Preprint No.64, Univ. of West Bohemia, Plzen, 1994.

ZAPADOCESKA UNIVERZITA
Americka 42, 306 14 Plzen

AN EFFICIENT ALGORITHM FOR LINE
CLIPPING BY CONVEX AND
3
NON-CONVEX POLYHEDRONS IN E

Vaclav Skala

Preprinty vedeckych praci
Preprint-C. 64 -

1994

Preprint No.64, Univ. of West Bohemia, Plzen, 1994.

An Efficient Algorithm for Line Clipping
by Convex and Non-convex Polyhedrons in E3

Vaclav Skala _
Department of Informatics and Computer Science
University of West Bohemia
Americka 42, Box 314, 306 14 Plzeii
Czech Republic
e-mail: skala@kiv. zcu. cz
Abstract

A new algorithm for clipping lines against convex polyhedron
with O(N) complexity is given with modification for non-convex
polyhedron. The suggested algorithm is faster for higher number
of facets of the given polyhedron than the traditional
Cyrus-Beck’'s algorithm. Some principal results of comparisons of
all algorithms are shown and give some imagination how the
proposed algorithm could be used effectively.

Keywords: Line Clipping, Convex Polyhedron, Non - Convex
Polyhedron, Computer Graphics, Algorithm Complexity,
Geometric Algorithms, Algorithms Analysis.

1. Introduction

A problem of line clipping against convex polyhedron in E3

can be solved by Cyrus-Beck’'s algorithm (CB) [1] for three
dimensional case. Many algorithms for line clipping in E2 have
been published so far with O(N) or O(lg N) complexities, see
[3], [4] for all known references and comparison of algorithms.
Nevertheless algorithms for E3 case are mostly based on the CB
algorithm and restricted to convex polyhedrons, or based on
direct intersection computation of a facet (usually a triangular
facet) of the given convex or non-convex polyhedrons and the
given line p. Many algorithms for line clipping are restricted
to orthogonal or pyramidal volumes, see [2]. Because the 1line
clipping problem solution is a bottleneck of many packages and
applications it would be desirable to use the fastest algorithm
even it is of complexity O(N).

Line Clipping by Convex and Non-convex Polyhedrons in E3 -1-

Preprint No.64, Univ. of West Bohemia, Plzen, 1994.

P
Xa
s
P
s
Line clipping by convex and non-convex polyhedrons in E
Figure 1

o R

procedure Clip_3D_Cyrus_Beck (%, ., Xp)i

begin { !! all vectors n, precomputed !! algorithm shortened }
tmin := 0.0; tmax += 1.0; S 1= Xp ~ Xpi
{ for a line jnitialization: thin ‘T —0; T 1T 0 }
i:=1;
while i <= N do { N is a number of facets }

begin { n, is a normal vector of the i-th facet }
{ and n, must point out of the convex polyhedron }

T
£ := 8 n,; 84 = x; - Xpi

if £ <> 0.0 then

begin t := sz n, / &;
if £ > 0.0 then tmax :=min (t , tmax)
else t . := max (t , toin
end

else { line is parallel to the i—-th facet }

Special case solution;

end;

Line Cclipping by Convex and Non-convex Polyhedrons in E3 -2-

Preprint No.64, Univ. of West Bohemia, Plzen, 1994.
if tmin > tmax then { the line doesn’t intersect the polyhedron }

EXIT; { !! <t _._,t > =0 }

{ recompute end-points of the line segment if changed }

{ for lines points X, , Xp must be recomputed always }
ir tmax < 1.0 then Xg 1T X, + s tmax;
if tmin > 0.0 then Xp 1T X, +8 tmin;

SHOW_LINE(x, , X5);
end { Clip_3D_Cyrus_Beck };

Algorithm 1

The main disadvantage of the CB algorithm is direct 1line
intersection computation for all planes which form the boundary
of the given convex polyhedron. It means that N-2 of
intersection computations are wasted, if N is a number of facets
of the given convex polyhedron.

The main advantages of the CB algorithm are its stability
and that facets that forms the polyhedron surface might be
generally polygons and.

The efficiency of the CB algorithm is given by a simple
algorithm for direct intersection computation of a line with a
plane, see alg.l. It is obvious that with growing number of
facets of the given' polyhedron the efficiency decreases as many
invalid intersection points are computed. '

Any facet of a surface of any convex polyhedron can be
imagined as a non-linear transformation

x=x(p, q) PE€<P,,Pg> & qge<qy, qz°>

from E2 (parametric space) to E3.

It can be seen that number of facets grows with square of u
and v interval partitioning (if we consider a grid of 20 x 20
triangles in (p,q) space we will obtain a polyhedron with 760
non-degenerated facets as a sphere approximation!).

Let us consider only triangular facets of the given
polyhedron for the following (generally it is not necessary).
For the given line p (the line p varies and polyhedron is more
or less stable!) it is necessary to find an effective test
whether the line p intersects the given triangle, see fig.2.

Line Clipping by Convex and Non-convex Polyhedrons in E3 -3-

Preprint No.64, Univ. of West Bohemia, Plzen, 1994.

Xy

8 P

Xa
Xo

Line p intersects the triangular facet
Figure 2

The intersection points for convex and non—convex
polyhedrons can be directly computed as a solution of parametric

equations
x(t) =x, +st te (-0, o) (a)
x(p,q) = x5 + S,p + 5,9 (8)

P,qe<0, 1> & p+qs=s1
e.g. in the matrix form

where o is an equation for a given line,
B is an equation for a given triangular facet, see fig. 3.

Unfortunately a test which rejects all lines not intersecting
a triangular facet is nearly as complex as the direct
computation of the intersection point between the extended facet
and the 1line, wused in the CB algorithm. 1In order to
substantially speed up 1line clipping in E3, we will instead
develop a simple test, which on the other hand only rejects some
of the lines not intersecting the facet.

2. Proposed algorithm

A 1ine p <can be defined as an intersection of two
non-parallel planes Pq and Py- It can be seen that if the line p
intersects the given triangle then planes Py and Py intersect
the given triangle, too, but not vice versa (planes P and p4),
see fig. 4.

Line Clipping by Convex and Non-convex Polyhedrons in E3 -4-

Preprint No.64, Univ. of West Bohemia, Plzen, 1994.

w N
[N
—

-

P1)

2

Pz P4

Usage of two planes for line definition

It is possible to test all triangles (facets) of the given
polyhedron against Pq and Py planes. If both planes Py and Py
intersect the given triangle (facet) then compute detailed
intersection test, see alg.2. The intersection of the given
plane P; and the triangle exists if and only if two vertices Xa
and X of the triangle exist so that

sign(F,;(x,)) #* sign(F,(xg5))

where Fi(x) =a; x + bi Yy +c;z+ di

is a separation function for the i-th plane Py i=1,2

and Fi(x) =0

is an equation for the i-th plane P;+ i=1, 2.

Unfortunately there is some principal inefficiency in this
implementation of the proposed solution as the separation
function Fl(x), resp. Fz(x) are computed many times than needed
because every vertex is shared by at least three triangles.

Therefore it seems to be convenient if the values
sign(Fl(ixk)) are precomputed (ixk is the k-th vertex of the
i-th facet) and stored in a separate vector, see alg.3. It means
that the proposed solution might significantly improve the
efficiency, especially for higher N.

Line Clipping by Convex and Non-convex Polyhedrons in E3 -5-

procedure CLIP_3D (xAPre,prirjkﬁo.G},;Univ. of West Bohemia, Plzen, 1994.

begin
tmin := 0; tmax = 1; S 1= X~ X,;
{ for a line segment thin (= "® thaxg = © }
{ Pyt ayX + cyz + d, =0 Py b,y + c,2 + 4, = o}
i:=1; j := 0;
while (i <= N) do
begin

{ 1xk means a k-th vertex of the i-th triangle }
. X i s i
if s1gn(F1(xo)) = 51gn(F1(xl)) then
if sign(Fl(lxo)) = sign(Fl(lxz)) then goto 1;
{ do nothing - Pq does not intersect the i-th triangle }
if sign(FZ(lxo)) = sign(Fz(lxl)) then
. . i s i
if sign(F,("x4)) = sign(F,("x,))
{ do nothing - Py does not intersect the i-th triangle }

then goto 1;
{ both planes Py 1 Py intersect the i-th triangle }
{ detailed test SOLVE finds a value t }

if SOLVE (x s , i, tj+1) then j := j + 1;

A 7
{ otherwise tj+1 will be rewritten }
1: i:=1i+1;
end { while };
if j = 0 then EXIT; {no one triangle intersected by the line }
if t

> t, then SWAP (tl,tz); { swaps values ty <=> t2 }

);

if tmin = tmax then SHOW_LINE(x(tmin),x(tmax));

1 2

t . = max(tmin,tl); t := min(t

t
min max max’ 2

end { CLIP_3D };
Algorithm 2

Because a line can intersect the convex polyhedron only in
two points it is possible to extend the condition in the while
statement, see alg.2, by condition and (j < 2). It can be seen
that the detailed test (SOLVE procedure that uses parametric

equations) is invoked only on a relatively few facets.

Line Clipping by Convex and Non-convex Polyhedrons in E3 -6—

procedure CLIP_3D_MOQm&mﬁR64U%BﬁW®HMMmaPumngw.
begin

tmin := 0; tmax = 1; i:=1; j:=0

{ for a 1line tmin = -0 ; tmax =0 ; }

{ P ¢ ayx + c,z + d1 =0 Py b2y + c,z + d,
for k := 1 to Nv do { N& number of vertices }

=0}

Qk 1= sign(Fl(xk)); { Qk is a vector of int or char types }

while (i <= N) and (j < 2) do
begin
{ ixk means a k-th vertex of the i-th triangle }
{ INDEX(i, k) gives the index of k-th vertex }
}

. . . i _
{ of the i-th triangle, i.e. X, = xINDEX(i,k)

1T OINDEX(i,0) = OINDEX(i,1) then

1t OrNpEX(i,0) = QINDEX(i,2) then goto 1;

{ do nothing Py does not intersect the i-th triangle }

if Sign(FZ(xINDEX(i,O))) = Sign(FZ(xINDEX(i,l))) then

A sign(Fy (Xpyppy (i, 0y)) = sign(F) (Xinppx (s, 2)))

then goto 1; { P, does not intersect the triangle }

{ both planes Py Py intersect the i-th triangle }
{ detailed test SOLVE finds a value t }

if SOLVE (x, , s , i ’ tj+1) then j := j + 1;
{ otherwise tj+1 will be rewritten }
1: i :=1i + 1;
end;

if j = 0 then EXIT; { no intersection }
if t1 > t2 then SWAP (tl,tz);

t .. = max(tmin,tl); t := min(t

min max max’tz)’

if tmin < tmax then SHOW_LINE(x(tmin),x(t));

max
end { of CLIP_3D_MOD };

Algorithm 3

Line Clipping by Convex and Non-convex Polyhedrons in E3

e

Planes p, and p, can PBEM QKN §4VePEPYIN &P 8" any selected two
coordinate axes, see fig.4. If those planes Pq and p, are
observed from the line p they are orthogonal. In that case the
functions Fi(x) can be simplified so that

Fl(x) a;x + ¢,z +d for plane P

1
Fz(x) = bzy + cyz + d2 for plane Py

because planes Py and p, are selected as parallel to the y-axis
and x-axis of the coordinate system. It can be seen that we get
a singular case if the given line is parallel to the x-axis or
y—-axis. Therefore we should find a criterion how to select

planes Py and Py and how to avoid such a singular cases, see
fig. 4.

Plane parallel to x axis Plane parallel to y axis
() (b)

Plane parallel to z axis
©

Definition of "diagonal planes"
Figure 4

Line Clipping by Convex and Non-convex Polyhedrons in E3 -8-

Let us suppose that e, Gan geveradly.seieow.

Py, see alg.4, from "diagonal planes" pi, pé, pé which are
defined as

’ T _ T
Pt My X + d1 = 0 , where n, =sx e, e, = [1, 0, 0]
pl: nT x+d, =0 where n, = s x e e =[0 1 0]]T

2° 2 2 ! 2 Yy ' 7y ! !

' T T
pP3: Ny x + d3 = 0 , where n; = s x e, . e, = [o, 0, 1]
Planes Py and P, are selected so that

Py 1 Pg G{pi,p’z,pg}
ii := index of maximal value { lsxl ’ Isyl ’ lszl };
case of
. . _ = - T .
1: begin n, =sx eY ; d1 i= x] Xp i
= = - nTl . : p
n, =sx e, ; d2 = n, X,; { see flg.gua }
end;
. = = - nT .
2: begin n;, =sx e, ; d1 = ny Xy
_ - _ T . .
ng=sxe ; 4, := n, x,; { see fig.4b }
end;
- < — ——T .
3: begin n1 = 8 X ex ; d1 = n1 xA,
= . = - nT . :
n, =sx e, i 4y := n, x,; { see fig.fac }
end;
end;
Algorithm 4
It can be seen that for case ii = 1 we are getting
_ - T _ _ T
np=l-s,,0,s 1 ' n,=[s,, -s_, 0]
and then
= nl -
Fl(x) = n X, + d1 = a;x + c,z + d1 ;€ * 0
= Tl -
Fz(x) = Ny x, + d2 = a,x + bzy + d1 , b2 # 0
For ii = 2
_ _ T _ _ T
nl—[sl sx/o] ’ nz_[o’sz’ SY]
and then
- T =
Fl(x) = njx, + d1 = a;x + bly + d1 ;o 0
= T -
Fz(x) = np x, + d2 = b2y + coz + d1 » €5 * 0

Line Clipping by Convex and Non-convex Polyhedrons in E3

two planes P and

-9-

similarly for ii = 3 Preprint No.64, Univ. of West Bohemia, Plzen, 1994.

=00, s, ., -5,1 . n,=[-s,, 0, s,]
= nl =

Fl(x) = n; X, +d; =byy+ ¢,z + d » by %0
= nT =

Fz(x) = N, X, +d, = ax + c,z + d; ; a, * 0

Further simplification of Fi(x) functions is possible because
for case ii =1

1 * 0 and b2 # 0

Therefore we can introduce modified separation functions Fi(x) ,

i=1 2 as

(o]

Fl(x) Fl(x) / c; = aix + zZ + di

Fé(x) Fz(x) / b2 = aéx +y + dé

and similarly for other cases.

This modification speeds up the proposed algorithm as two
additions and four multiplications are saved for each facet.
Precomputations of Fi(x) functions are made for each clipped
line only. That is convenient as the number of tested facets of
the given polyhedron is expected to be high (for a sphere
approximation might reach 104).

3. Theoretical analysis

For considering efficiency of any algorithm we have to take
into account at least floating point operations and their
timing, see tab.l. Before making any comparisons it is necessary
to point out that time needed for each operation

(:=, <, £, x, /) does differ from computer to computer.
operation " = < t * /
float 33 50 16 20 114
int 5 9 3 26 44

Time is in 1/10 sec for 105 operations for PC 486/33 MHz
Table 3

Line Clipping by Convex and Non-convex Polyhedrons in E3 -10-

Let us denote N HUNBXICEVeFEEEtLP?Ff%the given convex
polyhedron. Then it is possible to express the time complexity

TCB of the CB algorithm, see alg.1l, as

TCB =(6, 3, 4, 9, 1) N
and computational time can be estimated using tab.1l as

TCB = 706 * N

The time complexity T0 of the algorithm that directly
computes the intersection point of the given 1line p with

a triangle using parametric equations can be estimated as
T0 ={(5.5, 2.5, 18, 15, 1.5) » N
and using tab.1l we obtain computational time
To = 1065.5 * N
It means that this algorithm will be slower than CB algorithm.
The time complexity T of the proposed algorithm can be
estimated: '

- for the worst case as
T=(2, 3.5, 12, 12, 0) = N
— for an average case as
T=(2, 2, 6, 6, 0) %N
Using tab.1 we can evaluate the expression for T as

T
T

673 * N : for the worst case
382 x N for an average case

n

Let us introduce coefficients of efficiency as
T T

T T
where TCB , To , T are execution times needed by the CB

algorithm, algorithm that uses parametric equations and
the proposed algorithm (CLIP_3D_MOD).

Now it is possible to estimate the asymptotic behavior of the
proposed algorithm based on theoretical complexity estimations:

- for the worst case as

T 706 * N
v, = CB _ - 1.04

T 673 * N

Line Clipping by Convex and Non-convex Polyhedrons in E3 -11-

- for an average Casérea’gt No.64, Univ. of West Bohemia, Plzen, 1994.

T 706 * N
v, = CB _ - 1.85

T 382 *x N

The obtained theoretical estimations and comparisons show that
the proposed algorithm should be faster to the CB algorithm
significantly.

4. Experimental results

The proposed algorithm has been tested against Cyrus-Beck’s
algorithm and algorithm that uses parametric equations. Data
sets of two points that define a 1line have been randomly and
uniformly generated inside a sphere in order to eliminate an
influence of rotation. More than 104 randomly generated lines
were used. Convex polyhedrons were generated as N-sided convex
polyhedrons that consist of triangles and were inscribed into
a smaller sphere.

Results obtained from experiments are shown in tab.2 and
tab.3 for two fundamental cases when any line does not intersect
the given polyhedron (0%) and when all lines intersect (100%)
the given polyhedron. In general case the efficiency depends
approximately linearly on the percentage of lines that intersect
the given polyhedron. All tests were made on PC 486/33 MHz.

N " 8 48 224 960

0% 1.01 0.92 1.18 1.22

100% 0.5 0.79 1.08 1.61
Efficiency coefficients vy if condition j < 2 was not used
Table 2
N " 8 48 224 960

0% 1.41 2.08 2.13 2.23

100% 1.07 1.58 1.90 2.15
Efficiency coefficients v, condition j < 2 was not used
Table 3

Line Clipping by Convex and Non-convex Polyhedrons in E3 -12-

The efficiency of the rprapesed..3lg@eEiihps2gainst CB algorithm
for N = 224 is

vy € < 1.08 , 1.66 > (condition j <2 was not used),

vy € < 1.64 , 2.49 > (condition j <2 was used)

and the efficiency of the proposed algorithm against direct
intersection computation

v, € < 1.9, 2.23 > (condition j < 2 was not used),

v, € < 1.5, 2.9> (condition j <2 was used)

It means that the proposed algorithm for N = 224 was always
faster than the CB algorithm.

In the course of the algorithm experimental evaluation was
found that the proposed algorithm is sensitive to implementation
of the sign(x) function. We actually need just determine if
% =2 0. In that case it is possible just to test a sign bit of
the float point representation of value X.

The proposed algorithm can be generalized for
a non-triangular facets by replacing procedure SOLVE by a more
general procedure or by using a similar approach as the CB
algorithm does, e.g. use the CB algorithm just for all facets
that were intersected by both planes p, and Py In case that
normal vectors of all facets can be precomputed we can obtain an
additional speed up of the proposed algorithm 1if convex
polyhedron is considered and all facets are oriented.

Tab.4 shows the final experimental results if sign(x)
function and all sign comparisons were implemented carefully and
the SOLVE procedure was implemented as a modification of the CB
algorithm for the case when normal vectors for all facets were
precomputed, see alg.>5.

N 10 20 100 200 500
0% 1.28 2.08 2.69 2.89 3.17
100% 0.3 0.57 1.57 2.06 2.67

Efficiency coefficients v, if condition j < 2 was not used
Table 4

Line Clipping by Convex and Non-convex Polyhedrons in B -13-

procedure CLIP_3D_EFF Prepr'ﬁtANo.fm, wﬁ/ oj\fVest Bohemia, Plzen, 1994.

begin { for a line tmin 1= -0 ; tmax =0 ; }
tosn i= 0 toe = i i:=1; j:=0
{ P1 ¢ 3,X + cyz + d1 =0 Py b2y + coz + d2 =0 }
for k := 1 to N& do { NV number of vertices }

Qk 1= sign(Fl(xk)); { 0, is a vector of int or char types }

while (i <= N) and (j < 2) do

begin { ixk means a k-th vertex of the i-th triangle }
{ INDEX(i,k) gives the index of k-th vertex }
{ of the i-th triangle, i.e. i }

1 —
Xk = X*INDEX(i,k)
if 0 |

INDEX(i,0) ~ QINDEX(i,1) then

if QINDEX(i,O) = QINDEX(i,Z) then goto 1;
{ do nothing Py does not intersect the i-th triangle }
if 51gn(F2(xINDEX(i,0))) = Slgn(FZ(xINDEX(i,l))) then

it sign(F,(xyyppy(i,0))) = Si9n(Fy(Xnppy (i, 2)))

then goto 1; { Py does not intersect the triangle }
{ both planes Py 1 Py intersect the i-th triangle }
{ one step of the CB algorithm }

{ ni is a normal vector of the i-th facet }
{ and n; must point out of the convex polyhedron }
T

£ :=8 n,; Sy =Xy - Xpi
if £ <> 0.0 then
: - T .
begin t := sy n, / &;
if £ > 0.0 then toax = min (t, toax)
else tmin :=max (t , tmin)

end

else Special case; { line is parallel to the i-th facet }

{ —mmmme e }
1 i=1i+ 1;

end;

if thin = thax then SHOW_LINE(x(tmin),x(tmax));

end { of CLIP_3D_MOD };

Algorithm 5

Line Clipping by Convex and Non-convex Polyhedrons in E3 -14-

e . Preprit No.64, Uniy_ of \West Bohemia, Plzeri, 1994.
5. Modification for Non-Convex of&he rons

It can be seen that the proposed algorithm can be used for
clipping lines against non-convex polyhedrons, too. For this
case only the condition j < 2 must be removed from the while
statement in the suggested algorithm, see alg.3., and the lines
marked by (%) must be replaced by a sequence, see alg.4. Of

course, it 1is necessary to sort all values tj . Intervals
< t

of the given non-convex polyhedron.

2j-1 t2j > define parts of the given line which lies inside

SORT_ALL_VALUES ({ t; });
for k := 1 to j/2 do

if « t2k-1 ' t2k

SHOW_LINE(x(tZk_l),x(tZk));

>N <0, 1>=*0 then

Non-convex case modification for alg. 3.
Algorithm 4

If line clipping is considered instead of line segment then
the part n<o0, 1> in if statement has to be left out.

The complexity of the proposed modified algorithm in this
case will be

O(N) + Oo(k 1lg k)

where k is a number of intersections of the given line and the
given polyhedron (for situation on Fig.1l.b is k = 4),
N is a number of triangles (facets).

In experimental algorithm verification non-convex polyhedrons
were generated by a special 3D graphics editor which enabled to
prepare dquite complex objects. In the case of non-convex
polyhedron direct solution of parametric equations were only

used and the efficiency coefficient v, is always higher than one

2
for all N. All experiments showed that

v, € < 1.07 , 2.15 >

2

Line Clipping by Convex and Non-convex Polyhedrons in E3 -15-

. i iv. i i 4.
6. Conclusion Preprint No.64, Univ. of West Bohemia, Plzen, 199

The new efficient algorithm of O(N) complexity for clipping
lines against convex polyhedron was developed with modification
for non-convex polyhedron case, too. The proposed algorithm does
not strictly require triangular facets and can be easily
modified for non-triangular facets using a different SOLVE
procedure for general polygonal facets. The given facets should
be oriented. All tests were implemented in C++ on PC 486/33 MHz.

7. Acknowledgments

The author would like to express his thanks to students of
Computer Graphics courses at the University of West Bohemia in
Plzen and Charles’s University in Prague for their suggesfions
and critical comments that stimulated this project, especially
to P.Sebranek and J.Jirak for verifications of all tests and
implementation of the proposed algorithm, to P.Bldha for making
the 3D graphics editor for preparing polyhedrons.

8. References

[1] Cyrus,M.,Beck,J.: Generalized Two and Three Dimensional
Clipping, Computers & Graphics, Vol.3, No.1l, pp.23-28,
1979.

[2] Foley,D.J., van Dam,A., Feiner,S.K., Huges,J.F.: Computer
Graphics - Principles and Practice, Addison Wesley,
2nd ed., 1990.

[3] Skala,V.: An Efficient Algorithm for Line Clipping by Convex
Polygon, Computers & Graphics, No.4, Vol.17. pp.417-421,
1993.

[4] Skala,V.: O(lg N) Line Clipping Algorithm in Ez, accepted
for publication, Computers & Graphics, Pergamon Press,
No.4, Vol.18, 1994.

Line Clipping by Convex and Non-convex Polyhedrons in E3 -16~-

