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Abstract 
This work focuses on possibilities of enhancing resolution of digitized images gained by 

CCD elements. Image pre-processing is described, including algorithms for demosaicking, 

colour balancing and colour scaling. Resolution enhancement techniques are described, 

mentioning interpolations and focussing on techniques working with multiple images of 

unchanged scene. 

Frequency domain and space domain approaches are described and an improved algorithm 

is proposed, exploiting knowledge about the real CCD elements. Implementation of image 

enhancement techniques is described and results of experiments with both simulated and real 

images are presented. 



 2

Table of contents 
Abstract.................................................................................................................................. 1 
Acknowledgements ............................................................................................................... 5 
1. Introduction .................................................................................................................... 6 
2. CCD sensors................................................................................................................... 7 

2.1 Basic kinds of CCD sensors ................................................................................... 7 
2.1.1 Rectangular CCD sensors using Bayer array ................................................. 7 
2.1.2 Multilayer rectangular CCD sensor................................................................ 8 
2.1.3 Octagonal CCD elements ............................................................................... 8 

2.2 Image data processing ............................................................................................ 9 
2.2.1 Demosaicking................................................................................................. 9 
2.2.2 White Balancing........................................................................................... 14 
2.2.3 Colour scaling .............................................................................................. 15 

2.3 Influence of pre-processing on SR algorithms..................................................... 17 
3. Resolution enhancement .............................................................................................. 18 

3.1 Super Resolution problem specification .............................................................. 18 
3.2 Frequency domain methods ................................................................................. 19 

3.2.1 Registration methods used for frequency domain methods ......................... 20 
3.2.2 Properties of frequency domain approach relevant to CCD sourced images21 

3.3 Space domain methods......................................................................................... 21 
3.3.1 Unifying notation for space domain SR....................................................... 21 
3.3.2 Iterative Backprojection ............................................................................... 22 
3.3.3 Zomet robust method ................................................................................... 23 
3.3.4 Farsiu robust method.................................................................................... 24 
3.3.5 Smoothness assumption ............................................................................... 24 
3.3.6 Registration methods used for space domain SR ......................................... 25 
3.3.7 Properties of space domain approach relevant to CCD sourced images...... 26 

3.4 Improved algorithm derivation............................................................................. 26 
4. Implementation............................................................................................................. 28 

4.1 Data structures...................................................................................................... 28 
4.2 Simulated images ................................................................................................. 29 
4.3 Noise simulation................................................................................................... 30 
4.4 Registration .......................................................................................................... 30 
4.5 Smoothness prior implementation........................................................................ 31 
4.6 Implemented smoothing filters............................................................................. 32 

4.6.1 Farsiu smoothing .......................................................................................... 32 
4.6.2 Weighted neighbourhood averaging filter.................................................... 32 
4.6.3 Edge preserving smoothing filter ................................................................. 33 

4.7 Implemented SR methods .................................................................................... 33 
4.7.1 Iterated Backprojection ................................................................................ 34 
4.7.2 Zomet robust method ................................................................................... 36 
4.7.3 Farsiu robust method.................................................................................... 36 

4.8 RAW data loading................................................................................................ 37 
4.9 Image data loading ............................................................................................... 38 
4.10 Batch processing methods.................................................................................... 39 

4.10.1 Super-resolution of RGB images ................................................................. 39 
4.10.2 Batch experiments ........................................................................................ 41 

5. Experiments with simulated data ................................................................................. 42 



 3

5.1 Accuracy testing................................................................................................... 42 
5.2 Robustness testing ................................................................................................ 47 
5.3 Speed tests ............................................................................................................ 49 
5.4 Smoothness tests .................................................................................................. 50 
5.5 Influence of demosaicking on the SR process ..................................................... 51 
5.6 SR results compared to single image resolution enhancement ............................ 53 

6. Experiments with real data........................................................................................... 54 
6.1 Images taken from camera held in hand............................................................... 54 
6.2 Images taken from lying camera .......................................................................... 55 
6.3 Images taken from tripod ..................................................................................... 56 

7. Future work .................................................................................................................. 57 
8. Conclusion.................................................................................................................... 58 
Used abbreviations .............................................................................................................. 58 
References ........................................................................................................................... 59 
Appendix A – User manual ................................................................................................. 60 
Appendix B – Results of SR of simulated images .............................................................. 63 
Appendix C – MRW format description ............................................................................. 66 



 4

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that this diploma thesis is completely my own work and that I used only 

the cited sources.  

 

Pilsen, 21.5.2004 

 

Libor Váša 



 5

Acknowledgements 
 

The author would like to thank to Mr. Tom Crick, who kindly checked a large part of this 

work for language mistakes. 

 

 

 

This work was supported by Microsoft Research – project No. 2003-178 



 6

1. Introduction 
The fast development of computer technologies has become a standard during the last few 

decades. This state is usually represented by improvements in quantitative parameters of 

computer hardware, but also major qualitative changes can be observed in some areas of 

development. These breakthroughs are usually connected with considerable drops in prices, 

which allows for wider markets producing larger profits, which can be reinvested into 

research aimed to further reduction of manufacturing costs. 

A good example of such developments are changes on the market of still cameras, where 

digital equipment recently gained position comparable to traditional analog cameras. 

Consumer digital cameras provide sufficient quality for amateur shooting and the advantage 

of digital processing of images attracts many buyers. However, professional users still see 

considerable disadvantages of digital photography, represented by smaller dynamic range of 

images and low resolution, which limits the use of digital images to small format prints. In 

this work we would like to show methods of improving resolution of digital imagery without 

using a CCD (Charge Coupled Device) element with higher resolution. One way of achieving 

such goal is to combine multiple shifted low resolution images into one with higher 

resolution. Such a process is usually denoted as Super Resolution (SR). 

First of all we will need to find out what kind of data can be obtained from an ordinary 

digital camera, what algorithms are used to process such data and how does such processing 

affect eventual resolution enhancement. Subsequently we will explore existing Super 

Resolution techniques, considering their properties relevant to consumer level digital cameras. 

We will choose some of the methods for reference implementation and we will derive a 

modified method that will consider specific properties of current CCD sensors. We will 

compare results of such method to reference methods results and state conclusions about the 

improvement gained. 

We will derive algorithms as general as possible, and we will verify our results 

experimentally. Our testing hardware will be a digital camera that employs common 

technologies (such as RGB Bayer array CCD) and provides RAW data file, allowing us to 

alter most of image pre-processing.  
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2. CCD sensors 

2.1 Basic kinds of CCD sensors 

With reference to our goals we will split the CCD elements used in current consumer level 

cameras according to the shape of the sensor cell and to the method used to gain RGB 

samples at each pixel location. 

Two basic shapes of cell are currently used: octagonal (SuperCCD by FujiFilm) and more 

common rectangular, that in most cases uses square cells. Samples of RGB at each pixel 

location are either measured at each pixel location (multilayer Foveon CCD by Sigma) or 

computed using special kind of interpolation denoted as demosaicking. 

2.1.1 Rectangular CCD sensors using Bayer array 

A Rectangular CCD sensor with one layer of light-sensitive cells is used in most current 

digital cameras. Each cell is covered by a colour filter that only lets through certain 

wavelengths. Usually three types of filters are used, allowing the red, green or blue part of the 

spectrum, and the values gained are interpreted as the R, G or B components of the resulting 

pixel. The most commonly used layout of RGB filters is denoted as the Bayer array, which is 

shown in figure 2.1. Equal amounts of red and blue samples are gained, while green is 

sampled at double frequency due to the human eye is most sensitive to green colours. 

It is also possible to use different wavelengths, as Nikon, for example, uses C-Y-G-M 

(Cyan, Yellow, Green and Magenta) filter array for its Coolpix digital camera series, while 

Sony uses R-G-B-E (Red, Green, Blue and Emerald) for its DSC-F828 model. These 

modifications usually aim to enlarge the colour gamut of the device and therefore improve the 

colour response of the camera. Non-Bayer CCDs require different demosaicking algorithms, 

but their properties are generally equal to the Bayer array CCDs. 

It is important to realise that in any of these cases only one component of usual three- or 

four- component colour representation is measured at each pixel location. The remaining two 

or three values need to be computed artificially, employing interpolation techniques. This 

process and its effects will be described later. 
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Figure 2.1 – Bayer colour array 

2.1.2 Multilayer rectangular CCD sensor 

Only one manufacturer currently provides digital cameras for the consumer market that 

employs a CCD element capable of measuring all RGB values at each pixel location. Sigma 

Foveon technology uses three layers of light-sensitive elements, each measuring a particular  

range of wavelengths and letting the rest of the spectra through. 

In such case no demosaicking is required, as all the information is measured directly, 

which allows for faster processing and better images without a possibility of interpolation 

artifacts. The main downside to this approach is the current high production cost of Foveon 

CCD elements, which makes any camera using such technology many times more expensive 

than Bayer array based camera with equal resolution (Sigma states a 10 MegaPixel sensor, but 

this number relates to number of light-sensitive cells, actual resolution of taken picture is only 

3.3MPx). 

2.1.3 Octagonal CCD elements 

Cameras produced by Fujifilm use an octagonal shape of light-sensitive elements, which 

allows for smaller inter-pixel distance and therefore produces more accurate images. Sensors 

that use this approach are denoted as SuperCCD, currently fourth generation is available. 

For the purposes of this work SuperCCD is unfit, as it is (in comparison to rectangular 

CCDs) much harder to simulate a degradation process represented by them. Moreover, the 

latest generation of SuperCCD introduces separation of the light-sensitive cells into two parts 

with different saturation properties, which allows for a wider dynamic range of the camera, 

but makes it practically impossible to simulate the process of image capturing without a very 

precise knowledge of sizes, shapes and positions of light-sensitive cells. Such knowledge is 

currently not available, as it is commercially sensitive, and even with such knowledge the 

simulation would be very complicated. 
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2.2 Image data processing 

In following part we will consider a rectangular CCD element employing a RGB Bayer 

array. Most of the processing methods are used in multilayer CCDs as well, with the only 

difference being skipping the demosaicking step. 

In this context, data processing includes all operations performed on digital data obtained 

from the CCD in order to get a standard computer image, i.e. a TIFF or JPEG file. All of these 

operations are usually performed by fast dedicated hardware contained within the camera. 

Alternatively these operations can be performed by specialised software working with RAW 

data file gained from the camera. 

Generally the processing consists of three or four separate steps. At first, all RGB values 

are reconstructed at each pixel position (demosaicking). Subsequently the image undergoes a 

procedure which adjusts the colour temperatures of the image (white-balancing), followed by 

transferring the image into logarithmic space (scaling). Resulting values may be compressed 

to an image format (JPEG, TIFF). 

2.2.1 Demosaicking 

As mentioned before, demosaicking is a process transforming incomplete RGB data from a 

CCD into a matrix containing RGB triple at each pixel location. Multiple algorithms were 

proposed to achieve this goal, because simple interpolation leads to visible artefacts. 

Algorithms used in real digital cameras are usually modifications of some of the 

algorithms presented here. According to experiments, many algorithms used by camera 

hardware and RAW data software differ from each other and their exact specification is 

usually not publicly available. 

2.2.1.1 Decreasing resolution 

One intuitive approach to demosaicking may be decreasing the resolution of the image 

gained by the CCD to one half of the original value. The new pixel in this “subsampled” 

image now contains one value for red channel, one value for blue channel and two values for 

green channel. We can consider these values to be RGB values of the low resolution grid 

pixel. 

Such an approach has two main drawbacks. An obvious one is that we have degraded the 

image quality by reducing its resolution considerably. The less obvious, but equally 

important, is a problem denoted as colour fringing. 
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If there is, for example, a unit step in intensity of light in the original image, we would get 

a situation as illustrated by fig. 2.2. For the first two rows we will get the following values: 

100% 100% 100% 50% 0% 0% 
100% 100% 50% 0% 0% 0% 

 

Combining these values, we will get three pixels. The first pixel will be full white 

(RGB 1:1:1), the second will be orange (RGB 1:0.5:0) and the last will be full black. 

For the pixel on the edge of the step, we not only get invalid lightness, but also invalid hue. 

This results in coloured stripes along the intensity edges that are very disconcerting for human 

perception. The problem of colour fringing is common for some of the following methods and 

more sophisticated methods aim to reduce its negative effects. 

R G R G R G
G B G B G B
R G R G R G
G B G B G B
R G R G R G
G B G B G B

 
 

Figure 2.2 – unit step measured by Bayer colour array 
 

2.2.1.2 Linear interpolation 

Another intuitive approach to demosaicking is to use simple linear interpolation, setting a 

value of the unknown component equal to the mean of values measured in the local (usually 

unit width) neighbourhood of the pixel. 

This method gives good results for interpolation of the G component, where 4 samples in 

the closest neighbourhood are always available. For the remaining channels, R and B, two 

cases can be distinguished. For one third of cases four values are measured in the closest 

neighbourhood, being diagonally adjacent to the computed value. In the remaining two thirds 

of cases, only two adjacent measured values are available, making the mean less reliable. 

Linear interpolation solves the problem of degrading the image’s resolution, but problems 

with colour fringing exists even here, as illustrated in fig. 2.3 for single line of Bayer array. 
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original colour          
Bayer array             
measured values 100% 100% 100% 0% 0% 0% 
interpolated complementary values 100% 100% 50% 50% 0% 0% 
final pixel colour           

 
Figure 2.3 – colour fringing caused by linear interpolation 

2.2.1.3 Constant hue based interpolation 

This method (proposed in [Cok87]) tries to reduce colour fringing by keeping constant hue 

in the interpolation neighbourhood. In this algorithm, hue is defined as R/G and B/G ratios, 

where R and B are treated as chrominance values and G is considered to be luminance value. 

The first step of the algorithm populates all pixel locations with G value using linear 

interpolation. In the second step, defined hue is linearly interpolated from surrounding points 

and used with G value to produce the chrominance values. Let us now consider the Bayer 

array shown in figure 2.4. 

R11 G12 R13 G14 R15 G16 

G21 B22 G23 B24 G25 B26 

R31 G32 R33 G34 R35 G36 

G41 B42 G43 B44 G45 B46 

R51 G52 R53 G54 R55 G56 

G61 B62 G63 B64 G65 B66 
 

Figure 2.4 – part of Bayer colour array 
 

Computation may then be expressed as follows: 
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for the case of four  diagonal neighbours, or as 
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for the case of two neighbours. 

As one can see, the problem remains of including only two adjacent measured values for 

two thirds of chrominance computations. 
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2.2.1.4 Median filtered interpolation (Freeman demosaicking) 

This method (proposed in [Free88]) also attempts to reduce the effects of fringing by 

removing sudden steps in hue, interpreted in a similar way as in the previous algorithm. 

Median filtering is used to remove such jumps while preserving important hue changes. 

In the first step of the algorithm, complete linear interpolation of RGB components is 

performed. Difference images R-G and B-G are subsequently constructed and filtered by 3x3 

or 5x5 median filter. Resulting differences are then used with original measurements to 

compute all the RGB values in each pixel. This is possible as we have one value and two 

differences for each pixel. 

Unit steps are correctly reconstructed when the 5x5 median is used, while the 3x3 median 

does not help. Unfortunately, the 5x5 median may remove some important details from the 

image, degrading its sharpness. 

2.2.1.5 Larroche – Prescott algorithm 

This method (proposed in [Laro94]) exploits a simple idea, that when a sharp edge runs 

through a pixel it is more accurate to interpolate missing value from values measured in the 

direction of the edge rather than from values measured across the edge. At each pixel a 

classifier value is computed, which will detect the direction of a possible edge. According to 

this value an estimator is chosen. The algorithm works in a two step fashion, in the first step 

values of G at each pixel location are computed using following classifiers: 

( )[ ]
( )[ ]446424

444642

2/
2/

BBBabsb
BBBabsa

−+=
−+=

       (2.3) 

Note that classifiers are closely related to first order partial derivatives and therefore 

express amount of change in vertical and horizontal direction. Subsequently, following 

estimators are used according to values of classifiers: 

2/)( 454344 GGG +=    where a < b  

2/)( 543444 GGG +=    where a > b    (2.4) 

4/)( 5434454344 GGGGG +++=   where a = b 

Following chrominance computation employs idea of constant hue proposed previously. 

2.2.1.6 Hamilton – Adams algorithm 

The algorithm proposed in [Ham97] uses the same idea as in the previous algorithm, only 

includes second order partial derivative related classifiers and estimators to guess the 
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direction of the edge more precisely. The algorithm again works in a two-step fashion, first 

interpolating green component using following classifiers: 

)()2(
)()2(

82951

64753

GGabsAAAabsb
GGabsAAAabsa

−+−+−=
−+−+−=

      (2.5) 

Indexing of formulas presented relate to cross neighbourhood illustrated in fig. 2.5, value A 

represents measured chrominance value (either R or B). According to values of these 

classifiers one of following G estimators is chosen: 

2/)2(2/)( 753645 AAAGGG −+−++=   where a < b 

2/)2(2/)( 951825 AAAGGG −+−++=   where b < a   (2.6) 

4/)4(4/)( 9751386425 AAAAAGGGGG −−+−−++++=  where a = b 

For some chrominance values estimation is instead of constant hue computation used 

similar classifier/estimator scheme. For the two neighbours case is used following estimator 

without any condition: 

2/)2(2/)(
2/)2(2/)(

741714

321312

GGGAAA
GGGAAA

−+−++=
−+−++=

      (2.7) 

For the diagonal neighbours is following classifier used to decide the direction of the edge: 

)()2(
)()2(

91951

73753

AAabsGGGabsb
AAabsGGGabsa

−+−+−=
−+−+−=

     (2.8) 

Value indexing used in these formulas relate to unit neighbourhood illustrated in fig. 2.6. 

Subsequently, one of following estimators is chosen: 

2/)2(2/)( 753735 GGGAAA −+−++=   where a < b 

2/)2(2/)( 951915 GGGAAA −+−++=   where a > b   (2.9) 

4/)4(2/)( 9753197315 GGGGGAAAAA −−+−−++++=  where a = b 

Please note that in this and in the previous algorithm, not only values of the estimated 

components are considered in the estimation process. This implies that demosaicking results 

of these methods differ when separate channels are used (values of R and B influence 

estimates of G and vice versa). 

  A1   
  G2   
A3 G4 A5 G6 A7 
  G8   
  A9   

 
Figure 2.5 – neighbourhood used for G classifiers in Hamilton – Adams algorithm 
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A1 G2 A3 
G4 C5 G6 
A7 G8 A9 

 
Figure 2.6 – neighbourhood used for chrominance classifiers in Hamilton – Adams 

algorithm 

2.2.1.7 Loopy propagation demosaicking 

In some recent work [Grant] an idea of employing loopy belief propagation networks 

framework is used for demosaicking. This approach is mainly used for the estimation of 

chrominance channels, but has no positive effect on the better sampled luminance values. The 

algorithm treats colour values as “beliefs” of cells that are iteratively updated using message 

passing algorithm between neighbouring cells. The number of iterations must be artificially 

limited because after a certain number of iterations the mean error starts to rise, as irrelevant 

information from too distant cells starts to influence the beliefs. 

In this algorithm not only do different channels influence each other, but also computed 

values influence measured ones. This may lead to a situation where the same measured value 

appears as different values in resulting picture. 

2.2.2 White Balancing 

The human eye is able to neutralise effects caused by lightly coloured light sources in 

normal lighting conditions. Especially red/blue ratio, sometimes denoted as colour 

temperature, may vary in large scale without being perceived. CCD elements do not have this 

ability, and therefore a need for compensation arises. 

A procedure performed to achieve neutral colour balance is denoted as white balancing and 

usually consists of multiplying all red and blue measurements by a certain value. One would 

expect such value to be equal to one for regular lighting conditions (i.e. full sunlight), but due 

to different transmitivity of colour filters is it necessary to balance white even in such case. 

Values used for white balancing can be gained in various ways. The simplest possibility is 

to use some values preset by the camera manufacturer, which is both the case when camera 

does not allow for white balance setting and the case when user may select one of predefined 

settings. 

Another possibility is to let the camera compute the values when pointed to a white object. 

As one can easily imagine, the coefficient values are computed as mean G/R and G/B ratios of 

values measured across the white object. 
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Last and most complicated is to let the camera guess the coefficient values from the scene 

without explicitly specifying what object is meant to be white. In such case the only reliable 

knowledge the camera can use is whether a flash was used. In some cases the camera simply 

decides according to this information between “sunny” and “flash” presets, whereas in other 

examples more sophisticated algorithms are employed. 

An example of preset values and values measured from a white object are shown in table 

2.1, where a white sheet of paper was used as a white object for the measurements. The 

“sunny” measurement was performed at 13:00, sky was clear and the object was fully 

enlightened by sun. The “artificial” measurement was performed in a room with sealed 

windows, with the object being lit by a single light bulb with no shield. 

As one can see, artificial lighting tends to be more reddish, while flash light contains more 

blue. Correct white balance setting can usually completely remove such colour biases. 

Incorrect white balance settings lead to obvious colour biases, which can be reduced using 

digital image processing software. 

 preset sunny 
measured 

sunny preset flash 
preset artificial 

light 
measured 

artificial light 
G/R 1.828 1.820 1.984 1.055 0.973 
G/B 1.480 1.355 1.313 2.836 2.918 

 
Table 2.1 – example values used for white balancing 

2.2.3 Colour scaling 

The response of a CCD cell is linear to the amount of light that hits its surface. This is both 

stated by the CCD manufacturers and confirmed by experiment we have performed. In this 

experiment, we have taken pictures of a LCD screen with a certain percentage of pixels fully 

lit, while others were fully black. We have gradually increased the number of lit pixels and we 

have used optically blurred images (using an incorrect focal length), observing mean 

measured value. As one can see from graph 2.1, the results confirm that the response is linear. 

 
On the other hand, values stored in image files are not displayed linearly. This is a 

commonly known fact, which was again confirmed by an experiment. Knowing that the 

response of a CCD is linear, we have taken pictures of the LCD panel displaying image 

containing increasing values of grey. Graph 2.2 shows the result, proving that values are 

converted into light intensity exponentially. The reason for such behaviour of computer 

display is based on the knowledge that the human eye perceives equal differences for equal 

ratios of intensity of incoming light. 
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Graph 2.1 – response of CCD. Measured values don’t reach 100% because of set 

exposition value. Difference between measured channels is caused by non-white light source 
and would be eliminated by correct white balancing. 
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Graph 2.2 – relation between grey value and light intensity 
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This knowledge implies a need for compensation when transforming values measured by a 

CCD element into a computer image. Such compensation should be logarithmic, as later 

exponential interpretation by computer display system will lead to linearity between original 

measured light intensities and intensities produced by display system. 

Figure 2.7 shows relationship between the measured values (y axes) and the values 

contained in the final image (y axes). As one can see, this relationship is not single valued, 

which is caused by used demosaicking algorithm, but the curve is generally logarithmic. 

 
Figure 2.7 – Colour scaling – image gained by plotting points to positions horizontally 

corresponding to measured value and vertically corresponding to value in image processed by 

camera software. 

2.3 Influence of pre-processing on SR algorithms 

The current published SR algorithms are usually tested on simulated data. The reason for 

this is that most of the algorithms are very sensitive to any noise in the input data. If we 

consider that any interpolation, multiplication or other manipulation in computer suffers at 

least from rounding errors, we can see that the original RAW data is the best possible input 

for any SR method. 

Moreover, many SR algorithms employ interpolation techniques. Such techniques may 

suffer significantly when performed in non-linear space represented by the computer image 

file. 

We believe that using only exact measured values that are not affected by either 

demosaicking, white balancing or colour scaling will lead to better results of SR algorithms 

for real data. We may actually use SR instead of demosaicking, while we will need to apply 

white balancing and colour scaling to the SR results manually to gain correct output images. 
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3. Resolution enhancement 
Low resolution is one of the main downsides to the consumer level digital still cameras. An 

obvious solution to this problem is using a higher-resolution CCD, but this is not always 

acceptable for reasons which may include higher levels of noise contained in images taken by 

high resolution CCD, high prices of such device or simple unavailability of a device that 

could provide sufficient resolution. 

Therefore, we would like to show ways of improving resolution of images above the 

resolution of CCD used for capturing. The simplest way of doing so is resampling the image 

to higher resolution. There exist numerous sophisticated algorithms providing high quality 

results. Most of these algorithms are based on some interpolation technique, assuming point 

sampling of input image, which is not the case of data produced by CCD images. Moreover, 

all these methods are limited by the amount of information contained within the image (i.e. 

there is no information about sub-pixel details of the original scene; such details cannot be 

reconstructed from single image). 

One way of adding more information to the resolution enhancement process is using 

multiple images as input. These images may either contain different parts of the original scene 

and simple (appropriate) merging of such images produces one image of the original scene 

with resolution higher then the one of the CCD used to capture each image. Such an approach 

is often used for taking pictures of large objects or panoramas. 

It is not always possible to take pictures of parts of the scene at full resolution, as the 

object may be, for example, too small for correct merging of partial images. Even in such case 

an improvement of resolution using multiple input images may still be performed. Although 

taking multiple images of an unchanged scene from the same position does not bring any new 

information to the process, taking images shifted by sub-pixel (i.e. non-integer multiple of the 

pixel size) distance will allow for considerable resolution enhancement. 

3.1 Super Resolution problem specification 

Core of a problem denoted as super resolution lies within a simple idea, that multiple 

slightly shifted images of unchanged scene contain more information than a single image, and 

that such information could be exploited in order to increase the resolution of image. 

The validity of such assumption can be shown by the simple example in figure 3.1. Let us 

suppose integral sampling of a function defined over continuous two-dimensional interval. 

This function was sampled for the first time yielding for the first row values v11 = 1 and v12 = 
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0.5. Subsequently, the sampling mechanism was shifted to the right and sampling was 

performed again, yielding values v11’ = 0.5 and v12’ = 1. In this example, one can see 

(assuming values to be limited by 0 < v < 1) that the original function can be fully 

reconstructed even though the sampling rate of both sampling procedures was below Nyquist 

limit. 

We can now define super resolution as a procedure, which takes as input multiple images 

of unchanged scene, description of geometric warp between the images and other information 

about the imaging process, and produces one image with resolution higher than resolution of 

any of the input images. In most cases, super resolution is required to produce an image that 

predicts well the input images being put through simulation of degradation process. 

A procedure of gaining parameters of geometric warp between input images is denoted as 

registration. Some of the methods presented include a special algorithm for registration, 

whereas others rely on given information. 

first sampling second sampling  
Figure 3.1 – Sampling example 

3.2 Frequency domain methods 

One of first attempts to solve the SR problem was presented in the work [Huang84] in 

1984. A frequency domain approach was used, assuming that the original function was point 

sampled. Discrete Fourier Transforms (DFTs) of the sampled data are then created and related 

to each other via the shifting property. Subsequently DFT of the original image is constructed 

and the original image is reconstructed via inverse Fourier transform. 

Denote the original continuous scene by ),( yxf . Translated continuous images can then be 

expressed as 

Rryyxxfyxf rrr ,...,2,1),,(),( =∆+∆+=       (3.1) 
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Continuous Fourier transform of the original scene will be denoted as ),( vuF  and that of 

the translations as ),( vuFr . The shifted images are impulse sampled yielding observed images  

[ ] ( ),, ryrxr ynTxmTfnmy ∆+∆+=  where m=0,1,...,M-1 and n=0,1,...,N-1 (3.2) 

Discrete Fourier Transform ( [ ]lkr ,γ ) may be computed for each observed images, being 

related to the original images CFT via aliasing relation: 
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where fsx=1/Tx and fsy=1/Ty are the sampling rates in the x and y dimensions and 

( )yxTT/1=α . We can also relate the CFT of the original scene to the CFTs of the shifted 

versions via the shifting property: 

( ) ( )vuFevuF vyuxj
r

rr ,, )(2 ∆+∆= π         (3.4) 

This equation actually relates spatial domain translation to frequency domain as phase 

shifting. 

Assuming f(x,y) is band-limited, we can use equation 3.4 to rewrite the aliasing 

relationship 3.3 in matrix form as 

FY Φ=            (3.5) 

where Y is a R 1×  column vector with the rth element being the DFT coefficients [ ]lk,γ  of 

the observed image [ ]nmyr , , Φ is a matrix which relates the DFT of the observation data to 

samples of unknown CFT of f(x,y) contained in the 4LuLv×1 vector F. 

SR procedure now consists of finding the DFTs of the observed data, constructing theΦ  

matrix, solving the equation 3.5 and performing inverse DFT on the solution to acquire the 

reconstructed image. 

3.2.1 Registration methods used for frequency domain methods 

The shifting property gives us a powerful tool for estimation of translational motion within 

observed images. We can choose one of the input images as a reference and register all other 

images against it. The only registration parameters rx∆ and ry∆ can be handled as 

optimization parameters of following formula: 

[ ] ( ) ( )( )vuFevuFMinyx vyuxj
r
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rr

rr ,,arg, )(2

,

** ∆+∆

∆∆
−=∆∆ π      (3.6) 
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For the real computation, equation 3.6 is used with the aliasing relation 3.3 to form an over 

determined system of equations. Solving this equation system provides the desired 

registration parameters. 

3.2.2 Properties of frequency domain approach relevant to CCD sourced 
images 

There are two main drawbacks to this algorithm. First, it cannot be extended to handle 

general motion including rotation. The shifting property can only handle translational motion 

and there is no simple enough relation that would describe changes in frequency domain 

caused by rotation in space domain. 

The second important downside to this approach is that it assumes that the images are 

point-sampled. In all current digital camera equipment it is much more accurate to assume for 

integral sampling, as size of the light-sensitive cells is many times larger than the inter-cell 

distances and the size of charge generated at each cell is related to integral of light that hits 

whole area of the cell. 

Because of these drawbacks, we will not take the frequency domain approach into account 

in any further considerations. 

3.3 Space domain methods 

3.3.1 Unifying notation for space domain SR 

Multiple methods for solving the super resolution problem in space domain were presented 

exploiting various properties of the problem. One of these methods is Iterative Backprojection 

(IBP), which will be described in detail later. Projection Onto Convex Sets (POCS) is another 

space domain method which uses set theoretic approach to define convex sets which represent 

constraints on required image. Probability theory was also used to define a space domain SR 

method denoted as Maximum Aposteriori (MAP), where Bayesian framework is used to 

maximize conditional probability of high resolution image. 

As it is shown in [Elad97], all of the space-domain methods are closely related and may be 

unified into a single SR method. This work also defines a new general notation for the SR 

problem, which is used in most of the later research papers. 
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Images will be represented by lexicographically ordered column vectors, which will allow 

representing most operations by matrix multiplication. Given N low resolution images are 

denoted as  

{ }N
kk 1=Y  

In general case, each image may be of different size [ ]kk MM × . All of the low resolution 

images are assumed to be representations of a single high resolution image X of size [ ]LL× , 

where L > Mk for Nk ≤≤1 . If we rewrite all images as column vectors, then this relation can 

be represented by following formula 

 

kkkkk FCD EXY +=   for Nk ≤≤1      (3.6) 

where: 

Fk  is a [ ]22 LL ×  matrix representing the geometric warp performed on the image X, 

Ck  is a [ ]22 LL ×  matrix representing blur in the degradation process 

Dk  is a [ ]22 LM k ×  matrix representing the decimation operator 

Ek  is a column vector of length Mk
2 representing additive noise. 

The additive noise in this model can be generally any noise. Most of practical methods 

assume the noise to be white Gaussian, although some methods exist to deal with non-white 

noise. For the purposes of this work we will assume the noise to be white Gaussian and we 

will later give some results of experiments we have performed to support this assumption. 

3.3.2 Iterative Backprojection 

Iterative Backprojection (IBP) is one of the most intuitive methods used to solve the SR 

problem. It was first presented by [Peleg87] and it was adopted from Computer Aided 

Tomography. 

IBP employs an iterative algorithm, where each step takes current approximation of X and 

all images Y as input and produces next approximation of X. In each step is for each input 

image computed a simulated image from the current image and the original image degradation 

parameters. Subsequently, the simulated image is compared to the original image and 

resulting difference is back-projected onto the original image scale and position. Differences 

(treated as errors) from all input images are finally averaged and subtracted from the original 

image. 
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In the context of notation presented before, the requirement may be described as follows: 
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where X* is the solution we would like to find. The iterative algorithm then may be 

expressed as: 
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where β is a chosen step size. As starting approximation is usually used one of the input 

images back-projected into the space of X. Iterating may be stopped after set number of 

iterations or when the back-projected differences become insignificant. 

In practical implementations matrix operations are usually replaced by image operations 

such as shifting and blurring in order to reduce running times.  

3.3.3 Zomet robust method 

In [Zomet01], a modification of the IBP algorithm is presented, aiming to improve 

robustness of the method. Robustness to noise in image data, to incorrect registration and to 

outliers in input images should be improved by this method. 

The algorithm is again based on iterative back-projecting differences between simulated 

and given images and improving current approximation according to the results gained. The 

basic difference between this algorithm and the IBP is in the way the errors are combined 

together to be subtracted from the original image, where IBP uses mean of all error values for 

each pixel and Zomet uses value of median. 

The iteration process is expressed as follows: 

( )nnn XLXX ∆+=+ β1         (3.9) 

where )(XL∆  is defined as 

( ) { }n
kkBmedianXL 1==∆         (3.10) 

where Bk represents difference gained from k-th image: 

( )knkkk
T
k

T
k

T
kk FHDDHFB YX −=       (3.11) 

Relation to the IBP algorithm is obvious. The computational complexity is however higher, 

as even sophisticated algorithms for finding median are more computationally complex than 

linear computation of mean. 
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3.3.4 Farsiu robust method 

Another attempt to improve robustness of the SR methods was made in work [Farsiu03]. 

The basic idea is that changing the norm used in equation 3.2 may influence the robustness of 

the method. 

Iterative algorithm represented by equation 3.2 performs optimization under the L2 norm, 

i.e. mean squared error: 

( ) ( )∑
=

−=
N

k
kkkk XFCDYXMSSE

1

2      (3.12) 

On the other hand, the Farsiu algorithm seeks to minimize the differences under the L1 

norm, i.e. the equation 3.2 may be rewritten as: 
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Minimization under this norm yields different iterative relation: 

( )⎥
⎦

⎤
⎢
⎣

⎡
−−= ∑

=
+

N

k
knkkk

T
k

T
k

T
knn FHDsignDHFXX

1
1 YXβ     (3.14) 

3.3.5 Smoothness assumption 

All previously mentioned algorithms suffer from the presence of noise in the final image. 

This is caused by the fact that Super Resolution is generally an ill-posed inverse problem 

[Baker02]. This means that there are many images that very closely fit the equation 3.7, some 

of which are very noisy. In real life task of Super Resolution we are usually not interested in 

images that fit the equation 3.7 exactly, but in images that closely represent the original scene. 

The task of reducing the solution space, in order to find the solution that suits our needs 

best, is denoted as regularisation. Regularisation requires some further a priori knowledge 

about the original image. The fact that the original image was not noisy is a commonly used 

regularisation prior, usually denoted as smoothness prior. 

In the work [Farsiu03], together with a robustness improvement, a unifying approach to 

smoothness priors is proposed. Smoothness is viewed as similarity of the image to its slightly 

shifted version. The difference between an image and its shifted versions is expressed as: 
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where k
xS is a matrix that shifts the image by k pixels horizontally, k

yS  is a matrix that 

shifts the image by k pixels vertically, 10: << αα  is a scalar weight that gives smaller 
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effects to larger shifts and P is largest shift considered. The minimization task is then 

expressed as 
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where λ  is a scalar weighting the first term (SR similarity) to the second term (smoothness 

regularization). With compliance to the idea presented in [Farsiu03], the equation (3.16) is 

solved under a L1 norm, yielding iterative formula: 
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3.3.6 Registration methods used for space domain SR 

Space domain methods allow for much more general motion than frequency domain 

methods. The Fk matrix in equation 3.6 can generally represent any type of motion and 

general registration requires optimization of each of its elements. 

In real task, usually the warp between images can be expressed by just a few parameters 

(translation, rotation, sheering), according to which the Fk matrix is constructed. These 

parameters can be optimised before the iterative task of spatial SR starts, relating all images to 

the initial approximation. The optimisation may be expressed as 

( )[ ]kkk
a

aFHDMina YX −= 0
* arg       (3.18) 

where a is a vector of general registration parameters. Concrete solution of such 

optimisation depends on the form of registration parameters. 

In some research papers ([Elad98]), a very simple registration is used for the purposes of 

demonstration of properties of SR algorithms without complicating the situation with complex 

registration. A pure translational movement is assumed, and the size of the movement step is 

limited to the size of cell of the high resolution grid. These assumptions simplify drastically 

both registration and simulation of the degradation process, where the matrices Dk and Fk may 

be represented by very simple image operations. 
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The registration itself is then performed as a search in a discrete space, a certain number of 

registration parameters is searched to find a minimum according to equation 3.18 (i.e. 

degradation process is simulated and such registration parameters are chosen that produce the 

image closest to the one given as input). 

In the work [Hard97], a further improvement is proposed, aiming to include information 

from all input images to the registration process. Authors suggest not only to perform 

registration once before the SR process starts, but also to refine the registration during the 

process. In such case, the registration is performed against the current approximation, which 

contains information from all input images. These refining steps may be taken after every 

iteration of the SR algorithm, or only after a certain number of iterations. 

The authors also suggest searching for improved registration parameters only within a 

small area around the current ones, allowing for faster computation. 

3.3.7 Properties of space domain approach relevant to CCD sourced 
images 

Both drawbacks of methods mentioned above are addressed by the space domain methods. 

Using proper decimation matrix allows us to simulate integral sampling. The warp between 

input images can take generally any form, which allows describing complex motion. 

Nevertheless, assuming the motion to be simple simplifies the algorithms significantly, 

allowing quick testing properties of algorithms that are not related to registration. 

3.4 Improved algorithm derivation 

In previous sections we have shown that an image captured by common digital still camera 

undergoes complicated preprocessing that includes demosaicking, white-balancing and value 

scaling. We have also shown that there are powerful algorithms capable of restoring a high 

resolution image from multiple degraded and slightly shifted images. Now, we would like to 

combine the knowledge acquired to propose an improved algorithm. 

Our basic idea is that not all data contained within final image file are directly related to 

the original scene. This is caused by the nature of demosaicking, which is basically 

interpolating measured data. If such interpolated data could be removed from the SR process, 

we believe it would have a positive effect on the result of any SR method. 

Removal of interpolated data can be done in two ways, both of which assume knowledge 

of concrete colour filter array layout. First possibility is to simply use only those R, G or B 

values from the image file that was really measured. In this case we will be using values 
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altered by white-balancing, value scaling and in some cases also by demosaicking (some 

algorithms even alter the measured values). 

The other possibility is to use a camera capable of producing RAW data file. Such file only 

contains values exactly measured by the CCD element, not altered by either of demosaicking, 

white balancing or value scaling. 

Any of the algorithms presented for the space domain SR can be used in almost unchanged 

way. Each input image will only require a boolean mask that will tell the algorithm whether or 

not to take the each pixel into account. Computation of the back-projected error can remain 

unaltered, only using respectively lower number of input values. 

It is possible that there will be areas of the image that were not measured by any of input 

images. This leads original algorithms to keeping the values of first approximation at these 

spots throughout the whole computation, which may be misleading. A better solution is 

offered by incorporating the smoothness assumption presented above into the algorithm. 

Doing so will effectively lead to interpolation of the current approximation for the spots not 

measured by either of input images. 
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4. Implementation 
This section focuses on the practical implementation of Super Resolution. The 

implementation consists of three classes, all written in C#. This language was chosen because 

it allows easy pure object programming, along with using the .NET Framework class library 

routines for loading and saving images and because it does not show significant drop in 

performance in comparison with lower level languages.  

The data structure required for representing the images is implemented in the MyImage 

class. Its data fields will be described first together with its basic constructors, while its 

methods and advanced constructors will be described later, as they will become necessary. 

The second class implemented is the SuperResolver class. This class provides methods 

for the actual SR techniques together with some utility methods for generating testing images 

and other support functions. 

The last class represents a simple user interface, which allows using the previous classes to 

super-resolve either artificially created inputs or real pictures. 

4.1 Data structures 

The basic data structure is represented by the MyImage object. It contains following data 

fields: 

• double[,] pixels – two dimensional array of double values. Floating-point 

number was chosen because the SR methods include floating-point operations and 

rounding to integer value would introduce unnecessary errors. The values should be 

always in the (0,1) interval, where 0 represents minimal amount of incoming light 

and 1 represents maximum value (this usually relates to fully saturated CCD cell) 

• bool[,] mask – two dimensional array of binary values, that presents a mask, 

marking pixels that are relevant to the image processing. This field is used to 

distinguish between pixels of the image that were measured by the CCD (value 

true) from the pixels computed by demosaicking (value false). 

• int w, h – integer values containing width and height of the image. These values 

can be gained from the pixels array, but because they are used very often it is better 

to access them in a quick and direct way. 

• int xs, ys – integer values used for registration. Their meaning will become clear 

when registration will be described. 
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There are two simple constructors implemented to provide new instances of the MyImage 

class. These are: 

• MyImage(int w, int h) – constructs a MyImage instance, that contains an image 

of width w and height h. All the pixel values are set to zero and mask values are set 

to false. 

• MyImage(Bitmap bmp) – constructs a MyImage instance of width and height of the 

image contained in the instance of .NET Framework class Bitmap passed as an 

argument. The pixel values represent brightness of the pixels of the input image 

(GetBrightness method is used). All mask values are set to true. 

4.2 Simulated images 

For the testing purposes we have implemented methods that allow simulating the 

degradation process. This degradation includes neither of blurring, rotation or changes in the 

original scene, and therefore it does not reflect the real situation exactly. On the other hand, it 

allows considering properties of the algorithms without influence of these factors. 

The degradation is performed by following member method of the MyImage class: 
MyImage[] generateImages(int count, int rw, int ps) 
This method creates images of size approximately ps-times smaller than the image 

contained in the instance upon which it was called. The number of images created is equal to 

the count parameter. 

Each pixel is computed as average of ps x ps square area of the original image, effectively 

simulating integral sampling. For each image a pair of shift values xs and ys is randomly 

generated within the interval (-rw, rw). These values represent the shift of the sampling 

mechanism expressed in the original image scale. Each sampling area is therefore shifted by 

that amount of pixels. Generated values are stored in the xs and ys fields of the resulting 

MyImage objects, so that they can be used as input for the SR. 

To allow for equally sized output images without blank borders, it is necessary to reduce 

the width of the output images by 2rw, as shown in figure 4.1. 
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original image            xs=ys=0            xs=ys=rw  
Figure 4.1 – degraded images spans 

4.3 Noise simulation 

For the purposes of the consideration of the influence of noise on the algorithms, we have 

implemented a possibility of including noise into the simulated inputs. Robustness especially 

cannot be considered without a noise inclusion. 

Most papers about SR assume the noise to be white Gaussian. We have performed 

experiments with real cameras which support this assumption (see section Experiments). 

Noise is added to an image by calling the addNoise(double D) method upon it. This 

method adds to each pixel a random Gaussian value generated with zero mean and standard 

deviance equal to the D parameter. 

Random values are generated using library random number generator. Method provided by 

the .NET Framework provides equally distributed random values. Gaussian distribution is 

gained using first central theorem as a sum of 120 equally distributed and properly scaled 

random values. 

4.4 Registration 

A very simple approach to registration was chosen. Only two registration parameters are 

computed, representing shifts along the x and y axes. Integer values xs and ys contained in 

the MyImage objects represent the shifts expressed in pixel counts of the higher-resolution 

grid.  

This approach is fully compatible with the simulated images generating algorithm, while 

the real-life images are likely to be not only shifted by general non-integer distance, but also 

slightly rotated. 
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We have decided for this simplification for two main reasons. First, it makes the 

registration process relatively easy, and second, most of available literature demonstrates SR 

algorithms on such registration. It will be shown in the experiments section that even with 

such simplification a significant quality improvement is gained for the real-life images. 

Registration is always performed against a high resolution image. This image undergoes a 

degradation process similar to the one described in the simulated images section, while 

various values of xs and ys are used. The resulting image is compared to the input and shift 

values that produce best fitting image are chosen as resulting registration parameters. 

The basic registration is performed by following member method of MyImage class: 

 
void registerSmall(MyImage hires, int width, int ps) 
 
This method sets the xs and ys fields of the object upon which it was called to values that 

produce best fit to image hires shifted by these values and integrally sampled with pixel size 

ps. The algorithm tries all values from the (–width, width) interval and chooses the ones that 

produce least Mean Squared Error (MSE), computed by function 

 
double degMSE(MyImage aprox, int xsp, int ysp, int ps, bool useMask) 
 

This function actually performs the same degradation process on the aprox image that was 

described in the simulated images section. Each resulting pixel is compared to a pixel on 

corresponding position and their squared difference is added to a summation variable. The 

resulting value is finally computed as the sum of squared differences divided by the number 

of compared pixels. 

If the useMask flag is set to true, then the algorithm compares only pixels that have a true 

value in the mask.  

4.5 Smoothness prior implementation 

As it is shown in [Hard97], smoothness prior plays a very important role in the SR process. 

For the purposes of consideration of variable smoothing filters, we have decided to slightly 

alter the theoretical approach to smoothness presented in [Farsiu03]. It is easy to see, that the 

equation 3.17 may be rewritten as 

)()(1 nnnn XSMTXSRTXX βλβ −−=+       (4.1) 
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where SRT(X) is a Super Resolution term and SMT(X) is a smoothness term. We have 

altered this equation in a way which allows for very easy change of the used smoothness 

prior, while it provides equal results to the equation 3.17: 

))(()(1 nnnnn XSRTXSMTXSRTXX ββλβ −−−=+     (4.2) 

This modification allows for sequential application of SR and smoothing, yielding: 

),()(1 sXSMXSMTXX nSRnSRnSRn =−=+ βλ      (4.3) 

where 

)( nnnSR XSRTXX β−= is a result of SR improvement  

SM(X,s) is a smoothing filter of strength s (in compliance with 3.17 s should be equal to 

βλ ). We can now easily separate Super-Resolution from smoothing and replace smoothness 

filter proposed by equation 3.17 by any filter providing better properties relevant to our task. 

4.6 Implemented smoothing filters 

All the smoothing filters implemented take one parameter that influences the strength of 

the filter. This allows for simply changing of the filter used. Three filters were implemented, 

the first one close to the original idea presented in [Farsiu03], the second one uses weighted 

averaging of neighbouring pixels and the last one is aimed to improve the SR results by 

preserving edges in the image. 

4.6.1 Farsiu smoothing 

This filter is close to the spirit of the smoothness prior proposed in [Farsiu03]. It practically 

implements the smoothness term of the equation 3.17. The weighting parameter α is set to 0.5 

and the width of the filter P is set to 2. 

4.6.2 Weighted neighbourhood averaging filter 

This filter sets a new value to every non-border pixel using the following equation 

1,11,,1,1,, 4444
)1( −++−+ ++++−= yxyxyxyxyxyx PsPsPsPsPsP  

where s is the strength of the filter. Four D-neighbours are influencing the value of each 

pixel, where the amount of influence is given by s. 
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4.6.3 Edge preserving smoothing filter 

This filter was implemented in an attempt to create a filter that would both introduce 

smoothness to the images, but also would not degrade sharpness of edges. 

The algorithm considers all pixels in the 8-nighborhood of the smoothed pixel. First, 

average value of all pixels in this neighbourhood with value larger than the value of the 

smoothed pixel is computed. Similarly, average of all neighbouring pixel values smaller than 

the one of the smoothed pixel is computed. 

The final value of the pixel is set to weighted sum of its value and the value of the average 

that is closer to the value of the pixel, i.e.: 

−++−= /,, )1( sAPsP yxyx  

where s is the strength of the filter and A+/- is either average of larger or smaller 

neighbouring pixels, depending on which is closer to the Px,y value. 

4.7 Implemented SR methods 

Three SR methods were implemented. All methods are based on the back-projection idea. 

The first method is the classical IBP, the two remaining ones are methods aiming to improve 

robustness of SR proposed by [Zomet01] and [Farsiu03]. 

All the methods work in an iterative manner, improving a starting approximation of high 

resolution image. All the methods take the same set of arguments: 
MyImage supRes(MyImage[] sources, bool doRegister, int ps, double beta, 

double lambda) 
where: 

sources is the set of input images, each represented by one instance of MyImage object 

doRegister is a flag telling the method whether or not to attempt to register the input 

images. If the flag is set to false, then the method uses registration parameters contained in the 

input MyImage objects. If the flag is se to true, then the method alters the input images by 

assigning new values to their registration data fields. 

ps (Pixel Size) is size of low-resolution grid pixel expressed by a number of high-

resolution grid pixels. In practice, value of ps tells the method the magnification factor by 

which we want to improve the resolution. 

beta is size of step in the iterative process (see eq. 3.8). Optimal values will be discussed 

later. 
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lambda is strength of a smoothing filter applied to the image. The value actually 

corresponds to the term βλ  in equation 3.17. Optimal values will be also discussed later. 

4.7.1 Iterated Backprojection 

The first of the implemented methods is the Iterated Backprojection method that uses 

minimization of the Mean Squared Error (MSE) between the input images and results of 

degradation simulation performed on current approximation of the high resolution image. 

The method first constructs a starting approximation of a high resolution image. For 

images with full mask (i.e. with all mask positions set to true), a bi-cubic interpolation of the 

first input image is used to gain an image of appropriate size. If there is used a mask 

representing measured values of one of colours of Bayer array, then a demosaicking technique 

is applied to the first input image before the bi-cubic interpolation is performed. 

If the doRegister parameter is set to true, then the initial registration is performed by 

calling the register method upon all the input images, passing the starting approximation as a 

reference image. 

Subsequently, a set number of improving steps is performed. It is shown in [Har97] that 

IBP based methods converge to a solution in less than twenty steps, if the size of the step is 

well chosen. Therefore we have decided that all the methods will use a constant number of 

steps (40), which should ensure the convergence, and that we will find the size of step that 

provides best results for this number of steps (see the Experiments section for results). 

In each step, a following procedure is performed: 

• a difference image is computed for each input image, expressing difference 

between the image and result of degradation simulation applied on the current 

approximation 

• the differences are back-projected on the high resolution grid, taking into account 

registration parameters of corresponding input images 

• an error image is computed by averaging pixel values of the difference images 

• the error image values are multiplied by the beta parameter 

• the error image is subtracted from the current approximation 

Difference image is gained using a special MyImage constructor of following prototype: 
MyImage(MyImage hires, MyImage lores, int ps) 

where 

hires is current approximation of the high resolution image 

lores is one of input images 
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ps is size of pixel (magnification ratio) 

This constructor returns image of difference between the input image and the high 

resolution parameter degraded according to registration parameters contained within the 

lores MyImage object. The resulting image contains unprocessed difference, i.e. both positive 

and negative values, and pixels of the image correspond to pixels of the given input image. 

Note that the difference is only computed for pixels with mask set to true, while zero value is 

left at positions of mask set to false. 

This difference images are then backprojected to the high resolution image space. Two 

arrays of size of high resolution image are created, one (named data) containing double 

values which represent sum of errors, and other containing integer values (called counts) 

representing number of pixels contributing to the sum. For pixels of every difference image 

with mask set to true, a set of influenced high resolution pixels is found and value of the 

difference is added to corresponding position of the data array, while the corresponding 

elements of the counts array are incremented. 

When this is done for all difference images, then the values of data array are divided by 

corresponding values of the counts array, yielding array of average differences. The result is 

put as data to a new instance of MyImage object called error. A method multiply(double m) 

is called upon the error object, multiplying all the values by the beta parameter. Finally, the 

error image is subtracted from the current approximation by calling the method 

subtract(MyImage img) upon the approximation MyImage object. 

This process may generally lead to values outside the (0,1) interval. Therefore, the values 

are clamped to fit in this interval by calling the clamp() method upon the high resolution 

image object. 

At this point, the high resolution image approximation corresponds to the XnSR element in 

equation 4.3. A smoothing filter is now applied by calling one of methods that perform 

smoothing. 

Each iteration is finished by improving registration (only if the doRegister parameter is 

set to true). The reRegister(...) method is called upon every input image, passing the 

improved approximation as reference high resolution image. Smaller span of possible 

registration parameters is being searched; a value of one fourth or one fifth of the original 

registration width appears to provide good results while keeping the computation costs low. 
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4.7.2 Zomet robust method 

Zomet robust method is implemented in a very similar way to the IBP method. First 

approximation is gained in the same way, as well as the registration. 

Each iteration of the algorithm consists of following steps: 

• computing the difference image 

• back-projecting the image to the high resolution grid 

• finding median value of the difference for each pixel of the high resolution grid 

• creating the error image from the pixel-wise median values 

• multiplying the error image by the beta parameter (size of step) 

• subtracting the error image from the approximation of the high resolution image 

The difference image is computed in the same way as for the IBP method (see above). 

Because we need to find median of the back-projected difference values, we must keep all of 

them in a three-dimensional array called data (two spatial dimensions + third dimension for 

storing multiple values for single pixel). The back-projection is performed in the same way as 

for the IBP method, with the only difference, that the value is stored to the data array at 

position [x,y,counts[x,y]] and the counts[x,y] value is incremented. 

The median is now found in a simple way: Data for each pixel at position [x,y] are sorted 

and value at position data[x,y,counts[x,y]/2] is put to the error image to position [x,y]. A 

sorting method provided by .NET Framework Array class is used to perform the sorting.  

The error image is treated in the same way as before. It is multiplied by the value of beta 

and subtracted from the high resolution image. Image is clamped and filtered by one of 

smoothing filters. Finally, registration is recomputed, reflecting last changes in the image. 

4.7.3 Farsiu robust method 

The Farsiu method also aims to improve robustness of the SR algorithm and is 

implemented in a way similar to the previous algorithms. First, starting approximation is 

created and all images are registered to it. The following steps are then iteratively repeated: 

• difference image is computed for every input image 

• sign function is applied to each difference image 

• results are back-projected to the high resolution grid 

• projections are averaged, forming the error image 

• error image is multiplied by the beta parameter 

• error image is subtracted from current approximation of the image 
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Difference images are gained in the way described above. Sign function is performed by 

calling a method sign(double e) upon difference images. This method sets values in the 

image according to following relation: 

P’x,y  = -1  if  Px,y < -e 

  = 0    if -e <= Px,y < e 

  = 1  if e <= Px,y 

Although authors of [Farsiu03] suggest using pure sign function, our experiments showed 

that including a possibility of result equal to zero in small neighbourhood of zero improves 

significantly stability of the algorithm. 

Back-projection is performed in the same way as it is done in the IBP algorithm, only a 

sum is computed along with pixel count for each position. The error image then contains the 

value of the sum divided by number of pixels at each position. 

The following steps are performed in the same way as before, error is multiplied by beta 

and subtracted from the high resolution image by calling the subtract method, image is 

clamped a smoothed. Finally, registration parameters are recomputed using the 

reRegister() method. 

4.8 RAW data loading 

The methods for loading data from RAW data files were implemented as static methods of 

the MyImage class returning new instance of MyImage class. These methods could be 

implemented as constructors, but giving them names makes the source code more transparent. 

In practical tasks the user usually does not want to super-resolve the whole image 

contained within the RAW data file, because doing so would lead to excessive computational 

requirements (for example a full 5 megapixel image super-resolved with pixel size of 3 leads 

to a 45 megapixel image). Therefore the loading methods also allow specifying exact area of 

the RAW image that should be loaded. 

The loading methods have following prototypes: 
MyImage RedFromMRW(string filename, int xs, int ys, int dw, int dh) 
MyImage GreenFromMRW(string filename, int xs, int ys, int dw, int dh) 
MyImage BlueFromMRW(string filename, int xs, int ys, int dw, int dh) 
where: 

filename is a string containing name of a RAW data file to be loaded 

xs and ys denote x and y positions of upper left corner of the part of the image to be 

loaded 
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dw and dh denote width and height of the part of the image to be loaded 

Methods are implemented to load data from MRW files created by Minolta cameras. These 

files contain unprocessed data measured by the CCD element. Therefore not all positions of 

the output image contain a measured value, at some positions different colour components 

was measured. Such positions are marked by false value in the mask of the resulting image, 

while a true value denotes measured data on corresponding image position. For details about 

the RAW data file format see Appendix C. 

4.9 Image data loading 

Although the data contained within the image files produced by digital cameras are widely 

influenced by pre-processing described earlier, we have decided to allow them as input for the 

SR methods, because many consumer-level cameras do not provide the possibility of RAW 

data output at all. 

Even in this case we want to load data that are as close as possible to the values measured 

by the CCD. In the loading process we assume that the data were taken by a camera equipped 

by Bayer array and the colour positions are equal to the ones shown in figure 2.1. The loading 

methods load all input data from image file, but set the mask of resulting MyImage object so 

that it reflects the layout of the Bayer array similarly to the case of RAW data loading. 

Following static methods of the MyImage object are implemented: 
MyImage redFromImage(Bitmap bmp, int xs,int ys, int w, int h) 
MyImage greenFromImage(Bitmap bmp, int xs,int ys, int w, int h) 
MyImage blueFromImage(Bitmap bmp, int xs,int ys, int w, int h) 
MyImage brightnessFromImage(Bitmap bmp, int xs,int ys, int w, int h) 
where: 

bmp is an instance of .NET Framework Bitmap object, that contains the image from which 

to load data 

denote x and y positions of upper left corner of the part of the image to be loaded 

w and h denote width and height of the part of the image to be loaded 
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Masks of resulting MyImage instances are created according to following expressions: 

 

mask[nx,ny] = ((x + y) mod 2) == 1    for loading green 

mask[nx,ny] = ((x mod 2) == 0) and ((y mod 2) == 0)  for loading red 

mask[nx,ny] = ((x mod 2) == 1) and ((y mod 2) == 1) for loading blue 

 

where 

nx and ny denote the position of the pixel within the cropped part of the image 

x and y denote position of the pixel within the original image 

Note that these expressions assume that the image was created from data gained using 

Bayer array and that pixels of the image correspond exactly to Bayer-array cells shown in fig. 

2.1. If the image was for example cropped by odd number of pixels before being set as input, 

then these methods will load only values computed by demosaicking instead of loading the 

least influenced values. Therefore we suggest using full images as input data and using 

provided means of cropping to reduce the size of images. 

The brightnessFrom(...) method loads brightness values from input file, using the 

method getBrightness of the .NET Framework class Color. In this case, all mask pixels are 

set to true. 

4.10  Batch processing methods 

For the purposes of easy usage of the software, two batch processing methods were 

implemented. First of them encapsulates a process of super-resolving a RGB image, the other 

allows for simple batch-experiments with methods applied on simulated data. Both of these 

are methods of the user-interface object, and therefore both can access user interface elements 

to gain required SR parameters. 

4.10.1 Super-resolution of RGB images 

Method SupresRGB() performs all steps needed to gain a RGB high resolution image from 

either set of RAW data files or set of image files. This method is required because all 

implemented SR methods work with single-valued data, while colour pictures require 

processing of three colour components.  

The method first loads green component of the input images and performs selected super-

resolution algorithm including registration. Subsequently, red and blue components are loaded 

and super-resolution algorithm is applied without registration step. This both saves 
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computation time and makes the whole process more accurate, as registration of green 

component is more accurate because there are twice more samples of green than either of red 

or blue. 

When all components are processed, a colour scaling is performed for the case of data 

loaded from RAW data file. A method logaritmize() is called upon each MyImage instance 

representing red, green and blue components. This method applies a logarithmic function to 

each pixel value displaying values from linear space into logarithmic space. The parameters 

of the logarithmic function were set so that the logarithmic function reflects as closely as 

possible the curve shown in fig. 2.7 (the green curve was processed into a single-valued one 

by using weighted average of possible values). The shape of this curve is compared to the 

shape of the used logarithmic curve in graph 4.1. 
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Graph 4.1 – scaling curves 

 
Finally, all components are combined together to form the resulting RBG image. A static 

method 
combine(MyImage red, MyImage green, MyImage blue) 
of the MyImage class is used to perform quantization and combination into one Bitmap 

object. Quantization is performed by multiplying the image values by 255 and converting to 

int value. 

Resulting bitmap is finally saved using function provided by the .NET Framework. A 

lossless BMP format is used in order to get exact results. 
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4.10.2 Batch experiments 

For the purposes of thorough testing of implemented SR techniques, a method for repeated 

processing of the same inputs with slightly changed SR parameters was implemeted. 

The DegradeAndSuperResolve() method performs a set of tests with either of beta,  

lambda or noise deviation parameters linearly changing. The method first loads an input 

image, from which a set of degraded input images is created, using methods mentioned above. 

A constant seed is used for the random number generator, so that each time the same set of 

degraded images is generated. 

The images are generated from input image file, which is loaded using the 

brightnessFromImage() method. Therefore the input images and the resulting SR image 

represent brightness of the selected input file. 

Subsequently, according to state of the user interface, a simulation of demosaicking is 

performed. It is possible to mask pixels representing green or blue mask of Bayer array (red 

mask is from this point of view equal to the blue mask). After setting the mask values, a 

simulation of demosaicking may be performed, using the demosaickGreen() or 

demosaickBlue() methods of the MyImage class. These methods perform the Hamilton-

Adams demosaicking technique, altering pixels of false mask value. 

As a next step the method DegradeAndSuperResolve() calls static methods of the 

SuperResolver class to perform super-resolution processing upon the generated input 

images. When the processing is finished, a Mean Squared Error (MSE) between the original 

image and the gained SR result is computed and printed, giving a measure of how successful 

the SR was. Because registration is performed against one (first) of input images and this 

image may be generated with non-zero shifts, it is not guaranteed that pixels of the super-

resolved image correspond to pixels of the original image at the same position. Therefore a 

special registration is performed to find the position of the SR product that best fits the 

original image. This registration differs from the registration used during the SR, because in 

this case both images are in the same scale. 

MSE is then computed using gained registration parameters as average squared difference 

between corresponding pixels of the original and super-resolved image. 

Subsequently, according to setup given by state of the user interface, SR parameters are 

changed and another processing by SR methods of the SuperResolver class is started. The 

process ends when the given number of experiments is performed. 
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5. Experiments with simulated data 
Multiple experiments were performed in order to compare and evaluate implemented SR 

methods. We have decided to test three basic properties of each algorithm, which describe its 

usability. These are accuracy, robustness and speed. 

We will also test influence of demosaicking on results of SR, we will show that 

demosaicking introduces error into this process and degrades the results and that removing 

demosaicked pixels from the SR process improves its accuracy and performance. 

We will compare results of SR methods to interpolation methods of enhancing resolution, 

showing that SR provides considerable gain. 

5.1 Accuracy testing 

For the testing of accuracy, we have worked with simulated data. The input image (shown 

in fig. 5.1) was degraded with pixel size 3 to form 20 input images for the SR methods. 

Registration parameters were kept within small range (±5 pixels) in order to allow for fast 

registration. No noise was introduced to the input images and no smoothing was performed 

during SR. We have tried variable sizes of iteration step in order to gain a result with smallest 

MSE. 

   
Figure 5.1 – input image for the accuracy test, and its degraded version (3x magnified). 

This image was chosen because it contains high frequencies that are usually lost by 

degradation process. 

 

Results of three experiments performed with three implemented methods are shown in 

graphs 5.1, 5.2 and 5.3.  
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Graph 5.1 – accuracy of IBP method 

Zomet robust method accuracy
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Graph 5.2 – accuracy of the Zomet robust method 
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Farsiu robust method accuracy
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Graph 5.3 – accuracy of the Farsiu robust method 

 
These graphs show that MSE in dependency on step size develops in a similar way, first 

dropping to a minimum and after the step size exceeds a certain value the MSE starts to rise 

again. This behaviour is common for iterative algorithms and we have used these experiments 

to gain optimal values of size of step. We have chosen values that both produce as low MSE 

as possible, and also are not too close to the point where MSE starts to rise. This is especially 

important for the Zomet method, where the values producing least MSE are very close to the 

point where MSE rapidly rises. Table 5.1 shows the sizes of step we have found to produce 

good quality results and which we have used for further experiments: 

 

Method IBP Zomet robust Farsiu robust 

Size of step 0.025 1.4 0.76 

Table 5.1 – step size values used for experiments, for results of SR using these parameters 
see Appendix B 

 
For the consideration of distribution of errors present in SR results we have computed 

histograms of the error values for each method. Step sizes were chosen according to table 5.1, 

histograms are shown in graphs 5.4-6. Standard deviations of the error sizes were also 

computed in table 5.2. 
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Error distribution for IBP method
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Graph 5.4 – Distribution of error for IBP 

Error distribution for Zomet method
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Graph 5.5 – Distribution of error for Zomet method 
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Error distribution for Farsiu method
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Graph 5.6 – Distribution of error for Farsiu method 

 
 IBP Zomet Farsiu 

Deviation of error size 0,010074 0,007467 0,010372 

 
Table 5.2 – Standard deviations of error sizes of SR methods 

 
We have also tested the influence of input images count on the accuracy of SR, the result 

can be seen in graph 5.7. Pixel size 3 was used, no additional noise was included into the 

input images. 
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Influence of image count on SR accuracy
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Graph 5.7 – Influence of input image count on SR accuracy 

5.2 Robustness testing 

For the purposes of robustness testing we have used simulated noise described in section 

4.3. We have used values of step size gained in the accuracy tests and we have introduced 

noise with gradually increased standard deviation. No smoothing filter was used and 

registration parameters were computed using registration algorithm. 

We have performed experiments with real cameras in order to find properties of the noise 

introduced by CCD elements. We have attempted to take pictures of uniformly coloured scene 

(clear sky and white sheet of paper were used). We have then computed standard deviation of 

values in large area of such image. We are aware that even the used materials do not provide 

uniform colour across the whole image, but we are using these as pessimistic guess of the 

noise properties. 

We have found that the standard deviation of values contained within our testing images 

never exceeded 2% of the whole scale of the image, example measured standard deviations 

are shown in table 5.2. A white sheet of paper was used, one quarter of three megapixel image 

was analyzed (values for the whole image were larger, because the paper was not uniformly 

lit). 
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Standard deviation of red component 1,392% 

Standard deviation of green component 1,477% 

Standard deviation of blue component 1,026% 

Standard deviation of brightness 1,175% 

 
Table 5.2 – Standard deviation of values in picture of uniform coloured object 

 
Based on the results of these experiments, we have decided to introduce noise with 

standard deviation no larger than 2% of the scale, which for the MyImage representation leads 

to maximum standard deviation of 0.02. Results of robustness tests are shown in graphs 5.8. 
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Graph 5.8 – Robustness tests of SR methods 

 
An interesting fact can be seen on the Zomet method graph, showing that introducing small 

amount of noise actually improved the performance of the method. Both other methods 

behaved as expected, i.e. introducing noise caused growing of measured MSE. 
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5.3 Speed tests 

We have performed several experiments aimed to analyse the speed properties of the 

implemented algorithms. The running times were measured for experiments without 

registration, with four sets of input parameters tested within each measurement. Various sizes 

and counts of input images were used to test dependency on size of inputs. The result of the 

experiment with various image sizes is shown in graph 5.9. Logarithmic scales are used, 20 

input images of variable sizes were superresolved using implemented methods. 

Results of testing of image count influence are shown in graph 5.10. The graph shows that 

all running times depend linearly on the number of input images. 

 

The tests with simulated data showed that Zomet robust method provides both accurate and 

robust results, and even though its running times were longest of all methods we have decided 

to use this method for further testing of impact of demosaicking and for experiments with real 

images. On the other hand, the Farsiu method appeared to be less effective than the IBP in all 

tests.  
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Graph 5.9 – Speed tests with variable image sizes 
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Influence of input count
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Graph 5.10 – Speed tests with variable input count 

 

5.4 Smoothness tests 

No smoothing was introduced into any of tests so far. Our experiments showed that for 

exact data smoothing doesn’t improve performance. On the other hand, for input data 

modified by additive noise smoothness filter provides considerable improvement. It is shown 

in [Hard97] that SR without smoothness prior leads to noisy output images. We were testing 

influence of smoothing filters applied during SR of simulated images in order to find optimal 

strength of the filter. 

We have used data with added noise of constant standard deviation value 0.02. We have 

applied SR methods with step sizes from table 5.1. First, we have applied smoothing filter 

proposed in section 4.6.2, results are shown in graph 5.11 
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Smoothness test
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Graph 5.11 – influence of smoothing filter on accuracy of SR methods 

 

The graph shows that smoothness has positive effect on results of IBP (MSE reduced by 

10%) and Zomet method (MSE reduced by 12%), while it does not help to improve result of 

the Farsiu method. Optimal smoothing strength has for both IBP and Zomet method a value of 

0.06, which will be used for real image testing. 

We have performed experiments with methods starting with initial approximation gained 

by linear interpolation or nearest neighbour algorithm. In these tests was improvement gained 

by smoothness better, but overall MSE was always worse than the one of methods starting 

with bi-cubic interpolation. 

5.5 Influence of demosaicking on the SR process 

We have performed a series of tests in order to consider influence of demosaicking on the 

SR process. We have simulated the effects of demosaicking and compared results of SR that 

considered all (i.e. both original and demosaicked) pixels to SR that considered only original 

pixels. The image processing is described by figure 5.1. 
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Original image is loaded 

 

pixels are masked 

according to their 

position within the Bayer array 

 

masked pixels are recomputed 

using demosaicking technique 

 

All pixels are unmasked 

 

SR method is performed    SR method is performed 

 

results are compared    results are compared 

to the original image    to the original image 

 
Figure 5.1 – processing of images in the demosaicking influence test 

 

We have used the same SR method for both cases shown in figure, for the reasons 

discussed in the accuracy section the Zomet robust method was used. We have used variable 

size of the iteration step, resulting MSEs are shown in graph 5.12. 

The sudden rise of MSE for the selective method at step sizes between 0.5 and 1.0 is 

probably caused by wrong registration. Even in such case are the results better than in than 

results of SR considering all pixels. For the step size of 1.4 (which is chosen to be default step 

size for the Zomet method) is MSE reduced by more than 50%. 

The graph shows that influence of demosaicking onto the SR process is very negative. It is 

obvious that it is better to omit the demosaicked values at the price of reducing amount of 

input data, even for the better sampled green component. Similar results were obtained for the 

blue component masking and demosaicking.  
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Influence of demosaicking on SR accuracy
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Graph 5.12 – influence of demosaicking on SR. 

 

5.6 SR results compared to single image resolution enhancement 

We have performed a series of test aimed to consider the improvement gained by SR in 

comparison with single image resolution enhancement techniques, i.e. interpolations. 

Basic results can be seen in graphs 5.1 – 5.3. In the experiments performed there is bi-

cubic interpolation of one of input images used as initial approximation. Since neither noise 

nor smoothing is present within the experiment and because the first considered iteration step 

is of zero size, it is obvious that the first result is not influenced by SR at all and the MSE 

value for zero size of step actually represents MSE of bi-cubic interpolation. 

All methods improve the result gained by bi-cubic interpolation. The IBP method reduces 

the MSE by 59%, Zomet robust method is even better with 76.2% improvement, while worst 

result was gained using Farsiu robust method with MSE reduced by 40.8%. 

We have performed experiments with linear interpolation and nearest neighbour algorithm 

that showed that both these methods provide results worse than the ones obtained by bi-cubic 

interpolation.  
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6. Experiments with real data 
Multiple cameras were used for experiments with real data. We have tested multiple ways 

of taking the picture (from hand, from tripod, from desk) and multiple ways of saving the 

picture (raw data, image file). There is no way to globally measure success of SR, as original 

image is not available. Therefore we present original images and SR results for subjective 

consideration. 

All the images were cropped, as super-resolution of full images leads to excessive 

computational requirements. All original images shown here are magnified to the size of the 

super-resolved results using nearest neighbour interpolation. 

6.1 Images taken from camera held in hand 

Image in figure 6.1 was taken by camera held in hand, no zoom was used. Camera 

software was used for demosaicking. We have taken twelve such pictures, trying to avoid 

rotating the camera. Nevertheless, the source images were slightly rotated (this was well 

visible when images were viewed quickly one after another). Result of Zomet method is 

shown in figure 6.2. 

 

 
 

Figure 6.1 – source image 
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Figure 6.2 – Result of selective SR 

6.2 Images taken from lying camera 

Image in figure 6.3 was taken from camera lying on a hard table. The camera was slightly 

rotated after each shot, which caused shifts of the images in x direction. The images were 

taken at full optical zoom and the object was in cameras minimum focal distance, therefore it 

was not possible to take any larger picture without changing imaging hardware. Image 6.3 

shows one of the input images demosaicked by camera software. 

Figure 6.3 – Image taken by camera lying on a table 
 

Input images were processed by Zomet SR method, figure 6.4 shows result of full SR 

taking into account both demosaicked and measured pixels, figure 6.5 shows result of SR 

using only measured pixels. 
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Figure 6.4 – Result of SR by using all pixels 
 

Figure 6.5 – Result of SR using measured pixels only 
 

6.3 Images taken from tripod 

We have taken series of pictures from tripod using studio lighting that allowed for very 

short exposition times (1/600 s). Figure 6.6 shows one of input images, figure 6.7 shows the 

result of Zomet SR. 
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Figure 6.6 – Image taken from tripod 

Figure 6.7 – Result of SR applied on pictures taken from tripod 

7. Future work 
The simple registration algorithm seems to be the main drawback of the implemented 

algorithm. We believe that improving the registration by including arbitrary translation and 

rotation would enhance the results considerably. 

There is also a possibility of further improving the results by simulating the inter-cellular 

distances of the CCD. This could be done by extending our masking algorithm. 

Our experiments have also shown that the choice of initial approximation is very 

important, therefore we would like to explore possibilities of advanced interpolation 

techniques, such as Radial Functions interpolation in both creating the initial approximation 

and the SR process itself. 
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8. Conclusion 
We have shown that data from digital still cameras undergo a complex processing before 

they can be exported into some computer image format. We have described basic parts of this 

processing, that includes demosaicking, white balancing and value scaling. We have 

described multiple methods of demosaicking. 

We have mentioned common resolution enhancement techniques of linear and bi-cubic 

interpolation. We stated that resolution may be further improved by including multiple input 

images of the unchanged scene. Two main approaches to this problem were discussed, the 

frequency domain approach and the space domain approach. We have shown reasons why 

space domain approach is more suitable for SR of images gained by CCD elements. 

We have described general notation and three methods used for space domain Super-

Resolution. Smoothing prior and registration were discussed. 

We have implemented the three methods of space domain SR along with utility functions 

for creating images simulating data gained from a CCD element. We have thoroughly tested 

implemented methods on both real and simulated data. We have found that the Zomet method 

provides best results in both accuracy and robustness tests, but it is also slowest of all the 

methods. 

We have shown that demosaicking negatively influences the SR process. We have 

improved the methods by introducing a mask to each of input images that separates measured 

pixels from demosaicked ones. We have proven experimentally that removing demosaicked 

pixels from registration a super-resolution improves the performance considerably. 

Used abbreviations 
CCD – Charge Coupled Device  

IBP – Iterated Backprojection 

SR – Super Resolution 

MSE – Mean Squared Error 
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Appendix A – User manual 
Provided software consists of single executable file. It should run under any system 

equipped with Microsoft .NET Framework, it was tested under Microsoft Windows XP. The 

software does not require any special installation procedure, it may be simply copied to any 

location.  

The software does not have any hardware requirements above the ones of the operating 

system and .NET Framework, although it may run out of memory for larger images and its 

performance is influenced by power of processor used. 

The program provides user interface that allows experiments with both real and simulated 

images. The user interface consists of four boxes, where parameters of the desired process are 

set. Figure A.1 shows example state of the user interface. 

 
Figure A.1 – User interface 
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First of the boxes is marked with the “Method” label and allows selecting one of 

implemented methods, using provided radio-buttons. This box also contains a checkbox 

labelled “register”, which is used to set whether registration should be performed. These 

settings are shared for both real and simulated data. 

Second box is labelled “SR parameters” and allows explicit setting of used step size, 

smoothness strength, registration width and pixel size (i.e. magnification coefficient). If the 

checkbox “default values” is checked, then values of step size gained in section 5.1 and values 

of smoothness strength gained in section 5.4 are used in correspondence with method selected 

in the “Method” box. 

Super resolution of real images is performed using the “Real images” box. It contains a list 

of input files, to which new inputs may be added by clicking the “Add sources” button. Either 

any image files supported by .NET framework (these include amongst others bmp and jpg 

formats) or RAW data files may be selected. Combining image files with RAW data files is 

not allowed. 

The “Real images” box also provides tools for cropping input images, setting values to the 

“X offset”, “Y offset”, “Width” and “Height” numeric boxes sets a window that will be used 

as input for the SR. Finally, by clicking the “SuperResolve” button within the box a SR 

process is started. 

The “Simulated images” box provides controls for creating degraded versions of given 

image and performing batch experiments with MSE evaluation. After the “Degrade and 

SuperResolve” button is pressed, a dialog box appears asking the user to choose the input file.  

A set of degraded images is generated from selected file, where number of the images can be 

set in the “number of inputs” numeric field. Additional noise is added to each of the images 

with standard deviation set by value in the “noise deviation” field.  

Subsequently, generated images undergo processing by SR method selected in the 

“Method” box. The processing is repeated according to number set in the “Number of 

experiments” field, with all parameters are set according to the “SR parameters” box. Only 

one selected parameter is changed between each experiment. One of step size, smoothness 

strength and noise deviation may be changed, depending on which of the radio buttons is 

selected. The value of the parameter is initially set to value contained in the “Initial value” 

field, and after each experiment is value of the “Increment” field added. 

After each experiment is the resulting image compared to the original image and their MSE 

is printed to the output box. All other information about the progress of the SR process is also 

displayed in the output box, both when real and simulated images are processed. As the 



 62

amount of information may be excessive for larger numbers of experiments, the user is 

allowed to reduce the information displayed to only the final MSE by checking the “Reduced 

output” checkbox within the “Simulated images” box. 

A fact that processing is underway is signalized to the user by animation, messages in the 

output box and the progress is shown by progress bar at the bottom of the window. Processing 

can be stopped at any time by clicking the “Stop” button. 

The program uses separate low-priority threads to run the computations, so that a computer 

on which it runs can be simultaneously used for any other low resource-consuming task, like 

word processing, without having to change the priority manually. 
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Appendix B – Results of SR of simulated images 
Original image and its degraded version: 

  
Results of SR with sizes of step from table 5.1. From the left: IBP, Zomet, Farsiu: 

   
Results of the same SR methods applied to sources with additive noise of 0.02 std. deviation:  
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Results of same SR methods with applied smoothness filter with strength 0.06. 

   
Image with simulated demosaicking, restored image using all inputs, restored image using 

non-demosaicked pixels only. 
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Another example of SR results – landscape image. Original, degraded and superresolved 

images are shown: 

 

 

 
(More examples of superresolved images can be found on the attached CD in the 

/examples folder) 
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Appendix C – MRW format description 
Following text was taken from http://www.dalibor.cz/minolta/raw_file_format.htm in order 

to provide information about concrete RAW file format. 

Basic structure of .mrw file is here: 

  
Every block in MRM (Minolta Raw M) has this structure: 

  

  

  

  

  

The length of whole block is then "Block Length" + 8. 

PRD Block Picture Raw Dimensions 
Here is a file format version, size of the image in pixels. 

TTW Block 
Tiff Tags W 
This is a classic TIFF header with offset to IFDs containing 
the TIFF tags, EXIF tags, PIM info, thumbnails,... 

WBG Block 
White Balance Gains 
Here are white balance coefficients measured when taking 
the picture. 

RIF Block 
Requested Image Format 
This block contains instructions for DIVU about how to create 
a resulting image (sharpness, saturation, white balance, ...) 

MRM Block 

PAD Block 
Zero PADding 
Here are zeroes used to align the next block to 512 bytes 
boundary. Therefore the maximum length of this block should 
be 511 bytes with header. 

 Image Data   

Image Data 
Here are the RAW image data read from CCD. 
These are 16bit values of R, G, G' and B cells arranged in 
lines. 
Odd rows are RGRGRGRG... 
Even Rows are GBGBGBGB... 

Block Name 4 bytes ex. 00 'M' 'R' 'M' 

Block Length 
4 bytes 

big endian  
(Mac style) 

ex. 0x00007BF8 

Block Data misc data see below 
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0. MRM Block (Minolta Raw M) 

This superblock contains all the rest blocks (except image data) 

  

1. PRD Block (Picture Raw Dimensions) 

All numbers are stored in big endian format (Macintosh/Motorola style). Offset is counted from start of 
Block Data. This means that you have to add 8 to get offset from start of block. Size is in bytes. 

 

Name Offset Size Meaning 

Block Name 0 4 Block name 00 'M' 'R' 'M' 

Block Length 4 4 
Length of the block 
This is total length of all the rest blocks 
Also this value + 8 is offset to RAW image data 

Block Data 8   Here are stored blocks PRD, TTW, WBG, RIF and PAD 

Name Offset Size Meaning 

Version Number 0 8 

This number describes camera which has taken the picture 
and therefore the version of raw file format. 
27730001 for D5 
27660001 for D7,D7u 
27790001 for D7i 
27780001 for D7Hi 

CCD Size Y 8 2 
Height of the image sensor (number of lines in Image Data)
1544 for D5 
1928 for D7xx 

CCD Size X 10 2 
Width of the image sensor (number of values in one line of 
Image Data) 
2056 for D5 
2568 for D7xx 

Image Size Y 12 2 
Height of the resulting image 
1544 for D5 (probably a bug, it should be 1536) 
1928 for D7 (probably a bug, it should be 1920) 
1920 for D7u, D7i, D7Hi 

Image Size X 14 2 
Width of the resulting image 
2048 for D5 
2560 for D7xx 

Unknown1 16 2 0x100C = 4108 

Unknown2 18 2 0x5200 = 20 992 

Unknown3 20 2 0 

Unknown4 22 2 1 
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2. TTW Block (Tiff Tags W) 

This is a classic TIFF header as described in TIFF format specification ver. 6.0 

 
Description of EXIF tags can be found JEITA CP-3451 Standard 
I do not know where to get a description of PIM tags. If you know it please let me know by e-mail. 
Minolta MakerNote tag (part of EXIF) specification is not publicly available. I have decoded some parts 
of it and I will publish its structure some day on my website. 

 

Name Offset Size Meaning 

Byte order 0 2 MM is used in RAW (big endian, Macintosh/Motorola byte 
order) 

Magic number 2 2 42 (You should know this number - "Life, Universe and 
Everything...") 

Offset of the first IFD 4 4 8 (right next data is the first (and the only) ImageFileDirectory)

IFD - Number of 
entries 8 2 

??? entries for D5 
9 entries for D7 
10 entries for D7u, D7i, D7Hi 

IFD - Entry 1 10 12 Tag: Image Width (0x100) 

IFD - Entry 2 22 12 Tag: Image Length (0x101) 

IFD - Entry 3 34 12 Tag: Compression (0x103) 

IFD - Entry 4 46 12 Tag: Image Description (0x10E) 

IFD - Entry 5 58 12 Tag: Camera Make (0x10F) 

IFD - Entry 6 70 12 Tag: Camera Model (0x110) 

IFD - Entry 7 82 12 Tag: Software (0x131) 

IFD - Entry 8 94 12 Tag: Date and Time (0x132) 

IFD - Entry 9 106 12 Tag: EXIF IFD offset (0x8769) 

IFD - Entry 9 118 12 Tag: PIM IFD offset (0xC4A5) 
only for D7u, D7i, D7Hi 

Offset of the next IFD 130 
(or 118) 4 0 (this was the last IFD) 

Values of tags 134  
(or 122) ? Here are the values of the tags described above 
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3. WBG Block (White Balance Gains) 

 

Usually those coefficient are the same as those in MakerNote in EXIF. This is when G=G'=1. 
But there are some shots where G and G's is not equal to one. In this case the MakerNote has 
different white balance coefficients this time with G=1. 
When user chooses in DIVU to use white balance as measured by camera the RAW image data are 
multiplied by these white balance coefficients. 

Name Offset Size Meaning 
White Balance R 
denominator 0 1 
White Balance G 
denominator 2 1 
White Balance G' 
denominator 4 1 

White Balance B 
denominator 0 1 

Usually 2. Which means that you have to multiply the 
white balance by 256.  

Other values have this meaning: 
0 - 64 
1 - 128 
2 - 256 
3 - 512 
4 - 1024 

White Balance R 2 2 White balance coefficient for channel R * denominator

White Balance G 4 2 White balance coefficient for channel G * denominator

White Balance G' 2 2 White balance coefficient for channel G' * 
denominator 

White Balance B 4 2 White balance coefficient for channel B * denominator
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4. RIF Block (Requested Image Format) 

  
Those values do not reflect camera setting when taking pictures. You can change them with DIVU 
when you choose different setting for RAW file and save back (works only with DIVU 1, DIVU 2 
doesn't save values back to RAW file.). 
There are much more values but I was able to decrypt only those in the table. My problem is that I 
have only a few raw files on my harddisk. If you have a large RAW collection and you are willing to 
help with the rest please let me know. 

Name Offset Size Meaning 

Unknown 0 1 
??? 
0 for D7, D7u 
1 for D7i, D7Hi 

Saturation 1 1 Saturation setting from -3 to 3 

Contrast 2 1 Contrast setting from -3 to 3 

Sharpness 3 1 
Sharpness setting: 
-1 for soft 
0 for normal 
1 for hard 

White Balance 4 1 

White Balance setting: 
0 for Camera Auto WB 
1 for Daylight 
2 for Cloudy 
3 for Tungsten 
4 for Fluorescent 

Subject Program 5 1 

Subject Program setting: 
0 for None 
1 for Portrait 
2 for Text 
3 for Night Portrait 
4 for Sunset 
5 for Sports Action 

Film Speed 6 1 

ISO speed value 
This is a real ISO used by camera. 
It is not limited to 100,200,400 and 800. 
Here are the intermediate values like 109, 118, 154 too. 
ISO = (2^((value/8.0)-1)*3.125) 

Color Mode 7 1 

Color Mode setting: 
0 for Normal color 
1 for black&white 
2 for vivid color (D7i, D7Hi) 
3 for solarization (D7i, D7Hi) 
4 for AdobeRGB (D7Hi) 

Color Filter 56 1 Color Filter setting from -3 to 3 

B&W Filter 57 1 B&W Filter value from 0 to 10 (can be non-zero even when 
the picture was not taken in B&W mode) 
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5. PAD Block (Padding) 

Here are just zeroes used to create a gap so that Raw Image Data start at 512 bytes boundary. 

Raw Image Data 

The rest of the file are RAW image data read from CCD. 
They are stored sequentially in lines. 
Length of the line is defined in PRD block. 
The number of lines is in PRD block also. 
Odd lines are RGRGRG..., even lines are GBGBGB...  
Values are 12bit numbers stored in two bytes in big endian byte order. 
There are eight pixels extra in horizontal and vertical directions. 
They are lost when interpolating Bayer pattern. 
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