dependence on the number of facets. (4-4, 5-5 etc. are values of subdivision k-q)

Time consuming preprocessing and processing sum
dependence on the number of facets

0

30

60

90

120

12 24 40 84 144 312 544 1012 2112
Numberof facets

Ti
m

e
co

ns
um

in
g

[s
ec

]

4-4

5-5

10-10

15-15

CB

Fig. 6.6.

10. Conclusion
 The new algorithm for line clipping by convex polygon in E2 and/or polyhedron in E3
was tested. Algorithms were compared to Cyrus-Beck line clipping algorithm. The algorithms
are superior than the CB algorithm. The proposed algorithms are convenient for those
applications where clipping area is stable and many lines are clipped. The algorithms claims
the expected processing complexity O()1 .

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

 The presented approach can be applied in many areas of computer graphics and there
is a hope that it can be used to find new trends for trading space and speed.
 All tests were implemented in C++ on PC 486 / 50 MHz.
 All tests are stored in the appendix. Appendix is available on URL:
http://herakles.zcu.cz or by e-mail.

11. Acknowledgements
 Authors would like to express their thanks to Miss I. Kolingerová and to the students
of Computer Graphics courses at the University of West Bohemia in Plzeò for their
suggestions and critical comments that stimulated this project .

12. References
[Kol94] Kolingerová,I.: Dual Representation and its Usage in Computer Graphics, PhD

Thesis (in Czech), Univ. of West Bohemia, Plzeò, 1994.
[Nie95] Nielsen,H.P.: Line Clipping Using Semi-Homogeneous Coordinates, Computer

Graphics Forum, Vol.14, No.1, pp.3-16, 1995.
[Ska93] Skala,V.: An Efficient Algorithm for Line Clipping by Convex Polygon, Computers

& Graphics, Vol.17, No.4, Pergamon Press, pp.417-421, 1993.
[Ska94a] Skala,V.: O(lg N) Line Clipping Algorithm in E2, Computers & Graphics, Vol.18,

No.4, Pergamon Press, pp.517-524, 1994.
[Ska94b] Skala,V.: An Algorithm for Line Clipping by Convex Polyhedron in E3 with

O N() Complexity, TR 67/94, Univ. of West Bohemia, Plzeò, 1994.
[Ska94c] Skala,V.: Point-in-Polygon with O(1) Complexity, TR 68/94, Univ. of West

Bohemia, Plzeò, 1994.
[Ska95a] Skala,V.: An Efficient Algorithm for Line Clipping by Convex and Non-Convex

Polyhedrons in E3, Computer Graphics Forum, Vol.15, No.1, pp. 61-68, 1996.
[Ska95b] Skala,V.: Line Clipping in E2 with Suboptimal Complexity O(1), accepted for

publication in Computers & Graphics, Vol.20, No.4, 1996.
[Sto89] Stolfi,J.: Primitives for Computational Geometry, Report 36, SRC DEC System

Research Center, 1989.
[Zac95] Zachariáš, S.: Duality and Complexity (in Czech), TR 81/95, Univ. of West Bohemia,

Plzeò, 1995.
[Zac96] Zachariáš, S.: Projection in Barycentric Coordinates, The Fourth International

Conference in Central Europe on Computer Graphics and Visualization ‘96,
University of West Bohemia, 1996.

SCCG96 Conference proceedings, Comenius Univ.Bratislava, Slovak Republic, pp.27-44, 1996.

