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Algorithms for 2D Line Clipping

Vaclav Skala

Department of Computer Science and Informatics
Institute  of Technology
Plzen, Czechoslovakia

New algorithms for 2D line clipping against convex,
non-convex windows and windows that consist of linear
edges and arcs are being presented. Algorithms were
derived from the Cohen-Sutherland's and Liang-Barsky s
algorithms. The general algorithm with linear edges and
arcs can be used especially for engineering drafting
systems. Algorithms are easy to modify in order to deal
with holes too. The presented algorithms have been
verified in TURBO-PASCAL. Because of the unifying
approach to the clipping problem solution all algorithms
are simple, easy to understand and implement.

1. INTRODUCTION

Clipping is a very important part of all graphics packages.
Generally it is the evaluation of a line intersection against a
window boundary. There are many efficient algorithms such as the
Cohen-Sutherland 's [6] , Liang-Barsky's [5], Cyrus-Beck's [1]
ones. All these algorithms have some presumptions, e.qg. the
windows must be orthogonal or convex with oriented edges, etc.

In the following paragraph new algorithms  will be described
for convex-polygon and non-convex polygon clipping  without any
necessity orient edges in any order. An algorithm for non-convex
area clipping, where boundaries are formed by line segments or
arcs, is described, too. Particular care was devoted to handle
all special situations properly. All algorithms are based on the
only basic idea that is gradually widened for more general cases.

As far as the author is concerned none of these algorithms
have been published in any accessible literature.

2. CONVEX POLYGON CLIPPING

The below shown convex polygon clipping algorithm is based on
the principle of Liang-Barsky's algorithm and is simpler than the
Cyrus-Beck's algorithm and does not need an anticlockwise
orientation of the polygon edges as Liang-Barsky s algorithm
does. Provided a convex polygon is given by its vertices in the
clockwise or in the anticlockwise order arbitralily and no pair
of edges lies on the same line ( it is not a principle
restriction ). Let us consider some situations that might occur
if a line segment with end points Prand Ps ought to be clipped,
see fig.2.2.

All intersections of the line w(gq) with edges of the convex
polygon are obtained by solving the following linear equations:
x(q) = xp+ ( xg - xp) . Qg ne<lo , 1>
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x(p) = xj + (xjyq - xj ) . p pe€CO, 1> 1i=0,1,...,n-1

where + means addition modulo n and pointP, has coordinates  xyg
The interval for parameter p is not closed in order to get rid

of all ambiguities in case that the line segment is "passing"
(line  we(q)) or "touching" (line w,(q)) a polygon vertex. The
below given algorithm is based on the fact that a line segment

can intersect a convex polygon only in two points. The algorithm
finds the g values for all intersection points of a line on which
the respective line segment lies with the edges of the convex
polygon and then the proper part of the |line segment that s
inside the convex polygon can be found. The algorithm is shown in
fig.2.1. It is necessary, of course, to solve special cases when
a line segment touches or passes a vertex or when it lies on a
polygon edge.

The algorithm  shown in  fig.2.1. is faster than the
Cyrus-Beck s algorithm [1] ( it doesn't need any inner normal
computation ) and for a rectangle polygon it is equivalent to the
Liang-Barsky s algorithm [4] in case that computation of all
intersections is simplified for polygon edges parallel to the
axes. The algorithm can be easily generalized or modified for a
case when two edges of the given polygon lie on the same line
see [8].

VAR i,k: INTEGER; (x end points of the polygon edges x)
J: INTEGER; (% counter x)
t: ARRAY [1..2] OF REAL;
BEGIN
j:=031:=0;k:=n-1; (x set end points for the first edge x)
REPEAT
IF an intesection point exists for the edge Xy X¢
and the line w(g) so that pe(0,1)
THEN
BEGIN j:
t

=4

q (x save the q value x)
END

ELSE
IF the edge x¢x; lies on the line w(q)

BEGIN t{1] := a value g which corresponds to the
vertex X s
t{2):= a value g which corresponds to the
vertex xj;
j:=2

x take the next polygon edge %)
(i>n )

IF 5 =1
THEN t[2}:=t[1] (% the line w(g) "touches" vertex x)

E .
IF t[11> t[2) THEN t[1] swap t[2];
1] := max ( 0.0 , t[1} ); (% maximal value x)

= min i 1.0 , t[2] ); (x minimal value %)
Cx tliy ,x (t[213 )

t

t[2]:

LINE
END

END;

Figure 2.1.
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Figure 2.2. Figure 3.1.

3. NON-CONVEX POLYGON CLIPPING

An algorithm for non-convex polygon clipping is based on the
parametric equations that express linear segments. In this case
the algorithm must be more complex, because the line w(g) can
intersect the polygon in many points. Let wus assume that a
non-convex polygon is given by its vertices in the clockwise or
anticlockwise order. Further that two successive edges do not lie
on the same line, that all vertices have different coordinates,
that not a single vertex lies on any edge of the given polygon
and that two edges might have only a vertex as a common point.

Let us consider again some situations that might occur if a
line segment with end points P, and Pe ought to be clipped, see
fig.3.1. The given line segment  that ought to be clipped can be
expressed by:

x(q) = xp+ (xg = %xp) . g geo, 1>
and the edges of the non-convex polygon can be expressed by:

x(p) = xj + ( Xjeq = %3 ) . P pe o, 1) i=0,1,...,n-1
(syx sy].[54% 5,] >0 [s4x 5,].[s4x sz]< 0

w(q)

K+d
K+ WE)
R "pass" "touch"
a) b)
where + means addition modulo n, - means subtraction modulo n

Sq T XK T Xgeq 383 T Xp T Xg g 83 T XgeqT Xy
Figure 3.2.
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Now it is necessary to find all intersection points of the line
w(gq) with the non-convex polygon. Then the parametric equation:

x(q) = xp+ ( xg = Xp ) . @ g (o0 ,+00)

expresses the line w(gq). Coordinates of all intersection points
will be determined by the value of the parameter q. But it s
necessary to take into consideration the following special cases
when the line w(q) passes or touches a vertex of the polygon.
There are only two possibilities. In fig.3.2.a. one intersection
point is generated only, while in fig.3.2.b. double intersection
point is generated. In both cases these points are processed as
an ordinary intersection  point. Quite  different  situation arises

when the line w(q) lies on an edge of the polygon. In that cases
it is impossible to decide immediately and therefore a special

attribute associated to the value q must be generated. The
attribute depends on the sign of the z coordinate of the cross
product result of the vectors s4and s, resp. S3and Sy . The

following situations should be considered, see fig.3.3.

A Pest - R - Ress
ﬁ q wiq) q g\ (@
- +
a) b)
\\\\\& - Peet _ \\\\\J? o pkﬁg//’ji
q q w(a) q q wlq)
+ + + -
c) d)

Figure  3.3.

The values of g parameters that correspond to the points P, and
Pwsq must be generated in these cases. But it is necessary to
distinguish between the shown cases. It can be made by attributes
associated with g values. Therefore the intersection point will
be determined not only by value q but also by the type of the
intersection as follows:

. intersection with edge, intersection of the *pass"™ or "touch"
type . . .

+ or - according to the sign of the z coordinate of the cross
product Is; x s,1 resp. [s3 x s4]

When all intersection points are found together with their types,
the given set of g values is sorted together with their
attributes. The set of q values will be processed according to
table 3.1. Results that determine these parts of the line  w(q)
which are inside the given polygon are couples of q values. Now
it is necessary to determine what parts of the line segment

are inside the given polygon, e.g. to determine those parts of
the line w(q) that are inside and that are part of the line
segment PnPg . According to the process of getting the parts of
the line W'(?ﬂ it is necessary to make intersection of all couples
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of the g values with the interval <0 , 1>, see fig.3.5.

Table 3.1. Possible situations for reduction

attributes

situation action
G Qieq Gisz

- o C“ fo> save ( a; , qu); 1:=1+42

Lo L\
A =

o C“' " _‘_] - save ( g , Qjep); 1:3i+3;

N

v

+

save ( g+ , g )y ii=i+2;
change aI l¥2

o r - save ( gi , Qi g0 1:=1+2;
o -~ change at‘trib,l'f"caé of q to

- - L= ) /_— % save ( g} , Qj 9); i:1=1+2y
- || - change attribute of q to -

-+ \ % / » save ( g3, Qiep); 1:=1+2;
- "'\/: +\ /" change at'tribﬁ‘t% of q to o

o - - — r < save ( qj , qi+2); i:1=i+3;

L o \:ﬁ L /— % save ( Q3 , Qjep)s 1:=1+2;
+ - change attribute of g to +

o —— +: save ( Q3 , Gj,p); 1:=i+3;

+ L - ——= % save (qs, qH‘Z)’ i1=i+2;
+ = - change attributé of q to _,

+ + % > -/\— save ( q;, Qi g0 Li=i+l
/+ + u\ change attrinlié or g to o

+ - % K"‘ "5 save ( g , Qjuq); 1:51+2;
- o L save C Qj, Giyg); 1:=1+2;
el change attribdlé ot q to -

]
4
o




360 V. Skala

- + : % save ( g, i:=1+2;
= Z" ]“ *\Vf“ change attflbuxe of q to’H

- o - # % save ( a; q;.,,,_); i:=143;
] -
s

save ( Qj , Gjaq0; 1:=i+2;

~ - % i :/A\ » save ( q;, q‘+4) i:=1+1;
- change attrlbute of g to

w

% cases when at least two edges intersect or touch each other
* means all cases, e.g. + -

[

The coordinates of the resulted points determined by their q
values can be obtained from the -equation for the line w(q):

x(q) = xp + ( Xg = Xp ) . q

The whale algorithm can be described as follows in fig.3.4.

=n-1; i:=0; ( y
Xgeq 3 S9iT Xg- X ; X S, X are vectors x
wﬁILE < Ko 2 ST T
BEGIN

% ; (% operation with vectors x)
ehputt valud (o)
IF the Vertex Xy lies on the line w(q)

THEN
BEGIN
THEN ?* the edge XxgX; lies on the line w(q) *)
generate(q w1th the attribute sign [s1x SZ]E )
E
IF {s, x
THEN (% t e edge Xx-4 Xk lies on the line w(q) %)
generate( g with the attribute sign [sax szlz
ELSE
IF [sq4x s3)a.{53x sp)a < 0O
THEN (% "%oich 2 %) 2
generate(qg,q with attributes _ )
ELSE (x "pass' %)
generate(q with attribute _ )
END
ELSE
IF an intersection of the line w(g) with the edge <xy,xi)
exists

THEN generate(q with attribute _ J;
S4:= S33 ke=i; i:=i+1;
END;
SORT ( values g );
REDUCE ( set of g values );
SELECT ( subintervals as <qj , Qi H)n <0, 1> for all j );
COMPUTE ( the end points ) J

Figure 3.4.
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ir=1;
WHILE i <= No of intersection -1 DO
BEGIN
IF max ( 0.0 , g3 ) <= min ( 1.0 , Qe )
THEN save ( max ( 0.0 , q5 ) , min ( 1.0 , Q40 )
i:1=1+2
END;

Figure 3.5.

The presented algorithm in fig.3.4. enables to «clip a given
line segment against a non-convex polygon. The algorithm is based
on a similar idea as the previous one and because the polygon s
non-convex some additional operations must be employed.

4. NON-CONVEX AREA CLIPPING

So far presented algorithms have solved the line clipping by
convex or non-convex polygon, e.g. by areas that consist of
linear edges. But plenty of applications require clipping over
areas that are formed by linear edges and arcs, see fig.4.1.
Provided a non-convex area is given by its vertices in the

clockwise or anticlockwise order and if the edge is not linear
then information whether the right or left part of the circle is
to be taken from the actual Vvertex, see fig.4.1. It is also
assumed that all vertices have different coordinates, that no

vertex lies on an edge or arc and that two edges or arcs might
have only a vertex as a common point.

Contrary to the previous problem the line w(q) can intersect
the arc edge in two points. It partially increases the complexity
of the given problem.

P' orientation
r to the left
~
\
\

\

\
orientation |
to the right |

/

/

wia) Ps /
Py SR

Figure 4.1.

The line w(g) is described by the parametric equation:
x (@) =xp+ (xg=xp).0q q € (oo ,+00)
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The procedure for finding all intersection points is similar to
the previously stated algorithm, but now in case of arc edge it
is necessary to solve the following equations:

x (g ) =xp+ (xg =% ) .9 g€ (~® pon)
(X—xu)2+(y-yu)2-r2=0

where (xu,yu) is the centre of the given arc
2r is 'the diameter of this arc.

solving these equations with regard to variable q a quadratic
equation

aq2+ bg + ¢ = 0
will  be obtained, where:
2 2
a={xg=-xp )+ (ye =y )
=2 [Cop =y T “oge ) £ 0w s ) - Gy =y )
c = (xp ~xg W+ Cyp =yg ) r?

In the case that the line w(q) intersects or touches the given
circle two solutions are obtained, not necessarily different, as:

9, = -0 6 - sac ) /(28

Now it is necessary to determine  which part of the circle

forms the boundary of the given area. Because the border is
oriented it can be discerned whether the arc is on the right  or
on the left from the connection of % Xy44 points. If  the line
w.(q) is considered then it must be ' decided which intersection

point ought to be taken. It is obvious that only the point which
lies on the proper arc can be considered. It means that:

- if the left arc is considered then the point x(q;) will be
taken into consideration if and only if

[ s, x 5p)z > 0 i=1,2

- if the right arc is considered then the point x(a\;\) will  be
taken into consideration if and only if ‘

[ s, X 52]2 <0 i=1,2
assuming that XK% x(qi), Sy = Xya- Xk and sp= x(qi) - xk.
Of course some special situations must be solved again, e.g.

when the line passes or touches the vertex xg.In those cases the
tangent vectors 54, Sg, 353 are determined as:

-for the arc s, = [ Y= Yu x.“— xx] where_(xy,yy) is the centre
for linear edge =L Xy Xgmg s YK - Y=g ]

-for the arc [ YK Yw s Xw - xk] where (xy,y,)is the centre
for linear edge [ Xeaq=Xk 5 Yest~ YK

-for the line w(q)  s,= [xg = X s Vg = ¥p )

The possible situations are shown in table 4.1. and in fig.4.2.
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Table 4.1
situation
[ sy x s3], [ sy xs,]; ontig.4.2. type "touch"/"pass"

< 0 & 0 a pass

£ 0 >0 b touch

>0 >0 + 3 pass

>0 < 0 + b touch

L0 =0 [o} if '33'51>0 then pass
else touch

>0 =0 d if -5, .8>0 then touch
else pass

= 0 £ 0 e if -51.sz>0 then touch
else pass

=0 >0 f if -s;.8,>0 then pass
else touch

= 0 = 0 g if -54.8,>0 xor -s5.8,>0

then pass else tolch

+ for the opposite orientation of the line w(q)

If the arc is oriented to the right then the sign of the tangent
vector s must be changed in some situations. It means that we can
define variables a and b by the following sequences:

ai=[syx s3]z
IF xK14xkzizs the arc
THEN IF a = 0
THEN a:=-s4.5)p;
ELSE IF orientation of the arc is to the right

THEN a:=-a;
bi=[syx S5]z33
IF x ,fx,«qzizs,the arc
THEN IF b =0

THEN b:=-s53.593%
ELSE IF orientation of the arc is to the right
THEN b:=-b;

Now only the first four lines of table 4.1. are needed. The whole
algorithm for clipping lines by non-convex areas is  shown in
fig .4.3.

[
XKM

5

S,
w(q) X N

]
xK'f Xy-q a)
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)
Xg-q
or
s Xyt
w(q) Xy SaS3 w(q) Xy Sy Ss -
- - b )
q, or  Xgu q, OF  Xyuq
' ar
X
K=1 S
Xynq ! X
d)
) > or
qu or
Xy-4 X1
e) £) XK+1
Xy St S2 S5 Xgu
X1 OF " g, or wi{qg)
X
XK~1 K+q
g)
Figure 4.2.

PROCEDURE COMPUTE_TANGENT ( XA Xpg s T, 1)
BEGIN

IF xa xg is linear
THEN BEGIN s := xg- Xa3 T i= [ 8 x Syla;
END
ELSE BEGIN s ;= [ Y = Yw oy Xw = xg¢ ];r 1= [ 5 x 5,073
(% (xy,yw) is the centre of the given“arc x)
IF ¢ = 0 THEN IF t THEN r:= S.s5p ELSE r:=-s.sz
ELSE IF the arc is oriented to the right
THEN ¢ := -p

N
END (% CUMEU?E_TANGENT %) ;
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k:=n-1; 1:=0; 55:= xg- Xp; (% operation with vectors x)
WHILE i < DO
BEGIN
IF xx lies on the line w(g) THEN
BEGIN COMPUTE_TANGENT(xy,Xj ,b,true);
COMPUTE_TANGENT(xy_4 ,Xg,a,false);
IF xgx; is linear TLEN
BEGIN COMPUTE_VALUE(C q );
IF a.b >0
THEN GENERATE( q with attribute _ )
ELSE IF a.b<€ O
THEN GENERATE( g, g with attribute _ )
ELSE IF a =0
THEN GENERATE( g with attribute sign b )
ELSE GENERATE( q with attribute sign a )
END
ELSE (% xyxj is the arc x)
BEGIN COMPUTE_VALUES( g4, g,);
IF a.b > 0 THEN GENERATE% Oy, Gyx with attribute _ )
ELSE IF a.b £ 0
THEN GENERATE( g4, g4, 9,% with attribute ., )
ELSE IF a = 0
THEN GENERATE( quwith atiribute sign b )
ELSE GENERATE( q1with attribute sign a )
END
END
ELSE IF Xygx; linear THEN
BEGIN COMPUTE_VALUE (q);
IF an intersection point is inside of <xkx;)
THEN GENERATE ( g with attribute .,
END
ELSE BEGIN COMPUTE_VALUES( qy, q;);
IF an intersection point exists
THEN GENERATE( gy%, g,x with attribute _, )
(x % means if the inteérsection point lies x)
0 (x on the required side of the xyx; arc x)
EN
k= 1; 1 := 1+ 1;
END (x of while x);
SORT ( values q );
REDUCE E set of g values zccording to table 3.1. ); ;
SELECT subintervals as {qj , q; 0, 1) for all j );
COMPUTE ( the end points )'J B+ ?

2

Figure 4.3.
It is obvious that the presented algorithm for clipping line
by non-convex area can be easily modified for a case when the
area is formed by linear segments and quadratic arcs. In  this

case it is necessary to define conveniently the quadratic arcs. A
similar approach to the circle case can be chosen for this
general case too. Generally all quadratic curves are described by
the function f(x,y) together with their tangent vectors as

£(x, y) = 0 s = [ fy o - I ]
where: fix,y) = ax2+ by2+ 2cxy + 2dx + 2ey + g = 0
If the given area consists of some holes it is necessary to

apply the presented algorithm for all the given holes themselves
and  merge the obtained q values together
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5.CONCLUSION

The presented algorithms are based on the principle of  the
Liang-Barsky s algorithm. It is shown how the algorithms become
more complicated if the requirements are more general. In general
they do not need oriented half-planes of the clipping window. The
second algorithm solves the situation when the clipping polygon
is non-convex. The increase of complexity is expressed in the
need to distinquish between different cases and to sort the final
set of intersection points. The last presented algorithm solves
the problem when the clipping area is formed by line segments and
arcs. This  problem has not  been solved in  the accessible
literature as far as it is known to the author. The algorithms
are fast and all special cases are properly handled.
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