
An Interesting Modification to the Bresenham Algorithm

for Hidden-Line Solution

Vaclav Skala

Department of Technical Cybernetics

Technical University, Nejedleho sady 14
306 14 PLZEN, CZECHOSLOVAKIA

1. Introduction

The solution of many engineering problems have as a result
functions of two variables, that can be given either by an expli

cit function description, or by a table of the function values.
The functions, that can be given either by an explicit function

description, or by a table of the function values. The functions
have been usually plotted with respect to visibility. The sub
programs for plotting the functions of two variables were not so

simple ([6] -[7]) although visibility may be achieved by the
relatively simple algorithm at the physical level of the drawing,

if we assume raster graphics devices are used. The Bresenham algo
rithm for drawing line segments can be modified in order to enable
the drawing of explicit functions of two variables with respect
to the Visibility.

Though the order of curve drawing is essential for the method

used the algorithm has not been published yet. Williamson [~
solved the problem by fixing the position of the view-point,
Watkins [6] only pointed out that some rotation angles can cause

wrong hidden-line elimination and Boutland's method [1] can use
only one angle.

Therefore the algorithm that ensure the right order of the
curve's drawing is presented here.

2.Problem specification

Let us have an explicit function of two variables x and y

z = f (x , y)

where: xE:<ax, bx) and ye-<'ay,by'/
and we want to display that function by using the graphical raster
display or plotter. For many scientific problems is enough to show
the behaViour of that function by drawing the function slices
according to the x and y axises, e.g. curves

z = f i=l, n

NATO AS! Series, Vol. F17
Fundamental Algorithms for Computer Graphics
Edited by R. A. Earnshaw
© Springer-Verlag Berlin Heidelberg 1985

594

where: xe<ax.bx) and
and curves:

where:
z = f (Xj , y)

YE<ay,by> and

j=l, ... ,m

ax=x1 < x2 < ... <xm=bx

The given function can be represented either by a function

specification or by a table of the function values for the grid

points in the x-y plane. If the function is complex it can be

very difficult to imagine the function behaviour because some

parts are in the reality invisible. The problem has been solved

by Watkins [~, Williamson [~ and Boutland [~ relatively very

successfully. The principle of the solution is generally very

simple.If we have drawn the first two slices parallel to the x

axis we have produced two curves and the space between them is

the strip of invisibility. Let us suppose that we draw the lines

in the direction from foreground to background. Now if we want

to draw the third curve it is obvious that those parts which are

passing through the strip of invisibility are invisible and there

fore ought not to be drawn, see figure 1.

NEW MASKTOP

Is
--- / /------11

MASK BOTTOM

,....--
Figu re 1.

If we analyze the problem in detail we will realize that we

need to represent the borders of the stri~ of invisibility. It

can be done by the MASKTOP and MASKBOTTOM functions. The real

representation of the MASKTOP and MASKBOTTOM functions we will

omit temporarily. Now the problem of drawing curves with respect

to the visibility becomes simple, see algorithm 1., because we
will draw the next function slice only if and only if the curve
points are outside of the strip of invisibility.

the Visibility problem has been solved by Watkins [6] by
introducing mask vectors for the representation of the MASKTOP

and MASKBOTTOM bounds. Several problems had to be solved because
all computation was done in the floating point representation:

595

- the first problem is how to decide if we have set up MASK[i]
or MASK[i+~ if the coordinate x is between values i and i+1
e.g. i<x<i+1
the second problem is that the MASKTOP and MASI<BOTTOM arrays
have to be set up for all point of the curve. That means that
an interpolation procedure has to be employed, with some suita
ble interpolation step length.

- the third problem is that special case has to be solved: when
the curve is parallel with the z axis, the usual line segment
slope computation can fail.

l
MASKTOP : = - 00

MASI<BOTTOM : = + 00

+ k:=l r-------_ t
DRAW FUNCTION f (x ,y)
with respect to the str~p
of invisibility for xE<ax,bx>

t
MASKTOP:=max{MASKTOP,f(x'Yk)}

~
MASKBOTTOM:=min{MASKBOTTOM,f(X'Yk)}

k:=k+1 -----k i n
~+

end

Algo r ithm 1.

3.proposed method

In [6] the functions MASI<TOP and MASKBOTTOM are represented by
vectors with values in floating point representation. We can ima
gine the whole proces of hidden-line drawing as follows in figure 2.

REAL I INTEGER --- - - - - - - - - - - - --- - - - - - - - - - - - - - - - - - --
user hidden- draWl Bresenhom draWl

function - Lina I- r- - '---' d,IIt-C a
spec. proc. li"e al,orahm shp

user's tellel ,raphi.cs system tevel ------ --------1----- -----------------
Figure 2.

Now we can ask ourselves if there is any possibility of inc rea,""
ing the efficiency of the hidden-line solution. One possibility is

596

to combine the complete Watkin s algorithm with the Bresenham algo
rithm directly at the physical level. Because we are dealing with
the raster devices at the physical level we have got rid of all
these above mentioned problems.

The solution of the hidden-line problem is now relatively very
simple, becausy we have to change only the procedure DRAW-STEP,
that generates code for the physical movement, in order to take
account of the strip of invisibility. Because DRAW-STEP draws only
one step we have to check only if the next end-point in the raster
is inside of the strip of invisibility or not. The structure of the
proposed method is shown on figure 3.

REAL INrE6E7l. ---------1--------------------------
USe,. draw B,.uenha.m «,.QW siep

function r-- f-..., with respect ~ devi.ce
spec. li"e al~o,.ithm 1:0 visibility

LLStr $ level fraphics svslem lerel
4--------1----------------------------

Figure 3.

It is obvious that we need only integer representation for the
MASKTOP and MASKBOTTOM masking arrays. The simplified solution is
shown by the algorithm 2.

It was find out that the lines (on the physical level) which
are parallel to y axis cause some problems with setting of the masks
arrays, see figure 4. Suppose that we have defined the strip of in
visibility and we want to draw the line segment x1x2 . The problem
is that if we want to draw the segment between the points 1 and 2
we have to change the strip of invisibility so the future points
3 and 4 become inner points in the strip of invisibility; but that
is not true. Therefore in the complete algorithm the content of the
mask's arrays is changed only if dx(>O. The whole algorithm can be
found in [4], where the clipping is realized too.

Watkin's original method and proposed solution have one common
problem, that has not been published yet. Because of rotation some
times the foreground and background can be altered and the order in
which the curves are drawn cause a violation of the masking premi
ses. The second problem is how to select the scales for scaling in
order not to lose any part of the picture and use the full screen
area. The first problem seems to be more complicated and it is more
fundamental. The proposed solution is presented bellow. The second

597

problem can be solved easily by finding maximal and minimal values
for the screen coordinates.

{ GLOBAL VARIABLES }
VAR l(O,yO: REAL;

masktop,maskbottom: ARRAY [0 .. 102~ OF INTEGER;
PROCEDURE draw (dx,dy: INTEGER)i

VAR flagS: BOOLEAN;
BEGIN xO::xO+dx; yO::yO+dy;

flagS :=FALSEi

END;

IF masktop [xoJ < = yO THEN
BEGIN flagS :=TRUE; masktop [xoJ :=yO; END;
IF maskbottom [xoJ > = yO THEN
BEGIN flagS:=TRUEi maskbottom[x~ :=yO; END;
IF flagS THEN physline(dx.dy)

ELSE physmove(dx,dy)

PROCEDURE bresenham (u,v: INTEGER)i

VAR j.d,a,b: INTEGER;

BEGIN a:=v+v; d:=a-ui b:=a-u-ui
FOR j:=l TO u DO

END;

IF d<O THEN BEGIN draw(l,O); d::d+a; END
ELSE BEGIN draw(l,l); d:=d+b; END

Algo rithm 2.

Figure 4.

598

4.Design of the drawing order

If we rotate the function or have a look at the function from

different points, we have to keep the basic rule of the drawing.
We have to draw at first the function slices that are nearer to
us. Watkins [6J pointed out this problem. but the problem solu
tion has not been published yet and many users have real diffi
culties to ensure that. Therefore when the function is rotated

many pictures are drawn wrong. Let us try to find the solution.

Assume that the points:

X1=(ax,ay,O)

X2=(bx,ay,O)

X3=(bx.by.O)

x4=(ax,by.O)

are the corner-points of the grid in the x-y plane. We want to know

the order of the drawing of the drawing slices.
Assumes that the points:

x' 1 T

x' = T 2

x'
3

X'
4

T

T

are the corner points of the grid after the rotation transformation.
Now we have to pick up two margines from which we will start to
draw the picture. We have to select the end-points of these mar
gines that has the smallest z' coordinate. We will mark that point

by the index r. In general there are two basic possibilities that

are shown on figure 5.

z

z

Figure 5.

The direction in which the slices are to be drawn are marked by <p=

599

In the case ad a) we can see that the margins from which we will

start to draw line segments belongs to the end-points XrXs and XtX r '

In the case ad b) we can see that we will fail. Therefore we have
to test if

or

If the boolean expression has value false then we have to find the

second point which has minimal z' coordinate and which is different
from the original point. The new point will be remarked by the
index r.

The whole procedure can be described by the algorithm 3.

1. Find the index r€<1,4) so that

z~ = min {zi} i=1, 4
2. Find the indices of neighbours and mark them by indices t,s

3. Ifcondition

x~ <= x~ <= xs

has value FALSE then

begin

OR

Find index u€(1,4) so that

Zu min{zil i=l,4 and if:r
r := U

Find the indices of neighbours and mark them by indices t.s
end

Algorithm 3.

Now we can draw the function by drawing the slices according to
the selected margins. which are defined by line segments with the

end-points XrX t and XrXs'
But if we draw a function whose behaviour is wild enough then

we receive a picture which is wrong. see figure 6 It seems to be
more convenient in this situation to apply the Zig-zag method 1
and we will then obtain the correct results. see figure 7

The Zig-zag method can be described by:
1. Initialize the mask's arrays
2. Draw the margins that are defined by the end-points XrXs and

X~X~ (steps 1,2)
3. Draw the function values according to the grid and according

to the directions on figure 8 (steps 3-12)

slices according
to y axis

Figure 7.

600

slices according

to x axis

Figu re 6.

Figure 8.

composed
picture

Let us suppose that the function is given by the values

f [i.j] i=l •...• n and j=l •...• m
in the grid - points those coordinates are given by values

x [j] j=l •...• m
y [i] i=l n

Then after transformation (rotation. translation) we receive
values

i=l ,n and j=l, ... ,m

Now the whole process of drawing can be made in the integer repre

sentation without using a floating point processor.

601

5.Conclusion

The algorithm presented for drawing functions of two variables

with respect to Visibility is intended for the use with microcom

puters. Because the basic algorithm for visibility respectation can

be realized by about ten assembly instructions it seems to be con

venient to build it directly into the algorithm for a drawing

straight lines. Now we can see that the basic graphics menu can

be extended by the operations:

- initialize mask's arrays

- draw line with respect to the visibility.

that means. that the intelligence of graphic devices can be easily
and significantly improved by adding several assembly instructions

into the algorithm for the drawing lines. If the graphics display

with grey scale is used the algorithm can be easily improved by

using algorithm [3J for drawing straight lines.
We can ask ourselves whether primitive-level instruction for

drawing lines which takes account of Visibility. should be a part

of any basic graphics software system. e.g. GKS.

6.Acknowledgement

I would like to thank Prof. L.M.V. Pitteway and Dr,J,P,A, Race

for their many helpful discussions and suggestions that enabled me

to finish this project succesfully.

7. Literature

[1] Boutland J.: Surface Drawing Made Simple. Computer Aided

Design 11(1) January 1979. pp.19-22

[2] Bresenham J.E,: Algorithm for Computer Control of Digital

Plotter. IBM Syst. J. 4(1) 1965. pp.25-30
[3J Pitteway M.,Watkinson D.: Bresenham's Algorithm with Grey

Scale. Comm. of ACM 23(11). November 1980. pp,625-626

[4] Skala V.: Hidden-Line Processor, CSTR/29. Computer Science

Dept .. Brunel University. Uxbridge. Middlesex, 1984

[~ Sowerbutts W,T.: A Surface-Plotting Program SUitable for
Microcomputers. Computer Aided Design 15(6). November 1983,
pp.324-327

[6J Watkins S. L.: Masked Three-Dimensional Plot Program with

rotation, Comm, of ACM 17(9). September 1974. pp,520-523

[7J Williamson H,: Hidden-Line Plotting Program. Comm of ACM
15(2). February 1972, pp.100-103

