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Abstract. The ray tracing technique is very often used for image synthesis because it gives the
possibility to render specular objects. Many techniques have been developed for ray tracing acceleration,
more or less sofisticated which, are generally speaking, not easy to implement. A simple method how to
speed up the primary and secondary ray tracing has been developed. The suggested method based on
space subdivision method (not necessarily uniform) is convenient for scenes that consist of many small
objects, resp. facets (for experiments only triangles have been used).

Key words: ray tracing, acceleration, data structure, rendering, computer graphics, algorithm
complexity

1. Introduction

It is well known that ray tracing is the only one method which is capable of rendering
specular effects like reflection through an object and refraction, even some other methods
do integrate some features of ray tracing in order to handle these effects.

The bottleneck operation of ray tracing is the search for the first object intersected
by a given ray.

There are many techniques based on many sofisticated algorithms [1], like space
subdivision methods (uniform, non-uniform, adaptive), octree methods, etc.

The proposed Binary Map of Space Subdivision Method (BMSSM) is based on simple
presumptions:

— scene consists of dozens of small objects with regard to the scene volume,

— scene consists of all kinds of objects, like polyhedrons, solids, given by an implicit
functions F(z,y,z) = 0 or by parametrically defined patches, CSG trees etc.,

2. Principle of the proposed method

Let us suppose the parallel primary ray tracing and that the image resolution is n x m
pixels and that scene consists of p facets, resp. objects.
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Fig. 1. Perspective primary ray tracing (an observer is in infinity for Parallel Primary Ray Tracing).

The fundamental requirement for ray tracing method is to find a facet, or generally
an object and a facet, which is intersected by a given ray and which is the closest facet to
the observer, as fast as possible. In general, it means to find all intersection points of the
given ray with all facets and select the nearest one. Some bounding volumes like sphere
or min-max box volumes are often used to speed up the computation of intersections.

For parallel primary ray tracing the min-max box test

Tmin £2 < Tmaz  and  Ymin <Y < Ymaz
or the circle bounding test

(z = 3:)2 +(y— y&)z <r

will be used for possible intersection detection because those tests seem to be the fastest
possible solution.

The proposed BMSSM technique is a method which is based on a principle that any
ray £ can be given as an intersection of two non-collinear planes p; and py. In the case
of parallel primary ray tracing we can choose planes so that p1 is collinear to z — z plane
and p is collinear to y — z plane, see fig. 1.

Because the required resolution of the final image (which can be higher than the
actual display resolution) is known, it is possible to define a ray at position (7, j) as the
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intersection of i,,, j,, planes, where i, j means i-th row and j-th column (it is obvious
that the plane equations must be expressed in world coordinates).

Now it is possible to define for each row an ordered p-tuple R of binary values so
that for i-th row is

iR"—"‘[irlil‘ri’}'--:irks'-w‘rp]Tl 15’“51’ 13*5";
where ‘ri indicates that the facet(k) is intersected by the plane ‘py, p is a number of
facets in the given scene, n is a number of rows.
Then it is possible to define an ordered n-tuple of binary maps R as
R=PR2R,...’R*.
Similarly for j-th row
js=[js].:j‘g?:---:jskl"'!jsp]T 1Sk$p ISJSm;
where 7s; indicates that the facet(k) is intersected by the plane Ypy, m is a number of
columns. :
Then it is possible to define an ordered m-tuple of binary maps S as
S=[13%8... na”.

'R are p-tuples which contain only logical values *r¢, so that:

iri = 0 means that the given plane p1 does not intersect a given facet(k),

“ry = 14 means that the given plane ‘p; intersects a given facet(k).
Similarly for p-tuples 7S.

It can be observed that p-tuples ‘R and 7S have the same cardinality, e.g. number of
columns for all possible primary rays,

card(*R) = card(’S) = p for all i, ,
while
card(R) = ncard(S) = m.
It is possible to define generalized bitwise operations + and & with p-tuples as
i-R'*':js = [7']_ +S]_,T'2 + §2y-.4,Tp +5P]T!
R&IS = [ri&sy, raless, . . ., rpdesy]T

where &, resp.+, means boolean multiplication, resp. addition. .

The ray at the position (i,j) is given as an intersection of p; and ?py planes. It is

possible to define a p-tuple ¥ Q which is defined as
Q="R&S=[1q15 q2....  g]".

It is obvious that:
—if gk = 0 then there is no intersection of the ray at position (i,j) with the facet(k),
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—if Yk = 1 then the given ray at position (i) do intersect minimal rectangular
bounding boz of the facet(k) and it is necessary to use a more detailed
test for facet-ray intersection computation.

Some similarities of the BMSSM method can be seen with uniform and adaptive space
subdivision acceleration method [1], but used data structures are fairly simple and easy
to implement. A_vector of bits can be the simplest way of implementation.

This approach offers one, probably, unusual feature which leads to better image
consistency. It is well known that small objects may disappear from the final image as
an observer moves. The BMSSM method gives at least the basic method how to detect
image consistency. The fundamental requirement is that all facets must be intersected
at least by one ray if we consider each facet alone in the scene.

Let us define p-tuple

Y= [U],t’g,...,ﬂp]T
M . . . . .
V =+ (R) = [Hai(r) +Hai (ra), oo +02a O, + R ()T
If any k exists so that vy =0 (1 < k < p ), then the facet(k) is not intersected by any
plane ipy, foralli=1,...,n.
It means that p-tuple V must have all items equal to the value 1, e.g.
V4L (R) =[1,1,...,1)T. |
Similarly if W = [wy, wa, ..., w,]T as
W=+nJ4s=11,1,...,1]T.
If any k exists so that wy = 0 ( 1 < k < p ) then the facet(k) is not intersected by any
plane Jp;, forall j =1,...,m.

The BMSSM method suppose that all facets are small according to the final image
size. Of course if some large objects appear in the scene it is necessary to see that they
will be often tested whether they have an intersection point with a given ray. In this
case it is recommended to split such an object into small facets, if possible.

It can be easily proved that BMSSM is equivalent to minmax box test as far as the
functionality is concerned.

3. Theoretical complexity estimation

There is a small overhead of the BMSSM method because it is necessary to determine
the *R and 7S p-tuples and some additional memory is needed to store R and S binary
maps. It is important to point out that if the image resolution is n x m pixels and p is
a number of facets in the given scene then the complexity of the overhead is given by:
- the complexity of determining ‘R and /S is only

O(n, m,p) = [n + m]peo,
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where ¢g is the cost for determining whether a plane do intersect a facet, e.g. using
separation test,
- the memory requirements are approximately equal to
(n+m)p [bits].
Of course, it is not generally possible to avoid the ray tracing complexity for primary
rays, which is given by
Oi(n,m,p) = nm[e1p + c2p1]
where: — ¢; is the cost for a minmaz box or a sphere bounding volume tests, if used,
— ¢, covers the cost of detailed test for ray intersection with a_given facet(k)
- py is a number of minmax boxes intersected by the given ray.
For each ray it is necessary to evaluate only boolean expression with bit vectors
“Q='RY'S,

which is faster than a test which evaluates an intersection with bounding volumes for all
facets.

The complexity O, of primary ray tracing is generally given as

Oa(n, m, p) = mnlesp + capi],
where c3 covers the cost of i qp =' ri&sp computation for a given k and the cost of the
test whether ¥qi # 0 for all k = 1,...,p. If we compare complexities Oi(n,m,p) and
Os(n,m,p-) we can see that BMSSM will be faster if and only if
Oi(n,m,p) > Oz(n,m,p) ie. c1>cg

Before making any comparisons it is necessary to point out that time needed for each
operation (=, <, %, %, /) does differ from computer to computer, see tab. 1.
So, it is possible for parallel primary ray tracing to estimate time Tininmaz needed for
minmax box volume test (float operations considered only with some probability estima-
tions) if the cost 18 of one for cycle statement is considered then

Toinmas = (0,4 * 23/12,0,0,0) + 18 = 114.
The time Tarssa can be estimated as ( see appendix )

Temssm = 90.

It is possible to estimate the efficiency v of the proposed BMSSM which can be
expressed as (if worst case considered — ray intersects all facets)

Tminmaz 218
=" =—=1.26.
Temssm 90

If a circle bounding test is used, then time Tircle needed for this test (cost 18 of one for
cycle statement must be considered) can be estimated as

Tcircle = (2; 1, 3, 2, 0) + 18 = 222
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PC 386DX/387 25 MHz

=] <| x| * f
int 14| 42110 [ 40| 58
float || 204 [ 260 [ 80 | 82 | 154

PC 486 33 MHz 64KB cache - selected for evaluation
=l <l ] ¥ /
int B 9 3|26 44
float || 33 | 50 | 16 | 20 | 114

Time is in 1/10 sec. for 5000000 operations

Tab. 1. Time needed for operations (=, <, +, = /).

(2 assignments must be taken into account for storing (z — z,) and (y — y,))

Tcircfe 222
v= Testests 06 2.54,
Tcirci‘s . 222
Tms’nmnz - 1_1_4
Those results mean that even for parallel primary ray tracing the BMSSM should be
faster than the usage of the minmax box test. Generally not every facet is intersected

by a ray the expected ratio v should be higher because some tests in BMSSM will be
skipped.

=

=1.94.

4. Perspective primary ray tracing

The parallel primary ray tracing is a very special case of perspective ray tracing. There-
fore it would be desirable to find a modification of BMSSM for

tracing, see fig.1. In this case it is necessary to use a sphere bou
box

perspective primary ray
nding volume or minmax
tests. If the minmax box test is considered the computational cost is significantly

higher for perspective primary ray tracing than the sphere bounding volume, because it
is necessary to compute the nearest intersection point of the ray with the minmax box.
In case of sphere bounding volume test, see fig. 2, it can be shown that if we consider
a bounding sphere in the form
(z-2)T(z-2z))-r?=0,
and a ray as

z(l) =z 4 + sot .
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Xa

Fig. 2. Sphere bounding volume test,

Then it is possible to write
at?’ +bt4+c=0 ;
where
a=s7s; b=-2sTs, c= (5781 =),
and
S1 =Zg—T4.
In this case an intersection of the given ray with a given sphere exists if and only if
(s752)* = 57 s2(sT 51 — 12) > 0,
where (sTys; — r2) can be precomputed as it does not depend onthe ray because it
depends on the sphere bounding volume and observer positions only.
If number of facets or objects is high enough it is convenient to normalize the vector
82 so that |sz] = 1. The condition can be rewritten as
(3’{32)2 -¢20,
where ¢ = (7,5 — r?) is constant for the given facet or object.
If the sphere bounding volume is used then time needed can be estimated as ((w :=
5752 (1,0,2,3,0); wsxw—g >0 (0,1,1,1,0) )
. Tiphere = (1,1,3,4,0) + 18 = 229 .
Then the estimation of the efficiency v can be expressed as (the cost of the cycle 18 must

be considered)

Tmt’nma:: 218
E ’I:sphere 229 vy

So we have got the theoretical ratio v that was expected because the minmax box test
should be faster for parallel primary ray tracing than the sphere bounding volume test
for perspective case, but the ratio is approximately equal to one.

Now it is possible to compute the expected ratio v as

_I.;f’ﬂf_:.”_g=2,54_

Temssm 90
It means, in the worst expected case, that BMSSM should be 2.54 times faster

than the sphere bounding volume test.

V=
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5. Secondary ray tracing

The usage of the BMSSM for the secondary ray tracing is quite simple and straightfor-
ward. Let us consider a similar approach as in the primary parallel ray tracing case and
divide the given space in the z_axis direction by plane ps, too. In this way binary maps
o T B W T W T
are obtained with similar properties as binary maps ‘R and *S, where L is a number
slices in z_direction, see fig. 3.
Similarly we can define 7 L-tuple as

T = T Lenns TELE

/

P

Py
Pz

Fig. 3.

The BMSSM method is actually used for detecting whether the given ray can intersect
bounding minmax box volume, i.e. supervoxel. Each supervoxel can be imagined as an
intersection of three orthogonal slices ‘R, 7S, *T" .

The bit map for a supervoxel at the position (i,j,k) can be expressed similarly to the
primary ray tracing case as

‘ikw = ‘R&LISKFT,
where:

kW = [iikw,, kg, . Rg)T | and

kw, =0 means that the r-th object does not interfere with the supervoxel (ij,k),
¥, = 0 means that the r-th object does not interfere with the supervoxel (i,j,k).

The proposed BMSSM method is similar to the Space Subdivision Method (SSM)
that is very often used for substantial ray tracing computation speed up. The SSM
method is based on space subdivision into supervoxels and each supervoxel is associated
with information which objects interfere with such a supervoxel, see fig. 4.

This structure is actually an inverted list and can be generally used for interference tests
with non convex objects, too.
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Fig. 4. Space subdivision method — SSM.

Time considerations
In the case of the usage of BMSSM method it is necessary to evaluate expression with
bit maps

ijky = R&I S&FT,

where W = [{*wy, ik, ... ji¥ wp)T. Tt is not substantial according to the cost of
intersection computation of the given ray and selected objects.

In both SSM and BMSSM methods a 3D DDA algorithm can be used for efficient
finding of intersection of a supervoxel with the given ray.

Memory considerations
The great disadvantage of the SSM method for large scenes is the memory requirements,
that can be approximately expressed as

Mssm = 2N3(q+1+1) (Bytes] ,

where: N3 is a number of supervoxels for the given scene (N for each direction), q 18
an average number of objects interfering withthe given supervoxel (0 < ¢ <P ), if
we count 2 Bytes for integer (counter of objects) and pointer (objects identification)
implementation.

It is obvious that the amount of the required memory grows extremely fast so the
SSM method can be implemented only for small N.

Let us consider a scene which is subdivided into N x N x N supervoxels. It can be
easily shown that the memory requirements for BMSSM can be expressed as

Mpnssm = 3Np [bits],
or 3
MpMSSM = §N p [Bytes].
Then the memory efficiency Vmem can be expressed as
Mssm QNa(q-}-?.) 16 ¢+2 2

—_—= _.—s-—-—-—- - — — N=.
MpmssM iNp 3P
There are some special cases that should be mentioned

Vmem =
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a) large objects
For large objects can be seen that q will converge to p, so the memory requirements
can be expressed (p > 2) as
Mssy . 16

Vmem = ———__ L N2 ,
™ Mpyssu 3
b) small objects

case when each supervoxel contains one object in average, i.e. ¢ = 1; then

v Mssu e N s
mem — - T
Mparssar p’

c) small objects and extremely sparse
For small objects and extremely sparse 0 < ¢ < 1, so
32 N? | N?
Vmem = — — =11 —,
p P
All those cases are very special but all show that the proposed BMSSM method more
efficient according to the SSM method as far as the memory requirements are concerned.
The average number of intersection q can be defined as
il
q=p R(_j 3

3

where r is a average size on an object in supervoxels.

6. Experimental results

Basic experiments have been made on PC 386 for image resolution 256 x 256 pixels,

Parallel primary ray tracing
The following results were obtained for parallel primary ray tracing:

Number of size of objects (one side of the box)
objects 10] 16| 25| 40| 63 100
400 10.38 [ 9.52 [ 8.04 [6.13 [4.74 | 4.10
630 11.39 | 10.31 | 8.55 | 6.44 | 4.90 | 4.92
- 1000 11.96 | 10.72 | 8.83 | 6.59 | 4.98 | 4.98
1600 12.65 | 11.30 | 9.22 | 6.82 | 5.15 | 4.44
2500 13.06 | 11.64 | 9.48 | 6.99 | 5.26 | 4.55
4000 13.72 | 12.18 | 9.86 | 7.22 | 5.39 | 4.51
6300 14.03 | 12.43 | 10.03 | 7.30 | 5.43 | 4.65

Tab. 2. Time efficiency v of the BMSSM against minmax box volume test,
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Number of size of objects (one side of the box)
objects 10| 16| 25| 40| 63| 100
400 26.11 [ 2340 [ 19.10 | 13.79 | 9.86 | 7.64
630 28.62 | 25.30 | 20.29 | 14.43 | 10.17 | 7.82
1000 29.95 | 26.23 | 20.88 | 14.73 | 10.32 | 7.92
1600 31.91 | 27.77 | 21.87 | 15.24 | 10.59 | 8.11
2500 33.07 | 28.71 | 22.53 | 15.63 | 10.83 | 8.29
4000 33.97 | 29.40 | 22.96 | 15.83 | 10.91 | 8.35
6300 38.94 | 33.64 | 26.24 | 18.03 | 12.39 | 9.48

Tab. 3. Time efficiency v of the BMSSM against sphere volume test.

247

From experimental results the time efficiency v for circle and minmax box tests was

vE<1.81,252>.

Perspective primary ray tracing results

Number of size of objects (one side of the box)

objects 10] 16| 25| 40| 63| 100
400 346.57 | 310.27 | 253.10 | 183.01 | 130.76 [ 101.18
630 7379.94 | 335.89 | 269.40 | 191.72 | 135.10 | 103.83
1000 399.93 [ 350.26 | 278.72 | 196.73 | 137.80 | 105.68
1600 423.53 | 368.58 | 290.28 - - -

Tab. 4. Time efficiency v of the BMSSM against minmax box.

Number of size of objects (one side of the box)
objects 10] 16| 25| 40| 63| 100
400 33.80 [ 3048 [ 24.76 [ 17.89 | 12.83 | 9.88
630 37.19 | 32.76 | 26.32 | 18.73 | 13.16 | 10.15
1000 38.74 | 33.93 | 27.01 | 19.05 | 13.35 | 10.24
1600 42.07 | 36.58 | 28.86 - - -

Tab. 5. Time efficiency v of the BMSSM against sphere volume.
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Number of size of objects (one side of the box)
__JﬂgEEEE_______19'] 16 | 25 | 40 | 63| 100
400 [ 0721 1.70 | 3.90 ] 944 21.99 5082
630 114 | 268 | 6.15 | 14.86 | 34.69 | 8041
1000 180 | 425 | 9.76 | 23.57 | 54.82 | 126.74
1600 2.89 | 6.81|15.66 | 37.85| 87.94 | 202.91
2500 4.51 | 10.65 | 24.46 | 59.08 | 137.34 | 317.13
4000 7.23 | 17.06 | 39.23 | 94.77 | 220.22 | 507.10
6300 11.39 | 26.89 | 61.83 | 149.37 | 347.27 | 799.03

Tab. 6. Average number of intersection for a ray.

Number of size of objects (one side of the box)

objects 10 |16 | 25 | 40| 63 | 100
400 6 8[12] 21 38 80
630 8 (11| 17] 33| 61 121
1000 10 [15 | 23| 48| 93 192
1600 12 (20 (32| 65131 304
2500 14 126 | 45 | 94 | 196 436
4000 19 [ 36 | 67 | 141 | 306 689
6300 27 149 | 98 | 206 | 450 1054

Tab. 7. Maximum number of intersection for primary rays.

The shown results do not cover time for complete detailed tests. Number of the
facets used within the tests has been limited due to available memory on PC.

Experiments have shown that it is not convenient for primary ray tracing to subdi-
vide space in z-direction.

7. Conclusion

The presented BMSSM method speed up the primary and secondary ray tracing sub-
stantially especially if small facets are used in the scene. The advantage of this approach
is seemed in a simple data structure which can be used to represent the R and S, resp.
T tuples. The BMSSM method can be used even for non triangular facets, even for CGS
trees and there is a straightforward usage of hierarchical data structures for solids or
facets. Tuples R and S, resp. T can be pre-computed at the scene definition stage to
speed up the ray tracing computation.
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The fundamental advantage of the proposed method is seen in small memory need
with regard to space subdivision technique,

The proposed method gives at least the basic criterion for scene consistency evalu-
ation. From the programmer’s point of view, the BMSSM seems to be convenient for
application of Object Oriented Programming techniques, too.
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Appendix
The Tyarssy time can be determined from the algorithm shown bellow.
/* count is a number of 32 bits words */
count = No objects >> 5;
if ((No objects % 32) ! = 0)count + +;
void COMPUTE (int i, int j, int count)
{ int k;
long kk; / * podtrzitko je F8 a - */
unsigned long mask;
unsigned long huge *mask_x, huge *mask_y;
mask_y = array_y[i]; /* array stores 'S bit maps */
mask ¢ = array_z[j]; / * array stores / R bit maps */
for (k= 0; k < count; k ++)
{ mask = ( *( mask_z + k) & ( *( mask_y +k ));
kk = k << 5;
while ( mask ! = 0L )
{if (( mask & 1L) ! = 0 ) DETAIL_TEST (kk);
/* DETAIL_TEST (kk) is a detail test for object kk */
mask = mask >> 1; kk++;
}
}
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