Hidden-Line, Hidden-Surface and Hidden-Contouring
Problem Solutions by the Modified Bresenham's Algorithm

Vaclav Skala
Computer Science Department, Technical University, Nejedlova 814, 30614 Plzen

1. Introduction

Solutions of many engineering problems result in functions of two variables which can be given either by an explicit function description or by a table of function values. Functions have usually been displayed on a display screen or have been drawn on a plotter in several manners. The known methods have been based either on drawing contours drawn in isometric projection [3] or on drawing functions of two variables with respect to visibility ([12]-[14]). Each method of displaying must have its own specialised algorithms, which has not been simple so far. In all cases the problem of displaying has been complicated not only by an enormous volume of data but also from the point of view of programs and their structure. Many algorithms have been published in literature but they differ from each other.

In the following paragraphs a unifying approach to the Hidden-Line, Hidden-Surface and Hidden-Contouring problems will be shown. It is based on a modification of the Bresenham's algorithm for the straight line drawing. The advantage of the suggested solution is a simple hardware implementation, especially with devices controlled by microprocessors. The proposed algorithms are fast and they do not use floating-point operations at all.

2. Hidden-Line Problem Solution

Let us have an explicit function of two variables \(x \) and \(z \)

\[
y = f(x, z) \]

where: \(x \in \{ax, bx\} \) and \(z \in \{az, bz\} \)

and we want to display this function by using a raster device, e.g. a raster display or a plotter. For many scientific problems it is enough to show the behaviour of the given function by drawing function slices according to the \(x \) and \(z \) axes, e.g. the curves:

\[
y = f(x, z_i) \quad i = 1, \ldots, n \]

where: \(z \in \{az, bz\} \) and \(ax = \{ax_1, ax_2, \ldots, ax_m\} \)

and the curves:

\[
y = f(x_i, z) \quad j = 1, \ldots, m \]

where: \(x \in \{ax, bx\} \) and \(az = \{az_1, az_2, \ldots, az_m\} \)

The given function can be represented either by an explicit function specification or by a table of the function values for grid points in the \(x-z \) plane. If the function is rather complex it can be very difficult to imagine
the behaviour of the function because some parts are invisible. The problem has been very successfully solved by (6), (12)-(14). Sometimes the method is called the Floating Horizon Method.

The principle of the known solution is generally simple. If two slices parallel to the x-axis are drawn then the space between these two slices is a strip of invisibility. The strip is actually part of a surface of the given function. Let us suppose that curves are drawn from the foreground to the background. Now if the third curve should be drawn (far from the observer) it is obvious that those parts that pass through the strip of invisibility are invisible and therefore they should not be drawn. See fig. 2.1.

![Diagram of visibility and invisibility areas](image)

Figure 2.1.

Further the following abbreviations will be used:
- MaskTop
- MaskBottom
- MT
- MB

If the problem is analyzed in detail, it is obvious that there is a necessity to represent borders of the strip of invisibility. It can be made by introducing MaskTop and MaskBottom functions. The real representation of these functions can be temporarily omitted. Now the problem of drawing the curves with respect to visibility becomes very simple as it is shown in algorithm 2.1., because only those parts of the curves, the points of which are lying outside the strip of invisibility, are drawn. In [6] the problem is straightly solved and the description of the method is easy to understand.

```
start
MT := -oo
MB := +oo
k := 1

DETERM FUNCTION f (x, v)
with respect to the
visibility for res.ax, bx:

MT := max {MT, f(x, v)} for all x
MB := min {MB, f(x, v)} for all x

k := n
k := k + 1
end
```

Algorithm 2.1.

where: n is the number of slices of the function f
min, max are functions whose two arguments are functions and the results are functions too.
The visibility problem has been solved by Watkins [12] introducing mask vectors for MaskTop and MaskBottom boundary representations. Several problems had to be solved because all computations were done in the floating point representation.

1. Proposed Method for Hidden-Line Solution

In [11] the functions MaskTop and MaskBottom are represented by vectors with values in the floating point representation. The whole process of drawing with respect to visibility can be imagined as follows in fig. 3.1.

![Diagram of the process of drawing with respect to visibility.](image)

Figure 3.1.

Now a question might arise if there are any possibilities of increasing the efficiency of the hidden-line problem solution. One possibility is to combine the known Watkins's algorithm with the Bresenham's algorithm for drawing straight lines direct on the physical level.

A solution of the hidden-line problem becomes relatively very simple now because only the DRAW STEP procedure must be changed. This procedure must generate code for physical movement in order to take the invisibility into account. Because the DRAW STEP procedure draws one physical step it must only be checked whether the next end-point in the raster is inside or outside of the strip of invisibility. The structure of the proposed method is shown in fig. 3.2.

![Diagram of the proposed method.](image)

Figure 3.2.

It is obvious that only integer representation for MaskTop and MaskBottom arrays are actually needed. The simplified solution is shown in algorithm 3.1. There are two temporary arrays MIT and MLB in order to get rid of all very special problems with near horizontal lines. Spaces were included into identifiers for legibility and in the actual implementation will be omitted.
(Global variables)
CONST res=1023;
VAR xp,yp:INTEGER; (absolute coordinates)
mt,mb:ARRAY [0..res] OF INTEGER; (MaskTop & MaskBottom)
mlt,mlb:ARRAY [0..res] OF INTEGER; (temporary mt & mb)
u,v,x,y:INTEGER;

(Procedure for the first initialization of masks)
PROCEDURE initialize;
VAR i:INTEGER;
BEGIN FOR i:=0 TO res DO
BEGIN mlt[i]:=maxint;mlb[i]:=maxint END END;

(Procedure for masks setting after each slice has)
(been drawn)
PROCEDURE set up masks;
BEGIN mti:=mt[i];mbi:=mb[i] END;

(Draw step with respect to visibility of the given point)
PROCEDURE draw step;
BEGIN IF yp < mb[xp] THEN switch on (xp,yp);
IF yp > mb[xp] THEN switch on (xp,yp);
IF yp > mlt[xp] THEN mlt[xp]:=yp;
IF yp < mlb[xp] THEN mlb[xp]:=yp
END;

(Procedure for drawing straight line 0<abs(v)<abs(u))
PROCEDURE draw sm);
VAR j,d,i,a,b: INTEGER;
BEGIN IF u >= v THEN
BEGIN (1,4,5,8, octant)
a=v+v;d=a-u;b=a-u-u;
FOR j=1 TO u DO
BEGIN IF d < 0 THEN di=d+a
ELSE BEGIN yp=yp+iy;di=di+b END
xp=xp+ix;
draw step
END
END ELSE
BEGIN (2,3,6,7, octant)
a=u+u;d=a-v;b=a-v-v;
FOR j=1 TO v DO
BEGIN IF d < 0 THEN di=d+a
ELSE BEGIN xp=xp+ix;di=di+b END
yp=yp+iy;
draw step
END
END;

PROCEDURE draw to (x,y: INTEGER);
(draw line with respect to visibility (xp,yp)->(x,y))
BEGIN ix:=sign (x-xp);iy:=sign(y-yp)
u = abs(x - xp); v = abs(y - yp);

END;

BEGIN (now the drawing itself - body of the main program)

initialize;

set up masks; (masks must be set up for each slice)

......

draw to (x, y); (draw the function slice)

......

goto 9;

......

END.

Algorithm 3.1.

In the above presented algorithm it is assumed that the order of the drawing is from the foreground to the background. Sometimes the foreground and the background are altered in the published algorithms, e.g. in [12], and the results are wrong, because the order in which the curves are drawn cause a violation of the given premises. Therefore the problem is how to select the order of the drawing if some transformations are made. It is also assumed that we use only parallel projection and that vertical lines remain vertical after all transformations too.

4. Hidden-Surface Problem Specification

The problem of the hidden-surface elimination is very often solved in a quite different ways in which many tricks are employed. Because all the known methods (for drawing functions of two variables) do not use the advantage of the solution in the raster environment a very simple algorithms will be described. The problem of the hidden-surface elimination will be solved in a very similar manner to the hidden-line elimination shown above. The slices will be drawn again from the foreground to the background and after drawing the first two slices two masks for borders and two masks for intensity levels will be set up, see fig. 4.1.

Further the following abbreviations will be used:

Mask Current MC
Mask Previous MP
Mask Top MT
Intensity Current IC
Intensity Previous IP
Mask Bottom MB

Figure 4.1.
The problem is that the invisible parts of the surface must be deleted and an appropriate visible part of the surface must be filled by an appropriate grey intensity level. To do this for all points of each curve an intensity level is needed. The intensity level can be computed as a function of the normal vector of the given surface. In the given coordinate system the x part of the normal vector must be taken, for details see [6].

Algorithm 4.1.

\[
\begin{align*}
&\text{start} \\
&\text{MB} \leftarrow +\infty \\
&\text{MT} \leftarrow -\infty \\
&k \leftarrow 1 \\
&\text{DRAW FUNCTION } f(x, z) \text{ with respect to the visibility for } x < (s, b, x) \\
&\text{and for all } x \\
&\text{DRAW LINE from } (x, MC(x), IC(x)) \text{ to } \\
&- (x, MP(x), IP(x)) \text{ with respect to the visibility and change intensity} \\
&\text{linearly from } IC(x) \text{ to } IP(x) \\
&\text{MT} \leftarrow \max \{ MT, MC \} \text{ for all } x \\
&\text{MB} \leftarrow \min \{ MB, MC \} \text{ for all } x \\
&\text{IP} \leftarrow IC \text{ for all } x \\
&\text{MP} \leftarrow MC \text{ for all } x \\
&k = n \quad \quad k \leftarrow k + 1 \\
&\text{end} \\
\end{align*}
\]

Algorithm 5.1.

\[
\begin{align*}
&\text{start} \\
&\text{MB} \leftarrow +\infty \\
&\text{MT} \leftarrow -\infty \\
&\text{draw the front margins} \\
&k \leftarrow 1 \\
&p \leftarrow 1 \\
&\text{DRAW CONTOUR } (p) \text{ with respect to visibility} \\
&\text{p} \leftarrow p + 1 \quad p = \text{No of contours} \quad + \\
&\text{set up masks } MB, MT \\
&\text{according to rear margins of the processed grid} \\
&k \leftarrow k + 1 \quad k = \text{No of grids} \quad + \\
&\text{end} \\
\end{align*}
\]

Figure 4.2.

It means that after drawing the first slice the functions MaskTop, MaskBottom (Maskbottom is equal to the MaskTop after the first slice was
drawn), MaskPrevious and IntensityPrevious are known. If the second slice is
drawn then the functions MaskCurrent and IntensityCurrent are known too. Now it
is necessary to fill the known part of the surface that is defined by the
functions MaskPrevious and MaskCurrent with an appropriate level of grey.
Because all functions will be represented again by vectors for all points in
the x-axis a modified Bresenham's algorithm can be employed in order to get
proper intensity levels for all points. It means that for the given x the
intensity level will be approximated for all possible y, e.g. a line will be
drawn from the point \((x,MC[x])\) to the point \((x,MP[x])\) and the intensity level
will be slowly changing from IC[x] value to IP[x] value. This must be performed
for all \(x\). In this way we will get the strip of invisibility. After that
MaskTop, MaskBottom are redefined again, see Fig.4.2.

If a third curve is drawn then it will be drawn only outside the strip of
invisibility. But for the hidden surface it is necessary to fill in the area
outside the strip of invisibility between the previous curve represented by \(MP,\)
and the current curve represented by \(MC,\) e.g. it is necessary to fill in only a
visible part of the line segment from the point \((x,MC[x])\) to the point
\((x,MP[x])\) with a proper intensity level from intensity IC[x] to intensity
IP[x]. The filling can be done by a modified Bresenham's algorithm again in
order to ensure that the intensity level will be properly changed. It can be
seen that the proposed algorithm does need all the above mentioned vectors. The
whole algorithm (schematically) is shown by algorithm 4.1.

If we omit for this moment all problems with the initialization then we can
use all the procedures shown above but the procedures Draw Step and Set Up
Masks must be changed as it is shown in algorithm 4.2. The actual
implementation is slightly more complex.

PROCEDURE draw step;
BEGIN (draw step to the point \((xp,yp)\) with intensity \(i\))
 flag:=x0=xp; xo:=xp;
 IF yp > alt[xp] THEN alt[xp]:=yp;
 IF yp < alb[xp] THEN alb[xp]:=yp;
 IF yp (< nb[xp] OR yp > mt[xp] THEN
 IF flag THEN fill(xp,yp,mp[xp],ip[xp]);
 (from the point \((xp,yp)\) with an intensity \(i\) to)
 (the point \((xp,ep[cp])\) with an intensity \(ip[xp]\))
 ELSE switch on(xp,yp,i);
 mc[xp]:=yp;
 ic[xp]:=i
END;

PROCEDURE set up masks;
BEGIN mt:=alt; mb:=alb;
 ep:=mc; ip:=ic
END;

Algorithm 4.2.

The algorithm shown above is very simple and clear to understand. We have
not dealt with the problem how \(MP\) and \(IP\) arrays were originally set up. The
fill procedure is actually the Bresenham's algorithm that is modified so that \(x\)
coordinate is constant, \(y\) coordinate is changed with the step 1 and the
intensity level is appropriately changed in order to get the whole intensity
scale from the current intensity represented by $I(x)$ value to the previous intensity represented by $I(x)$ value or vice versa. The procedure itself must draw only outside the given strip of invisibility that is given by MT and MS arrays.

5. Hidden-Contouring Problem Specification

The hidden-contouring problem is described in literature very rarely because it covers several non-trivial tasks. The first is the contouring problem itself, the second is the problem of hidden-line elimination. The known algorithms are very complicated [1]. The main effort seems to be spent on the part that deals just with the hidden line removal. The known algorithms just use the algorithm for contouring and hidden line removal in the "pipe-line" way. The problem can be easily solved again in a very similar manner to the hidden-line elimination described above. If fig.5.1. is analysed we can see that the problem can be easily described as follows. Firstly two margins must be drawn and then for each grid all contours must be drawn with respect to the visibility. The contour drawing order is substantial because the contours must be drawn so that the higher contours are drawn later on, e.g.:

$$\text{contour}(p) < \text{contour}(p+1) \quad \text{for all } p$$

When all contours for the given grid have been drawn it is necessary to draw "back margins" of the given grid. If any user needs smaller grids or smoothly interpolate contours he can subdivide grid mesh or he can employ the smooth interpolation (some kind of smooth interpolation can be done direct in the raster environment). The whole problem is now simple but we have to find a simple method which determines silhouetting in order to get the proper outlook.

The silhouetting problem solution is described in literature very rarely because of high complexity of computation. Actually it is a problem of determining whether the partial derivative of the given function according to the observer's eye direction is zero. The hidden-contouring problem solution (without the solution of silhouetting) can be schematically described by the algorithm 5.1.

![Figure 5.1](image-url)
6. Conclusion

The above presented algorithms are based on the Bresenham's algorithm for drawing straight lines in the raster environment. The algorithms for drawing functions of two variables are intended for the use in the raster environment, e.g., for raster displays or digital plotters. The presented algorithms for hidden-line, hidden-surface and hidden-contour removal are very fast, easy to implement and they do not need operations in the floating point representation for the determining whether the line segment or its part is visible or not.

All mentioned algorithms were implemented on the 8-bit microcomputer with 8080 microprocessor running at 3MHz. Presented results were drawn in 2 sec. approximately including the visibility solution with the resolution 256x256 points with 8 colours. The time of function computation, scaling and rotation is not included, because a host computer was used. The drawing was about 15% slower than drawing without the solution of the visibility.

7. Literature