University of West Bohemia in Pilsen
Faculty of Applied Sciences

Department of Computer Science and Engineering

DIPLOMA THESIS

Plzen, 2003 Tomas Smisal

University of West Bohemiain Pilsen
Faculty of Applied Sciences
Department of Computer Science and Engineering

Diploma Thesis

Grafical Interface Direct X for C#
within ROTOR Project

Plzen, 2003 Tomas Smisal

origind zadéni

Abstract

A new technology called .NET was recently introduced to wide public. Latest
developments in computer graphics are showing popularity of MS DirectX on Windows
platforms. Incorporation of such applications, particularly targeted to high performance
gaming and multimedia, with .NET Framework environment brings a lot of benefits. A
brief description of the DirectX interface is included as well as a short introduction to
NET environment. Also, specific tasks about Shared Source CLI (known as ROTOR)
are presented. The main point is correct DirectX interface in .NET Framework
implementation. Since only this might not be a problem due to a DirectX 9.0 Managed
release, we can ill find certain troubles when we need to solve some specific tasks.
Solution to it is described in this work. The presented approach is based on COM
technology, which allows us to simplify many steps. The idea of COM Interoperability
will be briefly described as well. Reached results, advantages, and disadvantages of the
selected approach are presented and discussed.

Thiswork is a part of Microsoft Research Ltd.
(U.K.): ROTOR project and was supported by the
Ministry of Education of The Czech Republic —
Project MSM 235200005.

Content

1 INTRODUCTION ...ciiiiiiiiiiiiiiiiiiiieeeeee ettt 1
L1 TRE SITUCIUIE. ..ottt nnne e 1
1.2 DITECEX VEISIONS. ...oiiiiiiiieiiie ettt ettt ettt ettt et et sae e be e snneesaneeneennneens 2
2 KNOWLEDGE SURVEYooiiiiiiiiiiiiiiiiiiiiiiiieeee ettt 3
2.1 TermMSAEfiNITION.ooii e e 3
2.2 The NET FrameWOrK. ..ot 4
2 S O USSP P PRSPPI 5
24 CHLANQUAGE ... ceiiiree ettt e e 7
25 THEROTOR PrOJECE....cccuieiiieiieetee ettt 8
2.6 DITECEX ittt nan e 9
2.7 Graphical Interface: Direct3D, DireCtDrawccccovceeevcieesieeesciee e 10
3 BIBLIOGRAPHIC SEARCHuuiiiiiiiiiiiiiiiii e 12
4 POSSIBLE APPROACHES REVIEW ..., 14
4.1 COM INteroperability.....cccoooiiiiiiiiieie e 14

411 How To Create aCOM Class WIaDPENccccueriueerieeiieeiee e 16

4.1.2 Declaring @ COM COCIBSS........cciuieiieiiiieeiie et 17

4.1.3 Creating aCOM ODJECTcocuiiiiiiiiiie e 17

4.1.4 Declaring @ COM INEEIfaCE.........ceeiiiiieiieeiee e 18

415 Using Casts Instead of Querylnterface..........ccevverieeneiiiec e 21

4.1.6 COM INEITACES.cciuiiitieiiie ettt 22
4.2 TYPELIDIAIY .o e 24
4.3 Managed DIireCtX9.0......cooiiiiiiiiieie e e 24
4.4 Wrapping in detail.........cocoiiiiiiie s 26
5 IMPLEMENTATION DESIGN.....ccitiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeee e 28

6 SOLUTION CORRECTNESS.........o i 30

6.1 VerifiCation DESIGNoooiiiiiiiiii ittt 30

6.2 VEITICALION. ..ottt 30
7 SOLUTION DESCRIPTION ..ottt 31
7.1 IMPIEMENTALIONeiiiie e 31
7.2 FUuNCtionality DeMO.........coiiiiiiieiiiee e 31
7.3 IMplementation NOTES.........c.ooiiiiiieie e 32

7.3.1 HRESULT INDEAIlccceeeieiiiieieeeee et 34
8 PERFORMANCE EVALUATION ...ouii e 35
O DISCUSSION ..ottt e e e e e e e e e e e eaaans 37
10 CONST RAINT S et e e e e e e e aeees 38
11 ACKNOWLEDGEMENTS ... e 39
12 CONCLUSION .. e e e e e e eees 40
USEFUL ACRONYMS L.ttt e e e e e e aa e e eees 42
REFERENGCESottt e e e e e e e eees 43
ANNEX A - SOURCE CODE TO FORCE FEEDBACK SUPPORT 46
ANNEX B - USER MANUAL ...t 50
ANNEX C - DEPLOYMENT MANUAL ... 51

ANNEX D - PROGRAM MANUAL (DEVELOPER GUIDE)cccooeviiiiiie. 52

| hereby declare that this diploma thesis is completely my own
work and that | used only the cited sources.

Plze, 15." July 2003, Tomé&s Smisal.

1 Introduction

The purpose of this work is to provide design to implementation and implementation
of DirectX graphica interface components for use in a C# language at the .NET
Framework. A goa is to have such environment where the code for C# looks similar to
the C++ unmanaged one, yet keeping the rules of .NET managed environment. This
work is a part of project ROTOR, which is carried out by universities over the entire
technical world, more detailed information is placed at [CenO3]. To better understand
the expressions given above, it is essential to spend some time with documentation as

[Vis03], or go to particular chapter of interest.

1.1 The Structure

This section contains information on considered topics and structure of this work. The
following section 2. Knowedge Survey introduces the Project ROTOR and development
environment together with a DirectX interface, C# language, and the CLI. The
Bibliographic Search chapter describes results of the literature search, when satisfactory
literature had been finally found, as described there. The chapter 4. Possible approaches
review defines the theoretica foundation and prepares to understand the next
implementation steps. With al the available knowledge, a very simple implementation
design has been stated at the chapter 5. Implementation Design, which immediately
results from the previous chapter 4. Proving details to designed verification are given in
chapter 6.1. Verification Design. There is also explained, why the little testing has been
enough to decide that the solution is correct. Then, the chapter 6.2. Verification
describes the own verification. Own DirectX interface implementation is described in
chapter 7. Solution Description. There is aso a screenshot of demonstration application
to force-feedback joystick. The chapter 8. Performance Evaluation answers to
performance issues. Then it follows up with the Discussion and Constraints. Conclusion

summarizes how given aims were fulfilled.

1.2 DirectX Versions

Although the version 9 is adumbrated at the first point of the assignment, DirectX
version 8.1b is mostly assumed, if not said explicitly. The reason for this is simple: at
the time of beginning of this work the version 9 was unexpected to be released so early,
and the difference between unmanaged versions 9 and 8.1b is not so significant, it is just
stated in [MS03a]. For the thing itself, the principle of how to solve it is the same for

both considered versions, and that is important.

2 Knowledge Survey

In this section will be given a short description of the most important programming
tools and environments, which were abundantly used to create a described work. It will
be introduced the ROTOR Project, described a C# language, and presented the DirectX
interface.

2.1 Terms definition

Before clarifying a meaning of the ROTOR Project, it is necessary to define some
needed terms.

NET Framework is a platform that supports developing and running applications
and therefore it is simpler to develop such applications. It is mentioned mainly for the
distributed (Internet) applications.

Managed code is a code supplied by additional information, which is needed for
some core services. These can be method metadata localization, walking a stack,
handling exceptions, and storing and retrieving security information. An exemplary
advantage is that developers do not need to care about memory allocation, memory
release, and all other memory-management related tasks.

Managed data is data thet is allocated and released automatically by the core of the
NET Framework, through a process called garbage collection, which is known e.g.
from Java. Managed data can be accessed within the managed code only, but programs
that are written in managed code can access both managed and unmanaged data.

CLR (Common Language Runtime) manages memory, thread execution, code
execution, code safety verification, compilation, and other system services. These
features are intrinsic to the managed code that runs on it [MS014a)].

BCL (Base Class Library) is alibrary of classes, interfaces, and value types that are
included in the .NET Framework. This library provides access to system functionality
and is designed to be the foundation on which .NET Framework applications,
components, and controls are built.

CLI (Common Language Infrastructure) is one of the fundamentals of the
technology that supports the .NET Framework functionaity. Simply,
CLI ~CLR [0 BCL. It provides a specification for executable code and the execution
environment (the Virtual Execution System, or VES) in which it runs [MSO1b].
Executable code is presented to the VES as modules. A module is a single file
containing executable content in the format specified in [MSO1c]. At the center of the
CLI is a gingle type system, the Common Type System (CTS), which is shared by
compilers, tools, and the CLI itself. It is the model that defines the rules the CLI follows
when declaring, using, and managing types. The CTS establishes a framework that
enables cross-language integration (language independence), type safety, and high
performance code execution. Note that sometimes an acronym CLI is muddled with a
CLR.

2.2 The .NET Framework

The .NET Framework is something like a (Java) virtual machine. It allows runtime
environment functionality to any .NET application on whatever hardware platform or
operating system, where the .NET Framework is implemented. The .NET is based on
CLI technology, which ensures a right communication between independent application
and specific hardware or operating system. The CLI is used by many libraries, which
are extending it. These libraries are referred to as frameworks. For example, they
provide application interfaces (APIs) or programming abstractions.

This platform should fulfill the following intents, as stated in [MS014]:

* Full object orientation, with no relation between object code and a place where

the code is executed.
* Minimum software deployment and versioning conflicts.
» Security of code execution.
» Elimination of scripted and interpreted environments performance problems.
* Unification of Windows- and Web-based applications development.

e All inner communication built on industry standards.

2.3 CLI

CLI is one of the basic .NET Framework components. It consists of Common Language
Runtime (CLR) and Base Class Library (BCL). Each .NET application has to suit the
CLI. A better clearness on .NET components gives the Fig. 2.1.

CLR is a runtime environment for .NET Framework applications. It provides many
services such as code compilation and execution, application memory management,
exceptions management, metadata access, intermediate language (MSIL: MicroSoft
Intermediate Language) to native code conversion. BCL provides a wide set of classes,
interfaces, and value types which provides access to system functionality and are
designed to be the foundation on which .NET Framework applications, components,
and controls are built. A significant treat of BCL library is a logical structure of
namespaces, units, where al the classes, types, and interfaces are placed. To facilitate
interoperability between languages, the .NET Framework types are CLS (Common
Language Specification) compliant and can therefore be used from any programming

language whose compiler conformsto the CLS.

VB C++ C# JS

CLS: Common Language Specification

ASP .NET

Web Services WebForms WinForms

ADO .NET:
Data and XML

CLI
BCL: Base Class Library

CLR: Common Language Runtime

Fig. 2.1- MS.NET Framework (courtesy of M S electronic ar chives).
The CLR includes several topics, which are very important for software development
and can be represented in the chart at Fig. 2.2. The more significant are COM Marshaler
and Garbage Collector for us.

The runtime of .NET Framework has some features, such as memory management,
based on garbage collector (GC). It automatically controls the lifetime of existing
objects, their location in memory to prevent fragmentation and removes them from
memory since there is no reference to them. A code written for this managed
environment can be called safe code and no pointers are allowed. Having a reference to
an object, GC can shift the object in memory and the reference is still pointing to it. But
once the pointer is initidlized to some address, GC must keep away from the object
lying there to avoid its possible shifting and invalidating the pointer. To switch to this
unmanaged mode, where pointers are used, the unsafe code has to be used. To pass data
into DirectX methods, pointers should be necessary as well as the unmanaged mode.
But the managed one is preferred.

Base Class Library Support

Thread Support COM Marshaler

Type Checker Exception Manager

Security Engine Debug Engine

MSIL to Native Code Garbage
Compilers Manager Collector

Class Loader

Fig. 2.2 - CLR components

2.4 C# Language

C# [read as "c sharp"] is a native programming language of the .NET Framework and
has been standardized [ECMO02]. It is very similar to Sun's JAVA in the sense of syntax
and with some significant exceptions mentioned later, it is executed in the comparable
way as a JAVA. It alows more inheritance, deriving and polymorphism to the business
software development. Although .NET Framework provides a high level of language
interoperability (every object code can be written in whatever language suiting the CL1I),
the C# language still remains the closest to the .NET by itsidea.

Some beginners to the .NET have problems with correct understanding of language
interoperability. It may seem that C# is the basic programming language of a whole
NET and that other languages are only something as extensions. In particular, .NET
applications can be written in any language, which meets &l the requirements given by
specifications (exactly the Common Language Specification). The language
interoperability is conditioned by some mechanisms as common data types system
(CTS), data marshalling, etc. All the .NET languages at the same way share the CTS. It
has to be noted that a source code is compiled into something similar to byte-code and
additional type information is included as metadata. The result is mixture of
intermediate code and metadata, which are till carrying a description of which types
will be available at the runtime. In other words, the intermediate code contains complete
information to be compiled into a native code of a used processor. Let us mention at

least one advantage of the previously stated principle. It is possible for execution engine

to verify the type safety and code correctness just before the execution is done.

It is important to understand this idea to be able to read the documentation provided
by the Microsoft Company.

2.5 The ROTOR Project

Now the reader should be ready to understand what is a ROTOR. It is a code word for
the Shared Source CLI (also known as SSCLI) Project. Shared Source CLI means that
the CLI code (CD-ROM / publ i c/references/ sscli.code/ sscli20020326.tgz) for
the .NET Framework platform has been released to a wide academic public for the
improvement (and other, mainly experimental and educational) purposes.

It should be also mentioned that the difference between .NET Framework and SSCLI
IS in the missing support for the COM (Component Object Model) at the SSCLI side
and at the OS existing implementations. This makes DirectX implementation impossible
to the SSCLI. .NET is currently available only on the MS Windows, SSCLI both on
Windows and BSD-Unix. As a notice, writing of own compilers is also a part of the
ROTOR Project.

Later on, it will be clarified that the only successful implementation of DirectX is
possible only on the platform, which supports both COM and HW (by drivers) and this
platform is the .NET only. Therefore, it is not possble to implement it in ROTOR's
SSCLI. For the other hand, the ROTOR exists because of the .NET academic openness,
and from this point of view, thiswork can be treated as a part of the ROTOR Project.

The most known places to the author, where the ROTOR is carried out, are Microsoft
Research, Cambridge, United Kingdom and University in Pisa, Italy. In Cambridge,
there had been the first Rotor Workshop, the second one had been in Pisa. The idea of
these workshops lies in progress reports presentation of Rotor Award winning groups
on their activities and in interaction with other members from the Rotor and CLI teams,
doing an active research, involving Rotor. Workshop format support invited speakers,

rich project presentations and panel discussions

2.6 DirectX
The next definition is adopted from [MS02b):

"Microsoft DirectX is a set of low-level application programming interfaces (APIS)
for creating games and other high-performance multimedia applications. It includes
support for two-dimensional (2-D) and three-dimensional (3-D) graphics, sound effects

and music, input devices, and networ ked applications such as multiplayer games.”

DirectX allows programmers to access the available hardware devices, such as
graphical adapter, sound card, and so forth. It takes the advantage of device independent
functions to smplify game related tasks, performed by the computer. It is decomposed
into several components, each targeted to a particular area of usability. These

components are
» Direct Graphics — graphical output interface, discussed in a detail later,

» Directlnput — input devices interface, supporting (in addition to standard

peripherals) joysticks, game-pads and force-feedback devices,
» DirectPlay — multiplayer networking,

* DirectSound — high-performance audio applications dealing for example with

capturing waveform audio,
* DirectMusic — software support for soundtrack based waveforms, MIDI,
» DirectShow — high-quality capture and playback of multimedia streams,
» DirectSetup — supports one-call installation of necessary components to DirectX,

* DirectX Media Objects — supports development and using data-streaming

objects such as encoders, decoders, and effects.
As given in assignment, it will be considered (in the following text) the graphical
part of DirectX — Direct Graphics, which is of the interest.
COM technology was used also at DirectX production, because it helps to outshine

the DLL-hell problem. This problem resulted from sharing dynamically linked libraries
by different applications, where one application could install its library with changed

functionality over another existing library of other application, what caused for example

crash of the previoudly running application.

2.7 Graphical Interface: Direct3D, DirectDraw

The DirectX API handles most of the 1/O aspects which programmer needs at a very
low-level, and therefore it will certainly pay off to not use the standard Windows 1/0
functions provided by the GDI in order to gan as much speed as possble.
Consequently, managed memory is aso a nice thought, but if working with high
performance graphics, consideration of classic memory manipulation is also essential.
In fact, this is an ideological problem, because the main idea of the .NET is an
abstraction (even in memory area), compared to high performance DirectX, which
mostly needs characteristic memory support at the developer side (e.g. while working
with Vertex Buffer). Despite these difficulties, with some compromise, the problem can
be solved, mainly if the performance issue is not the point.

Very important fact is that al this technology is based on a Component Object
Model (COM), even if it is not mentioned immediately at the first line of the
documentation. In other words, DirectX is a set of COM components, each providing
some interfaces, which can be divided into subsets with a similar functionality. One of
the subsets handles whatever about the graphics and is called DirectX Graphics. It
combines previous 3D and 2D graphic components Direct3D and DirectDraw into one
and the name Direct3D remained for both. (Now, the entire planar graphic must be done
via 3D component.)

The .NET Framework seemed to be very interesting for people from the area of
computer graphics that originators of this work decided to implement some of the well-
known graphical interfaces for it. The DirectX Direct3D has been taken into account.
This interface is widespread and having it prepared in the .NET Framework, it is easy to
extend our old working algorithms with new features and functionality. For example, a
developer used to write a code for DirectX8.0 can simply continue with a development
with it, build it in .NET Framework and easily add whatever other network functionality
he wants.

-10-

DirectX provides a low-level access to HW, what sometimes makes the code for
beginners hard to read, especialy in the case desiring the most performance from that
hardware. Generally, many devices are supporting the DirectX well.

Example of graphical output is shown at Fig 2.3.

f®D3D Tutorial 03: Matrices if

Fig. 2.3 - Example of graphical output. Implemented in C#.

The am of this work is programming safety and comfort of the use of the ported
interface. The idea of pure .NET look of the DirectX ported interface is being reached,
I.e. avoiding unmanaged blocks of code in order to communicate with the interface.

-11-

3 Bibliographic search

The library of home university — University of West Bohemia in Pilsen — has been
recently connected to several scientific bibliographic search databases offering very
sophisticated access to worldwide-published literature. Among them, these particular
systems have been tried and answered some results:

 Web of Science—nhttp://wos. cesnet. cz/

» Eiffel Direct —htt p: //search. gl obal . epnet . cont

* Inspec (Dialog) —htt p: //di al og. cvut . cz/

* Compendex (Dialog) —ht t p: // di al og. cvut . cz/

* |EEE Computer Society - Digital Library —ht t p: // di al og. cvut . cz/

* |EEE/ACM Transactions and Networking —ht t p: / / www. acm or g/ t on/
e Journal of the ACM —http://ww. acm org/jacm

e Transactions on Programming Languages and Systems —
http://ww. acm org/topl as/

However, the processed topic is so new and special, that it probably had rare chance

to get into these systems and no useful stuff has been found. Let's suppose there is a

developer, doing specific research as this one, demanding vital information on

incorporating some COM components into .NET. The highly appreciated information

place is certainly the Internet, if not directly the Microsoft site. On this reason, the well-

known search engine Google (ht t p: / / www. googl e. com) has been tested.

As it was expected, with one exception the only avallable site at the Internet,
concerning the solved topic, was the Microsoft's MSDN (MicroSoft Developer
Network) Library http://nmsdn. ni crosof t . com both with severa running discussions
on .NET development. For a screenshot of MSDN, see Fig. 3.1. The exception stands
for a C-Sharp Corner site http://ww. cshar p- cor ner. com where occurred a few
subscriptions on DirectX topic. As it was found later, the information lying there is just
arehash of MSDN.

-12-

After some exploration of Microsoft pages, the following list of found expert books

can be compiled:
» Bargen, Bradley and Peter Donnelly, Inside DirectX, Microsoft® Press®, 1998.
» Kovach, Peter J.,, Inside Direct3D, Microsoft Press, 2000.

» Thompson, Nigel, 3D Graphics Programming for Windows, Microsoft Press,
1996.

* Rogerson, DaleE., Insde COM, Microsoft Press, 1997.

These sources are useful to better understand some insides, but for purpose of this
work, it is insufficient. More or less surprisingly, this situation just reflects the
following idea: any developer should be able to work even only with the generally
accessible sources collected at one well known place. This place is the previoudy
mentioned MSDN Library, available via Internet and on many Microsoft product
installation CDs. Finally, it is possible to make a decision: only MSDN Library can be
singled out as satisfactory source of related information.

Further literature to .NET programming is available also in different languages, as
for example the [Kac03].

Results of this section had been lately briefly discussed with thesis supervisor.

? MSDN Library - July 2002 - The DirectaD Transformation Pipeline: Lol =]
Fle Edf View Toos Window Hep
&= 00 Q6 R mshep/MSMDNGTR200210L.103% 7 | | @ § & &

| Cortterts 1L || The Direct3D Transformation Pipeline | 4bx
Filtered by: Direct30 Technical Articles
[ivo fiery = The Direct3D Transformation Pipeline

The three Direct3D transformations—world, view, and projection transform—are defined by Directap 2|

- Welcome t the MSDN Lh ary = matrices. A D\rectKD mamx is a 4x4 homogenous matrix deﬁned by a D3DMATRIX structure.

A\though D\rect3D matrices are not standard objects— they are not: represented by a COM mterface—

you and set them just as you would any other Direct3D object. For more inform

Directan mamces see "Marloce’ I the DIrect3D SDK.

The Transformation Pipeline J

If @ vertex in the model coordinate is given by Pm = (X, vim, Zrm, 1), then the following
tramsformations are applied to compute sereen coordinates Ps = (Xs, vs, Zs, Ws):

Model space 1 Waldspace 2 Cameraspace 3 Projection space 4

Ml npww H Mtiply by H M!(p\vbv m np\yhv

Cipping space 5 Clpping space 6 Homogeneous soeenspace 7

Pm»

Sereen space

Ps= (Xs, Y5, Zs Ws)
The seven stages are as follows:

1. World matrix Mworld transforms vertices from the model space to the world space. This matrix
s setby:

e ien ~EA#TEArsfarrn (NPT ANSEARMET ATE 1A 1 _ranriv addres) |

Index ResLits 1 x|
Title Location

@c ntents | [2) inclex | @l Search |G Faverites |

[pore I I |

Fig. 3.1 - Screenshot of the M SDN Library: a characteristic layout.

-13-

4 Possible Approaches Review

After a closer investigation, there were found the three principal ways to solve the
given problem. First, advancing from the COM foundations of the DirectX, is the
solution based on a COM interoperability approach. This approach employs the
System Runti ne. | nt er opSer vi ces namespace tools, which helps to build COM into
.NET managed environment. Second way to solution is use of the type library, where
Is stored the essential information about COM object (and its interfaces) as types,
enums, methods and so on. With having the type library, a lot of programming effort
from the first approach is saved. Finally, the third solution is an existing solution
released by Microsoft itself. It is called the DirectX9.0 Managed, contains nearly all
the functions of DirectX8.1b (or DirectX9.0) with exception of DirectShow component
and is prepared for immediate use. Unfortunately, this package had been released too
late after assigning this topic. Notice that the lack of anything similar to DirectX 9.0
Managed had just been the motivation for this work.

4.1 COM Interoperability

To take the easiest decision in sense of expended programming effort, it is necessary to
use the .NET Framework facilities to bring the DirectX functionality into .NET. These
facilities are particularly called COM Interop (Component Object Mode
Interoperability) and expectably they are suitable to get-in those functions written in
COM.

It is easy to ask a question, why not only to smply take existing DirectX dil's and
wrap their functionsinto a .NET assembly as it was done in [Han03] with OpenGL. The
short and the long of it is just the COM. Previously mentioned dll's contains only a few
functions, but al DirectX functions are packed in there lying objects and are accessible
via object interfaces only. Concluding it, the COM technology has to be taken into
account, what seemingly complicates the entire work.

By [MS01d], COM Interop provides access to existing COM components without
requiring that the original component be modified. A step to incorporate COM code
into a managed application is to import the relevant COM types by using a COM

-14 -

C:\ap\dp\dl|.tool s>t|binp d3d8.dl |

M crosoft (R .NET Framework Type Library t
0 Assenbly Converter 1.0.3705.0

Copyright (C Mcrosoft Corporation 1998-20
01. Al rights reserved.

TIblmp error: The input file 'C\ap\dp\dll.
tools\d3d8.dll' is not a valid type library

Fig. 4.1 - Screen copy. Tlblmp.exe does not help.
Interop utility (TIblmp.exe) for that purpose. Once imported, the COM types are ready
to use. After execution, the common language runtime marshals data between COM

objects and managed objects as needed.

Unfortunately, in the case of DirectX, this does not work at all, as seenin Fig 4.1. As
some investigation had been done with the TLBI MP. EXE (Type Library Importer), a
command-line tool included in the .NET Framework SDK, it seems there is no type
library included in the DirectX DLL's. The author suspects that it is smply from the
efficiency reasons. It may be generally wrong to include a type library into a DLL
supposing that a developer, even the program user, will need this functionality for some
wrapping. Other question, which appears then, is why in contrast the quartz.dll can

contain its type library.

Let us remind what particular facilities does .NET Framework provide to C# while

performing COM Interop. C# has support for
» creating COM objects,
* determining if a COM interface is implemented by an object,
» calling methods on COM interfaces, and

» implementing objects and interfaces that can be called by COM clients. (Stated
only for completeness reason. This would be used e.g. in case of writing DirectX

component in C# and expecting its usage aso in unmanaged C++ asa COM.)

Notice that The .NET Framework handles reference-counting issues with COM
Interop so there is no need to call or implement AddRef() and Release() functions.

-15-

4.1.1 How To Create a COM Class Wrapper

For C# code to reference COM objects and interfaces is necessary to include a .NET
Framework definition for the COM interfaces in the C# build. As known, the
Tlbimp.exe cannot help, so a COM type library conversion into .NET Framework
metadata — effective creation of a managed wrapper that can be called from any
managed language — has to be done a quite trickily. The matter is to manually define the
COM definitions in C# source code using C# attributes. Once the C# source mapping
has been created, all to do is ssimply compile the C# source code to produce the managed
wrapper. Wrapper is an original entity being converted together with additional code to
support functionality at new environment.

The following conversions have to be performed manually as well:
* COM coclasses conversion to C# classes with a parameterless constructor,
* COM structs (structures) conversion to C# structs with public fields.

A great way to check registered COM components as a feedback to our effort is to
run the .NET Framework SDK command-line tool I | dasm exe (Microsoft Intermediate

Language Disassembler) to view the result of the conversion.
The main attributes needed to understand them to perform COM mapping are:
* Con nport - Marks aclass as an externally implemented COM class.

* @i d— Used to specify a universaly unique identifier (UUID) for a class or an

interface.

* InterfaceType — gSpecifies whether an interface derives from I Unknown or

| Di spat ch.

* PreserveSi g — Specifies whether the native return value should be converted

from an HRESULT to a.NET Framework exception.

Each of these attributes has own specific values, which should be very clear to
everyone before using them.

-16 -

4.1.2 Declaring a COM coclass

COM coclasses are represented in C# as classes. These classes must have the
Com nport attribute associated with them. The following restrictions apply to these
classes:

* Theclass must not inherit from any other class.
* Theclass must implement no interfaces.

* The class must also have a Gui d attribute that sets the globally unique identifier
(GUID) for the class.

The following example declares a coclass in C#:

/'l declare FilgraphManager as a COM cocl ass

/1

[Com nport, Guid("E436EBB3-524F-11CE- 9F53- 0020AF0BA770")]
cl ass Fil graphManager

{
}

The C# compiler will add a parameterless constructor that can be called to create an
instance of the COM coclass.

4.1.3 Creating a COM Object

COM coclasses are represented in C# as classes with a parameterless constructor.
Creating an instance of this class using the new operator is the C# equivaent of calling
CoCreat el nst ance() . Using the class defined above, it is smple to instantiate the
class:

cl ass Mai nC ass {
public static void Main() {
/1
/'l Create an instance of a COM coclass - calls
/1
/'l CoCreatel nstance(

-17 -

I E436EBB3- 524F- 11CE- 9F53- 0020AF0BA770,
/11 NULL, CLSCTX_ALL,

/1 [1 D_I Unknown, &f)

/11

/1 returns null on failure.

/11

Fi | graphManager f = new Fi |l graphManager () ;

}
The short and the long of it is that the COM object is created automatically by .NET

Framework runtime.

4.1.4 Declaring a COM Interface

COM interfaces are represented in C# as interfaces with Com nport and Gui d attributes.
They cannot include any interfaces in their base interface list, and they must declare
the interface member functionsin the order that the methods appear in the COM
interface.

COM interfaces declared in C# must include declarations for all members of their
base interfaces with the exception of members of | Unknown and | Di spat ch —the .NET
Framework automatically adds these. COM interfaces which derive from | Di spat ch

must be marked with the | nt er f aceType attribute.

When calling a COM interface method from C# code, the common language runtime
must marshal the parameters and return values to (from) the COM object. For every
NET Framework type, there is a default type that the common language runtime will
use to marsha when marshaling across a COM cal. For example, the default
marshaling for C# string values is to the native type LPTSTR (pointer to TCHAR char
buffer). You can override the default marshaling using the Mar shal As attribute in the
C# declaration of the COM interface. The exact manner of marshalling particular
arguments is not so important as long as the own process of marshaling is
straightforward (mentioned the marshalling at runtime), because interface definitions
just exist. The problem arises earlier, a time of manua rewriting COM interface
methods into C# code, when it must be exactly known how the argument types have to
be substituted. See later in Chapter 6: Solution Description.

-18-

In COM, a common way to return success or failure isto return an HRESULT and have
an out parameter marked asr et val in MIDL (Microsoft Interface Definition Language)
for the real return value of the method (in syntax of IDL):

HRESULT _stdcall MyMet hod(
[out, retval] InMyFace** ReturnVal);

HRESULT _stdcall MO her Met hod(
[out, retval] VARI ANT_BOOL* ReturnVal);

HRESULT _stdcall CreateDevice(

[in] U NT Adapter,

[in] D3DDEVTYPE Devi ceType,

[in] HWND hFocusW ndow,

[in] DWORD Behavi or Fl ags,

[in] D3DPRESENT_PARANMETERS*
pPresent ati onPar anet ers,

[out, retval] |Direct3DDevice8**
ppRet ur nedDevi cel nterface);

In C# (and the .NET Framework), the standard way to indicate an error has occurred
Is to throw an exception. By default, the .NET Framework provides an automatic
mapping between the two styles of exception handling for COM interface methods,
which are called by the .NET Framework:

* Thereturn value changes to the signature of the parameter marked r et val (voi d
if the method has no parameter marked asr et val).

* The parameter marked asr et val isleft off of the argument list of the method.

* Any non-success return value will cause a Syst em COVExcept i on exception to
be thrown.

The next example taken from [MS01d], and shortened, shows a COM interface
declared in MIDL and the same interface declared in C# (note that the methods use the
COM error-handling approach).

-19-

The original MIDL version of the interface:

[odl,
uui d(56A868B1- 0AD4- 11CE- BO3A- 0020AF0BA770) ,
hel pstring("! Medi aControl interface"),
dual ,
ol eaut omati on

]
interface | MediaControl : |Dispatch {

[1d(0x60020006), propget]
HRESULT FilterColl ection(

[out,retval] IDi spatch** ppUnk);
[1d(0x60020007), propget]
HRESULT RegFilterColl ection(

[out,retval] IDi spatch** ppUnk);
[i d(0x60020008)]
HRESULT St opWwhenReady();

s

Hereisthe C# equivalent of thisinterface:

usi ng System Runti ne. | nt er opSer vi ces;

/'l Declare | MediaControl as a COMinterface which
/1l derives fromthe |IDispatch interface.
[Gui d("56A868B1- 0AD4- 11CE- BO3A- 0020AF0BA770") ,
InterfaceType(ConlnterfaceType.|Interfacel sDual)]
interface | MediaControl // cannot list any base interfaces
/'l here

/] Note that the nenbers of | Unknown and Interface

/] are NOTlisted here
/1

-20-

[return : Marshal As(UnnmanagedType. I nterface)]
object FilterCollection();

[return : Marshal As(UnnmanagedType. I nterface)]
obj ect RegFilterCollection();

voi d St opWhenReady();

Note how the C# interface has mapped the error-handling cases. If the COM method

returns an error, an exception will be raised on the C# side. To prevent the trandation of

HRESULTS to COVExcept i ons, attach the PreserveSi g(true) attribute to the method in

the C# declaration. For details, see PreserveSi gAt t ri but e Class in documentation.

4.1.5 Using Casts Instead of Querylinterface

A C# coclass would be not very useful until it could access an interface that it

implemented. In C++, developer would navigate an object's interfaces using the

Querylnterface() method on the I Unknown interface. In C#, the same thing is
possible by explicit casting the COM object to the desred COM interface. If the cast
fails, then an invalid cast exception is thrown:

/11

Create an instance of a COM cocl ass:

MyCOMCocl ass myCOMCC = new MyCOMCocl ass() ;

/11
/11
/11
/11

See if it supports the | W\COM nterface COMinterface.
Note that this will throw a System I nval i dCast Excepti on
if the cast fails. This is equivalent to Querylnterface
for COM objects:

| MP\COM nterface i WVCOM = (I MyCOM nt erface) myCOVCC,

/11

Now call a nethod on a COM i nterface:

i MyCOM . MyMet hod() ;

-21-

This kind of approach seems to be a little puzzling. Even though the COM interface
functionality is needed, and interface methods have to be declared firstly, why to
complicate it by defining coclasses and cast them to interface? Why not to directly use
the interface only? It is very probably that it is a step needed in general case, but in this
work it does not seem to be useful.

4.1.6 COM Interfaces

Once the COM interface is declared in C#, all its methods can be called as pleased. But
here is a hidden problem: how to retrieve al necessary attribute values for interface
declaration (mainly Gui d) and attributes for arguments marshalling (1 n, cut)? Note that
there exists an IDL (Interface Definition Language), which syntax supports description
capabilities of COM interface. See the IDL part of IDirect3D8 interface, which was
obtained by OLE/COM Object Viewer (TypelLib Viewer) tool from a Dx8vb. di | Type

Library (the original IDL file was unavailable!):

[
odl ,

uui d(1DDOESDA- 1C77- 4D40- BOCF- 98FEFDFF9512) ,
hel pcont ext (0x00014453)
]
interface Direct3D8 : | Unknown {
[hel pcont ext (0x00014460)]
HRESULT _stdcall Regi ster SoftwareDevi ce(
[in] void* InitializeFunction);
[hel pcont ext (0x0001445a)]
int _stdcall GetAdapterCount();

[hel pcont ext (0x00014459)]
HRESULT _stdcall EnumAdapt er Mbdes(
[in] int Adapter,
[in] int Mode,
[in, out] D3DDI SPLAYMODE* Di spl ayMde);

[hel pcont ext (0x0001445e¢)]
long _stdcall GCetAdapterMonitor([in] int Adapter);

-22-

[hel pcont ext (0x0001446b)]
HRESULT _stdcall CreateDevice(
[in] int Adapter,
[in] CONST_D3DDEVTYPE Devi ceType,
[in] ong hFocusW ndow,
[in] CONST_D3DCREATEFLAGS
Behavi or Fl ags,
n] D3DPRESENT_PARANMETERS*
Present ati onPar anet ers,
[out, retval] Direct3DDevice8**
ppRet ur nedDevi cel nterface);

[

b
If compared to description of the exactly same interface contained in header d3ds. h,

it is possible to see some similarity:

DECLARE_| NTERFACE_(1 Di rect 3D8, | Unknown)
{

[*** | Direct3D8 nethods ***/
STDMETHOD(Regi st er Sof t war eDevi ce)

(THIS_ void* plnitializeFunction) PURE;
STDVETHOD_(Ul NT, Get Adapt er Count) (THI' S) PURE;

STDMETHOD(EnumAdapt er Mbdes)
(THI S_ U NT Adapter,
U NT Mode,
D3DDI SPLAYMODE* pMode) PURE;

STDMETHOD_(HMONI TOR, Get Adapt er Moni t or)
(THI'S_ U NT Adapter) PURE;
STDMETHOD(Cr eat eDevi ce)
(TH S_ U NT Adapter,
D3DDEVTYPE Devi ceType,
HWND hFocusW ndow,
DWORD Behavi or Fl ags,
D3DPRESENT_PARAMETERS* pPresent ati onPar anet ers,
| Di rect 3DDevi ce8** ppRet urnedDevi cel nterface)

-23-

PURE;
b
As it was stated, there are no available IDL files for considered components of
DirectX, what little complicates the situation, because it is necessary the resolve the
component structure directly from the DirectX header files. In the d3d8. h, there are
defined 12 interfaces, including totally about 260 COM interface function declarations.

4.2 Type Library

NET Framework metadata lying in the Type Library are included in a C# build via the
/R compiler option, or as reference addition (reference to the COM type library) at the
Visual Studio development environment. The main conversion is done automatically.

To demanding readers satisfaction, type library (.tlb, .dll) is a binary file that stores
information about a COM or DCOM object's properties and methods in a form that is
accessible to other applications at runtime. Using a type library, an application or
browser can determine which interfaces an object supports, and invoke an object's
interface methods. This can occur even if the object and client applications were written
in different programming languages. The COM/DCOM run-time environment can also
use a type library to provide automatic cross-apartment, cross-process, and Cross-
machine marshaling for interfaces described in type libraries. The type library is
generated from a specia file (see IDL later), which syntax is based on an ODL
[MS02c]. The only problem connected to this is a missing support to a nodul e type (?)
at the .NET side. It results in particularly missing functions, e.g. utilizing mathematical
functions with vectors, matrices, etc. If there was found a way in which to bring the
module-functions to life, the necessity of own implementation in the helper assembly
DxVBLi bA1 would be void. Details about the nodul e are described in [MS02d].

4.3 Managed DirectX9.0

On December 2002, Microsoft has released the DirectX 9.0 Managed version of the
DirectX, which should meet al the requirements stated at the previous pages. Thusit is
used as a reference for comparison to reached results. At the next few paragraphs only
its significant graphic namespaces will be shortly described: Microsoft DirectX,
Direct3D and DirectDraw.

-24-

The namespace Microsoft.DirectX provides utility operations and data storage for
DirectX application programming, including exception handling, simple helper
methods, and structures used for matrices, clipping planes, quaternion, vector
manipulations and so forth. Microsoft.DirectX.Direct3D enables to manipulate visual
models of 3-D objects and take advantage of hardware acceleration and
Microsoft.DirectX.DirectDraw that provides functionality across display memory, the
hardware blitter, hardware overlay support, and flipping surface support. It seems that
small inconsistency appeared because Direct Graphics 8.1b should combine both D3D
and DDraw into one, but in the version 9.0 it is formally divided again.

This is the best solution, which provides a complete DirectX functionality in the style
of .NET Framework. An example demonstrating DirectX lighting is at the Fig. 4.2.
Advanced information for DirectX .NET development is available in [CscO3] and
[Vis03].

-(ofx]

Eile
56.24 fps (400x300), XBREGE

Fig. 4.2 - DirectX9.0 Managed: Lighting Sample.

-25.

4.4 Wrapping in detail

The advantage that DirectX is a COM based is highly welcome. The .NET Framework
runtime environment can save a lot of work to developer in a wrapping task because of
its runtime callable wrappers feature. The functionality of GC can be used athough the
pointers are needed as well. Each time the method of a COM is called, the runtime
callable wrapper (RCW) is autometically created for accessing the unmanaged code of
that COM. It is created every time that the call occurs. This could seem to be
unacceptably high overhead cost, but, if considering the fact that for e.g. rendering 10 or
10 hillions facets takes only one cal and one RCW build, it is feasible. And how it
works?

The common language runtime exposes the COM objects through a proxy called as
runtime callable wrapper (RCW). Although the RCW appears to be an ordinary object
to other .NET clients, its primary function is to marshal calls between a .NET client and
COM object, asgivenin [MS01a).

The runtime creates exactly one RCW for each DirectX COM object, regardless of
the number of references that exist on that object. Any number of managed clients can
hold a reference to the COM objects that expose some interfaces. The runtime maintains
asingle RCW for each object.

Using metadata derived from a type library, the runtime creates both the COM object
being called and a wrapper for that object. Each RCW maintains a cache of interface
pointers on the COM object it wraps and releases its reference on the COM object when
the RCW is no longer needed. The runtime aso performs garbage collection on the
RCW.

Among other activities, the RCW marshals data between managed and unmanaged
code, on behalf of the wrapped object, which is essentia to this work. Specificaly, the
RCW provides marshaling for method arguments and method return values whenever

the client and server have different representations of the data passed between them.

The standard wrapper enforces built-in marshaling rules. For example, when a .NET
client passes a String type as part of an argument to a managed object, the wrapper
converts the String to a BSTR type. Should the COM object return a BSTR to its

- 26-

managed caller, the caller receives a String. Both the client and the server send and
receive data that is familiar to them. Other types require no conversion. For instance, a
standard wrapper will always pass a 4-byte integer between managed and unmanaged

code without converting the type, what is very useful.

When created as an early-bound object, the RCW is a specific type. It implements
the interfaces that the COM object implements and exposes the methods, properties, and
events from the object's interfaces. In the illustration, the RCW exposes the INew
interface but consumes the IUnknown and IDispatch interfaces. Further, the RCW
exposes al members of the INew interface to the .NET client.

-27-

5 Implementation Design

This chapter is a direct follow-up to the previous one. The next paragraph stark
proposition can be formed only after a very serious consideration of previously given
facts. Moreover, some intensive investigations had to be done, in Visual Studio .NET

and its tools, to recover that simple principle. The following result has been found.

Wrapping task can be defined as a process when migrating some functionality from
foreign development environment into ours without changes at the original source code.
In the other words, it can be also named as porting as in [Han03]. To create a port of
some dynamically linked library (.dll) means to somehow provide headers of al
necessary functions and to do all the necessary steps for the .dll import. But having the
original functionality in a COM, it is smple to let the .NET Framework runtime to do
everything automatically. The runtime has methods for handling components written in

an unmanaged mode and its basic idea is described in the next paragraph.

Forgetting whatever possible solution & exists or not, suppose that a very effective
and robust solution ¢ to our problem is presented. Bearing in mind the facilities of .NET
Framework for COM technology, it is easy to expect that ¢ will be based on the COM
Interoperability. Now, the implementation task is reduced to interface declarations only.
But re-declaring of interfaces (same as re-implementing COM interfaces) again, if they
are once declared in type library, is like the saying about selling coals to Newcastle.
From the stated facts it reasonably implies that

n={.

In other words, to save the programming effort, the implementation of DirectX
graphical interface is best done via the type library approach, which is highly smilar to
COM Interoperability. Particularly, the type library lies at file dx8vb. dl I and is named
DirectX 8 for Visual Basic Type Library. If developer knows the Visual Basic well
(i.e. types representation, array indexing, etc.), he is able to easy use this library in C#
too. Only those functions requiring some nonstandard techniques as callbacks or
memory manipulations have prepared their improved versions to work fine, which
could be treated as a small exception to the previous idea.

-28-

Example can be the available devices enumerating. In C++, a callback is necessary to
this procedure, while in C# is used a function that by default accesses given enumerated
device by its order. Though, nearly aways the first device will be right (index set to
zero), when the e.g. 101% device will cause an exception (if there is not 101 available
graphical devices).

-29.-

6 Solution Correctness

Before continuing in reading, it should be noticed that author is not a software
engineer expert. It means that there probably exists a standard and certified ways of
software packages verification and validation procedure, but this thesis is completed by
a person from the field of computer graphics, who asks for a pardon if anything is not so
correct. However, even with the qualification author has, it will be tried to provide a

good proof of solution correctness.

6.1 Verification Design

After some approach being done, it is now right to state the important thesis: in the way
the implementation is done, only the standard recommended programming techniques
are used. That means, if we have correct declarations, we can expect some problem
while calling the interface method, e.g. error in marshaler, impossible type-casting, etc.
This kind of error would arise just by first run of the application, but once working, it
should work forever. All other problems, which could appear, would arise on the side of
DirectX, which in principle cannot be handled, or on the side of .NET Framework,

where it is again out of the author responsibility.

The previous suggestions are valid for general case of COM Interfaces approach.
Considering the fact, that the implementation is done via type library approach, where
we can expect that it was verified (it has been released by Microsoft), the necessity of
verification is void.

6.2 Verification

The verification of solution correctness has been tested on selected functions. As it was
stated in the previous section, we can expect that the type library dx8vb. dI | is not
erroneous, because even after half a year of using, there has been found neither mistake

nor error in thislibrary.

For complete picture on tested functions, see the content of directory pr ogr ans on
the attached medium. For its largeness, it would be inefficient to include all the program
listings into this text or to the attachments.

-30-

7 Solution Description

This chapter contains description of selected approach implementation for graphical
interface mentioned in previous sections. One of the terms used for porting a library to
.NET is the wrapper. To use a wrapper or to wrap a library means to create a set of
functions (or objects) that shall make interface accessible from particular environment.
These functions usualy perform system dependent task and call a wrapped function
(i.e., particular function of the original library).

The implementation of the graphical interface DirectX has been done with use of
type library, originaly designated to a Visua Basic programming language. After a
deep exploration, there have been found rules for correct incorporation of included
functions. It is beyond author strength to provide a complete list of these rules.
Probably, it would be also inefficient. Reader should rather see the code of provided
samples at the attached medium, which is much more intuitive.

7.1 Implementation

Own implementation consists of a type library DxVBLi bA from dx8vb.dll and
additional functions exported in a namespace DxVBLi bAl. Both DxVBLi bA and

DxVBLi bA1 represent the provided solution.

Note: DxVBLi bA1 assembly is contained in directory called helper by each project.

7.2 Functionality Demo

To support the stated theses about solution correctness, there has been prepared a
demonstration application. It is a very simple game, where the quality topic is not the
important one. It provides a picture of incorporating some DirectX components in one
application: DirectDraw, Directinput and DirectSound. As it is required in assignment,
the application uses a force-feedback device Microsoft Sidewinder Force Feedback 1
joystick, which is aso required for running of this application.

The screenshot is plotted to Fig. 7.1.

-31-

Fig. 7.1 - The screenshot of for ce-feedback application.

7.3 Implementation Notes

There exist several C# compilers, but for purpose of this work the Visual C# .NET
csc. exe with the Microsoft Visua Studio .NET IDE had been selected and used as the

most convenient.

Some problems encountered while looking up the GUIDs for needed objects.
Particularly, there were non found for the Direct3D object coclasses (in headers).

Also, there was a problem with correct understanding with the meaning of returning

nul | value on function call failure. Originaly, this wrong way was used:

a = methodCalling(...);
if (a == null)
failure_nmessage();

It will never reach the line with failure nessage(), because failure means

exception! Instead, use approach asin this example:

-32-

/'l Create a DI nput object

try {
di = dx.DirectlnputCreate();// Create the dinput device

if (di == null) {
MessageBox. Show("dx. Direct I nputCreate() Failed.");
return fal se;

}
catch (COvVException e) {

MessageBox. Show(e. Message+",
HResul t : Ox" +e. Error Code. ToStri ng("x"));
return fal se;

}
catch (Exception e) {

MessageBox. Show e. Message) ;
return false;

}

While discussing the failures, the interesting question arises. In C++ style, the
failures are reported as HRESULT values. It can be treated as exception, because
something unexpected — unwanted — happened. So it should be implemented in
exception style in C#. But for the other hand, it is a used practice to place such acall in
an infinite loop, where the program stays until the function has been called with success
(e.g. waiting for receiving exclusive access to a specific device, hold by another
application). And this contradicts the idea that exceptions must be used only in the last
resort, in other words not so often.

It would be interesting to compare the approaches of different error handling — one
based on the true HRESULT value returning and the second based on nonsuccess HRESULT
value to exception conversion. Which is better in performance? The way to do it begins

with experimenting with the Pr eser veSi g attribute value.

If the type library would be unusable from some reason, the approach of own
interface methods declaration would be necessary. Then, more attention will have to be
given to function arguments marshalling (see the marshalling attributes).

-33-

7.3.1 HRESULT in Detall
The HRESULT data type is a 32-hit value that is used to describe an error or warning.

typedef LONG HRESULT;
On 32-hit platforms, the HRESULT data type is the same as the SCODE data type. On
16-hit platforms, an SCODE value is used to generate an HRESULT value.

An HRESULT value is made up of the following fields:

* A 1-bit code indicating severity, where zero represents success and 1 represents

failure.
e A 4-hit reserved value.

* An 11-bit code indicating responsibility for the error or warning, also known as

afacility code.

* A 16-bit code describing the error or warning.

8 Performance evaluation

The performance issue is always a crucial one. Since there are even approximately
260 functions only in the Direct3D component, it was not possible to test in
performance al of them. There are adso many influences, which gives the total
performance. If the HRESULT return value function is caled in C++, it always returns
some code in very similar time interval. In C#, the exception handling presents some
delays, which are not caused by the implementation itself, but makes one function
sometimes faster and sometime slower, depending on whether exception occurred or

not.

Other reason for stating the performance issue so generaly is that every function
(even interface) needs own specific comprehension to be able to call it. How to
correctly prepare the input arguments, when it can be called and so on.

It is aso important to keep in mind that DirectX performance highly depends on
existing HW support on machine, where it is running. It is nice to provide some
particular measurements done in software emulation, but in time when many computers
support it by HW, it would be meaningless.

For purity, only some significant graphical operations have been tested (see Tab 8.1,
Fig 8.1). From experience of the author, there hadn't appeared any significant
performance gap between C++ version and the .NET one.

C# NET C++ Function type
27,9 23,2 billboarding
10,3 9,4 clipping
15,6 140 vertex shader
9,1 6,6 enhanced mesh
17,0 23,4 lights
7,2 6,3 vertex shader

Tab. 8.1- Time[mg] torender the tested scene.

Each time the method of a COM is called, the runtime callable wrapper (RCW) is
automatically created for accessing the unmanaged code of that COM. It is created

-35-

every time that the call occurs. This could seem to be unacceptably high overhead co<t,
but, if considering the fact that for e.g. rendering 10 or 10 hillions facets takes only one
call and one RCW build on initialization, it is possible to suppose that the performance
Is not so significantly influenced by wrapping DirectX in .NET.

tims] |

250

200

150

S
]

o

I

|
|
100 : ! i

3
50
|
oo |
billboarding clipping vertex enhanced lights vertex
shader mesh shader

Figure 8.1 - Time[mg] to render scene.

-36-

9 Discussion

It has been implemented the DirectX graphica interface for use within the .NET
Framework. It fulfills well the objectives given at the early beginning. Now, graphics
developers can adso work with the fully object oriented programming (OOP)
language C#. Advantage of the described solution is a genera investigated approach.
Not only DirectX, but also any COM software can be handled by the same strategy

now.

Three methods of DirectX implementation in C# were introduced and described.
Until a version 9.0 has been released in December, the only suitable way for C#
developers was the second method based on type library import. Since it has been
released, the only recommended way is the third one, DirectX9.0 (managed version).
With C# and this version can be reached all features of managed runtime .NET

Framework environment and OOP even with reasonable overhead compared to C++.

However the problem seems to be solved, there is still some kind of feeling that the
purely correct solution can be provided even much more easily. As it results from some
exploration of MSDN documentation about MIDL, shortly IDL (Interface Definition
Language) and COM topic, it is possible to generate a type library directly from an IDL
file. Also, al COM objects implement one or more interfaces. When a custom COM
object is created, the creator must describe the interface or interfaces in an IDL file,
which is the needed one. Having the IDL files, for any COM, means a very high
possibility of having a type library, from which it is easy to generate an assembly as
well. Assumption of Microsoft generating DirectX9.0 Managed assemblies at the
previously stated way seems to be probable.

The future work could be aimed at functionality improving, and stability and safety
of the implementation. Currently this implementation has been tested due to given
capabilities and furthermore, functionality is improved. It is already usable, but shall not
be considered to be absolutely error-proof.

-37-

10 Constraints

The Type Library approach is constrained to DirectX versions up to 8.1b. It does not
support mainly functions operating with memory (VertexBuffer8::Lock()) and
calbacks. Instead, improved versions of these functions, originated for use in Visual
Basic, are incorporated.

The COM Interfaces approach is generaly valid, not only for DirectX, but for any
software written in COM. But here the constraint is given by knowledge of interface
description.

-38-

11 Acknowledgements

This work is a part of Microsoft Research Ltd. (U.K.): ROTOR project and was
supported by the Ministry of Education of The Czech Republic — Project MSM
235200005.

Great thanks aso belong, for a strong support, motivation and experience, to the
supervisor of thisthesis, Prof. Ing. Véaclav Skala, CSc.

-39-

12 Conclusion

Originally, the assgnment of this diploma thesis seemed to be very easy. Problems
arrived, when there was not found the first function declaration in its DLL.
Unexpectedly, an extra effort had to be devoted to the COM technology, what in return
helped to find a very elegant solution in this task.

At this work, it is provided in the second chapter the introduction with project
ROTOR, C# language, CLI and both DirectX 8.1b and DirectX 9.0.

The bibliographic search gave very poor results, but satisfactory literature had been
finally found, as described in the third chapter. The lesson is that only the Microsoft's
MSDN is the most convenient source.

Thanks to a very strong investigation in programming manuas and developers
guides, supported by uncountable experiments done in Visua Studio .NET, the very
nice solution could be found and implemented with the minimal effort of routine davery

work. However it has its weaknesses — in one person it is an unimaginable deal.

With al the available knowledge, a very smple implementation design has been
stated at the chapter Implementation Design, which immediately results from the
previous chapter 4.

A designed verification is not so strong, because of missing adequate experience in
software engineering, but is still sufficient. Proving details are given in chapter 6.1.
There is aso explained, why the little testing has been enough to decide that the
solution is correct — some procedures had to remain observed to reach it. Hence, the
chapter 6.2 describes the verification required in 6" point of the assignment.

DirectX interface implementation is described in chapter 7. There is aso a screenshot
of demonstration application to force-feedback joystick as compelled at point 5. Very
valuable notes to implementation are stated here, every developer should be familiar

with them.

The answer to point 7 is as genera as it covers very heterogeneous software unit.
Even though some proximal investigation had been carried out and with certain effort,
several graphical functions were tested. It isjustified why.

- 40 -

The user and program documentations are placed at appendixes part, source code is

reasonably commented.

The implementation, documentation and source codes are marked as a freeware as a
part of project ROTOR.

The discussion can be found in chapter 9.

Work on this thesis has been valuable to the author even from the reason that all the
essential knowledge had to be collected while processing this job: COM objects,
interfaces, Visual Basic, DirectX, .NET Framework. Before assigning the topic, al of
these keywords were a quite mysterious to the author. Fortunately, it was found what
benefits these modern technologies bring and understood in which points to be more

careful.

Advantage of the described solution is a generaity of investigated approach. Not
only DirectX, but also any COM software can be handled by the same strategy now.

-41 -

Useful Acronyms

API Application Programming Interface
BCL Base Class Library

CLI Common Language Infrastructure
CLR Common Language Runtime

CLS Common Language Specification
CTS Common Type System

COM Component Object Model

DLL Dynamically Linked Library
GC Garbage Collector
GDI Graphics Device Interface

GUID Globally Unique Identifier

IDE Interactive Development Environment
IDL Interface Definition Language

MIDL Microsoft Interface Definition Language
MSDN Microsoft Developer Network

MSIL Microsoft Intermediate Language

ODL Object Definition Language
OLE Object Linking and Embedding
OS Operating System

RCW Runtime Callable Wrapper
SDK Software Development Kit
UuID Universally Unique I dentifier

VES Virtual Execution System

-42-

References

[Cen03]

[CscO3]

[Han03]

[ECMO2]

[Kac01]

[MS014]

[MSO1b]

Centre of Computer Graphics and Data Visualisation.

http:// herakl es. zcu. cz/ resear ch. php

C# Corner.

http://ww. c-shar pcorner.conl Di rectx. asp

Handk, I., Frank, M., Skala, V.: OpenGL and VTK interface for .NET. In
C# and .NET Technologies 2003 proceedings, UNION Agency, Science
Press, Plzen, 2003.

ECMA TC39/TG2: C# Language Specification. Fina Draft, ECMA
Technical Committee39 (TC39) Task Group2 (TG2), (electronic
resources), 2002.

CD- ROM / publ i c/ materi al s/ ref erences/ manual s/ C- Shar p/
CSharp. zip

Kaémét, D.: Programming .NET applications.. (in Czech) Computer Press,
Praha, 2001.

Microsoft Corp.: Overview of the .NET Framework. .NET Framework
Developer's Guide, MSDN (electronic resources), 2001.
http://nsdn. mcrosoft.conilibrary/

CD-ROM / public/material s/ references/Overview of the _NET
Framewor k. ht m

Microsoft Corp.. Common Language Infrastructure (CLI) Partition 1:
Concepts and Architecture. Microsoft .NET Framework SDK Tool
Developer's Documentation, Microsoft Corporation, 2001.

http://nsdn. mcrosoft.conilibrary/

CD-ROM / public/ material s/references/CLI/docs/Partition |
Archi tecture. doc

-43-

[MS01c]

[MS01d]

[MS024]

[MS02b]

[MS02c]

[MS02d]

[MS03]

[MS034]

Microsoft Corp.: Common Language Infrastructure (CLI) Partition 11:
Metadata Definition and Semantics. Microsoft .NET Framework SDK

Tool Developer's Documentation, Microsoft Corporation, 2001.

http://nmsdn. m crosoft.conm|ibrary/

CD-ROM / public/material s/references/CLI/docs/Partition |1
Met adat a. doc

Microsoft Corp.: COM Interop Part 1: C# Client Tutorial. C#
Programmer's Reference, MSDN (electronic resources), 2001.

http://nmsdn. mcrosoft.conilibrary/
CD-ROM / public/material s/references/ COM I nterop Part 1 C#
Client Tutorial.htm

Microsoft Corp.: The .NET architecture review. Microsoft's promotional
material (Daniel Rubiolo et a), 2002.

Microsoft Corp.: Microsoft DirectX 9.0. Microsoft Corporation, 2002.

http://nmsdn. mcrosoft.conilibrary/
CD-ROM / public/material s/references/Direct X9/ Direct X9_c.chm

Microsoft Corp.: ODL File Syntax. Platform SDK: Automation, MSDN

(electronic resources), 2002.

http://nsdn. mcrosoft.conilibrary/
CD-ROM / public/material s/references/CDL File Syntax. htm

Microsoft Corp.: module. Platform SDK: Automation, MSDN (electronic

resources), 2002.

http://nmsdn. mcrosoft.conilibrary/
CD-ROM / publ i c/ mat eri al s/ ref erences/ nodul e. ht m

Microsoft Corp.: Microsoft COM Technologies. 2003.

http://ww. m crosoft.conm conl

Microsoft Corp.: What's New in DirectX 9.0. 2003.
http://nmsdn. nmicrosoft.con|ibrary/en-
us/ di rect x9_c/ directx/graphi cs/ what snew. asp

[SmIO3] Smisal, T., Skala, V.: DirectX in C#. In C# and .NET Technologies 2003
proceedings, UNION Agency, Science Press, Plzen, 2003.

[VisO3] Visual Studio .NET Documentation.

http://nmsdn. mcrosoft.con |ibrary/default.asp?url=/Iibrary/en
-us/vsintro7/ htm /vsstart page. asp

-45-

Annex A - Source Code to Force Feedback Support

// Tomas SMLSAL, 2003
/1 Supporting class to Joystick w th Force-Feedback
I

usi ng System
usi ng System | QO
usi ng System W ndows. For irs;

//usi ng System Conponent Mbdel ;
usi ng DxVBLi bA;
usi ng System Runti ne. | nteropServices;

nanespace SpaceBreakout {
/1] <summary>
/1l Summary description for DI nputFF.
/1l </summary>
public class DI nput FF {
public const int TRUE = 1;
public const int FALSE = O;

L e
/'l G obal variables

e e e R

Di rect X8C ass DX8C = new Direct X8Cl ass(); //Whole C ass

Di rect X8 dx = new DirectX8(); //DirectX 8 object
DxVBLi bA. D3DX8 g_pD3DX = new DxVBLi bA. D3DX8() ;

public Directlnput8 di; /1 Directlnput object

public DirectlnputDevice8 di Joysti ck; /1 Directlnput device object

public Directlnput EnunDevi ces8 enunDevi ce; //DInput enuneration for devices object
publ i c DI DEVCAPS Caps; //store capabilities of the diJoystick
public Directlnput Effect diEffect; /] Store the FF effect

public Directlnput Effect diEffectLeft; /] Store the FF effect

public DirectlnputEffect diEffectRight; /] Store the FF effect

public DI JOYSTATE2 di JoySt at e2; /1 Joystick state.

/1 do nothing in constructor..
public Dl nputFF (){}

/1 Nanme: InitDirectlnput()
/'l Desc: Initialize the Directlnput variables.

I
public bool InitDirectlnput(SystemIntPtr hDl g) {

int j; /'l Count variable

DI PROPLONG prop = new DI PROPLONG) ; /1 Device property structure

Di rect | nput EnunDevi ceObj ects di edo; /'l Holds the collection of individual

/1 objects on a device
Di rect | nput Devi ceCbj ect | nstance didoi; // Holds the instance of an object on a
/'l device
i nt FFAxi sCount = O; /1 Holds the nunber of axis that support FF

/1l Setup the g_EffectsList circular |inked |ist
/1 g_EffectsList = new ArrayList();
/1l Create a DI nput object

try {
di = dx.DirectlnputCreate();// Create the direct input device

- 46 -

if (di == null) {
MessageBox. Show("dx. Direct |l nput Create() Failed.");
return false;

}

}
catch (COVException e) {

MessageBox. Show(e. Message+", HResul t: 0x"+e. Error Code. ToString("x"));
return false;

catch (Exception e) {

}

MessageBox. Show e. Message) ;
return fal se;

/1 Get the first enunerated force feedback device
try {

//di.CreateDevice((); // Enunmerate all joysticks that are attached to the system
enunDevi ce = di . Get DI Devi ces(CONST_DI 8DEVI CETYPE. DI 8DEVCLASS _GAMECTRL,
CONST_DI ENUVDEVI CESFLAGS. DI EDFL_ATTACHEDONLY
| CONST_DI ENUMDEVI CESFLAGS. DI EDFL_ FORCEFEEDBACK) ;
if (enunDevice == null) {
MessageBox. Show("di . Get DI Devi ces() Failed.");
return fal se;
}
di Joystick = di.CreateDevice(enunDevice. Getltem(1). Get Gui dl nstance());
if (diJoystick == null) {
MessageBox. Show("di . Creat eDevi ce() Failed.\nNo force feedback device found.");
return false;
}
di Joystick. Get Capabilities(ref Caps); //Get the capabilites of the device
/1 Get info about all the axis on the device
di edo = di Joystick. Get Devi ceObj ect sEnun{ CONST_DI DFTFLAGS. DI DFT_AXI S) ;
if (diedo == null) {
MessageBox. Show(" di Joysti ck. GCet Devi ceQbj ect sEnun{() Failed.");
return fal se;

}

/1 This | oops through to make sure that there
/] are at least two axis that support FF
for (j=1; j<=diedo.CetCount(); j++){
didoi = diedo.Getlten(j);
if ((didoi!=null)
&& ((didoi.CetFlags() &
CONST_DI DEVI CEOBJI NSTANCEFLAGS. DI DO _FFACTUATOCR) ! =0)
)

FFAXi sCount ++;
}

i f (FFAXi sCount >1){
/'l Set the format of the device to that of a joystick..
di Joysti ck. Set ConmonDat aFor mat (CONST_DI COVMONDATAFORMATS. DI FORMAT_JOYSTI CK2) ;
/1 Set the cooperative |level of the device as an exclusive
/'l background device, and attach it to the formis hwnd
di Joyst i ck. Set Cooper ati veLevel (hDl g. Tol nt 32(),
CONST_DI SCLFLAGS. DI SCL_ BACKGROUND
| CONST_DI SCLFLAGS. DI SCL_EXCLUSI VE) ;

prop. | Data = O;

prop. | How = (i nt) CONST_DI PHFLAGS. DI PH_DEVI CE;

prop.| Cbj = 0;

IntPtr ip = (IntPtr)null;

/1 di Joysti ck. Set Property(" Dl PROP_AUTOCENTER', ip); // Turn off

/'l autocenter
di Joystick. Acquire(); // Make sure to aquire the device
/1 di Effect = diJoystick.CreateEffectFronFile("..//..//clickl.ffe",

-47 -

I (i nt) CONST_DI FEFFLAGS. DI FEF_MODI FYI FNEEDED,

11 "hsth");
/1 di Joysti ck. RunCont r ol Panel (hDl g. Tol nt 32());
}
el se {

MessageBox. Show("Less than 2 force feedback axes.");
return false;

}

//turn OFF the autocentering by playing a test-effect
di Effect = diJoystick.CreateEffectFronFile("reset.ffe",
(i nt) CONST_DI FEFFLAGS. DI FEF_MODI FYI FNEEDED,
Get Fi r st FFENaneFronFil e("reset.ffe"));
diEffect. Start (1, (int)CONST_DI ESFLAGS. DI ES_SOLO);

//left bound
di EffectLeft = diJoystick.CreateEffectFronFile("leva.ffe",
(i nt) CONST_DI FEFFLAGS. DI FEF_MODI FYl FNEEDED,
Get Fi r st FFENaneFronFil e("l eva.ffe"));
di Ef fectLeft. Start(-1, 0);
[/right bound
di Ef fect R ght = di Joystick. CreateEffectFronFil e("prava.ffe",
(i nt) CONST_DI FEFFLAGS. DI FEF_MODI FYl FNEEDED,
Get Fi r st FFENaneFronFi | e("prava.ffe"));
di EffectRight. Start (-1, 0);

/1 ok, downl oad the needed effect

di Effect = diJoystick. CreateEffectFronFile("crash.ffe",
(i nt) CONST_DI FEFFLAGS. DI FEF_MODI FYI FNEEDED,
Get Fi r st FFENaneFronFi | e("crash.ffe"));

}
catch (COVException e) {
MessageBox. Show(e. Message+", HResul t: 0x"+e. Error Code. ToStri ng("x")
+"\n FF joystick initialization failed.");
return false;

catch (Exception e) {
MessageBox. Show(e. Message
+"\n FF joystick initialization failed.");
return false;

}

return true;

e e
/'l Nane: FreeDirectlnput()
/| Desc: Frees the DI

public void FreebDirectlnput(){
/'l Rel ease any Directlnput Effect objects.
if (diJoystick !'= null){
di Joysti ck. Unacquire();
di Joystick = null;

}
/'l Rel ease any Directlnput objects.
di = null;

/1 Nanme: PlayEffect()
/1 Desc: Plays a FF file.

public void PlayEffect(){
try {
if (diEffect !'= null)
di Effect. Start (1, 0);

}
catch (COVException e) {
MessageBox. Show(e. Message+", HResul t: Ox"+e. Error Code. ToStri ng("x"));

catch (Exception e) {
MessageBox. Show e. Message) ;
}
}

Il retrieve necessary info fromFFE file (an effect name)
public string GetFirstFFENameFrontil e(string Filenane) {
string effectName = null;
try {
StreanReader sr =
new St reanReader (new Fil eStreanm(Fil enane,
Fi | eMbde. Open,
Fi | eAccess. Read,
Fi | eShar e. Read

char[] buffer = new char[sr.BaseStream Length];
sr. Read(buffer, 0, (int)sr.BaseStream Length);
for (int i=0; (effectNane == null) && (i<buffer.Length); i++) {
if ((buffer[i]l=="¢€e")&&(buffer[i+1]=="1")
&&(buffer[i+2]=="c¢")&&(buffer[i+3]=="1")
)
for (int j=0; (buffer[i+4+j]!="\0")&&(j+i +4<buffer.Length); j++) {
ef fect Nane += buffer[i +4+j];

}

sr.d ose();

catch (1 Oexception e) {
effect Name = nul |;
MessageBox. Show e. Message) ;

return effectNang;

}

=49 -

Annex B - User Manual

Run-Time Requirements

DirectX 8.1 can be used in the Microsoft Windows® 98, Windows Me, Windows
2000, and Windows X P environments.

Description

The type library DirectX 8 Visual Basic Type Library is used as follows:

* First, add reference in references settings to this library, which has to be
selected.

* Add the following line to the code: usi ng DxVBLi bA;

e To add required classes, interfaces or types, work with the namespace
DxVBLi bA.

For the exact parameters usage, see programs in the mediums pr ogr ans directory.

The only suggested documentation is the MSDN — Graphics Development — DirectX
— DirectX 8.1 (Visua Basic). Types are trandated as given in .NET Framework

documentation.

-50-

Annex C - Deployment Manual

It is necessary to install the .NET Framework, where are all necessary tools
supporting runtime. The deployment itself is from principa done by copying an
application. It is also clear that the correct version of DirectX has to be installed. Some
developers find even difficult if the SDK version of DirectX runtime is missing.

-51-

Annex D - Program Manual (Developer Guide)

Since author did not find how to access functions hidden in type library modules, it is
necessary to implement these supporting routines in a helper class. While using the type
library approach, the implementation of this library is just prepared. If the library is not
available, it is essential to re-declare the COM interfaces as follows in the IDirect3D8
example. Nearly all the time has been spent by trying attributes values, so there did not
remained time to compose a handbook that would certainly specify the rules for
trandating the declarations from a header files, which is unfortunately manual:

/'l Declare I.. as a COMinterface which
/'l derives from ??IDi spatch interface:
[Gui d(" 1DDOEBDA- 1C77- 4d40- BOCF- 98FEFDFF9512")

InterfaceType(Com nterfaceType. I nterfacel sDual)]
public interface IDirect3D8 { /1 Cannot |ist any base interfaces here
/1 Note that IUnknown Interface nmenbers are NOT |isted here:

[*** | Direct3D8 met hods ***/
//void Regi sterSoftwareDevice([In] void* plnitializeFunction) ;
voi d Regi ster SoftwareDevice([In] ref Object plnitializeFunction);//deprecated!!!
ui nt Get Adapt er Count () ;
voi d Get Adapterldentifier([In] uint Adapter, [In] uint Flags, [Qut] out
DxVBLi bA. D3DADAPTER_I DENTI FI ER8 pl dentifier);
ui nt Get Adapt er ModeCount ([I n] uint Adapter) ;
voi d EnumAdapt er Modes([In] uint Adapter, [In] uint Mde, [In, Qut] ref
DxVBLi bA. D3DDI SPLAYMCDE pMbde) ;
voi d Get Adapt er Di spl ayMode([In] uint Adapter, [In, Qut] ref
nmyDXTypelLi b. D3DDI SPLAYMODE pMbde) ;
voi d CheckDevi ceType(ui nt Adapter, DxVBLi bA. CONST_D3DDEVTYPE
CheckType, DxVBLi bA. CONST_D3DFORVAT Di spl ayFor mat, DxVBLi bA. CONST_D3DFORVAT
BackBuf f er For mat , bool W ndowed) ;
voi d CheckDevi ceFor mat (ui nt Adapter, DxVBLi bA. CONST_D3DDEVTYPE
Devi ceType, DxVBLi bA. CONST_D3DFORVAT Adapt er For mat , ui nt
Usage, DxVBLi bA. CONST_D3DRESOURCETYPE RType, DxVBLi bA. CONST_D3DFORVAT CheckFor mat) ;
voi d CheckDevi ceMul ti Sanmpl eType(ui nt Adapter, DxVBLi bA. CONST_D3DDEVTYPE
Devi ceType, DxVBLi bA. CONST_D3DFORVAT Sur f aceFor mat , bool
W ndowed, DxVBLi bA. CONST_D3DMULTI SAMPLE_TYPE Mul ti Sanpl eType) ;
voi d CheckDept hSt enci | Mat ch(ui nt Adapter, DxVBLi bA. CONST_D3DDEVTYPE
Devi ceType, DxVBLi bA. CONST_D3DFORVAT Adapt er For mat , DxVBLi bA. CONST_D3DFORVAT
Render Tar get For mat , DxVBLi bA. CONST_D3DFORVAT Dept hSt enci | For mat) ;
voi d Get Devi ceCaps(ui nt Adapter, DxVBLi bA. CONST_D3DDEVTYPE
Devi ceType, DxVBLi bA. D3SDCAPS8 pCaps) ;
IntPtr Get AdapterMonitor(uint Adapter) ;
ui nt CreateDevi ce(uint Adapter, DxVBLi bA. CONST_D3DDEVTYPE Devi ceType,
IntPtr hFocusW ndow,
ui nt Behavi or Fl ags,
ref DxVBLi bA. D3DPRESENT_PARAMETERS pPresent ati onPar aneters,
ref DxVBLi bA. Di rect 3DDevi ce8 ppRet urnedDevi cel nterface) ;

As long as it looks complicated, the most important is to preserve the order of
functions of the interface.

-52-

Hereby | declare an agreement with this thesis to attendance loaning in university
library at University of West Bohemiain Pilsen, for academic purposes.

Tom&S SMISAl: e

-53-

