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Abstract 
This thesis contains a basic introduction to scalar volume data and iso-surfaces. Three 
direct iso-surface visualization methods are described: ray-casting, discrete ray-casting and 
the shear-warp method. An alternative acceleration technique is described that uses the 3D 
hardware for an effective space-leaping in the ray-casting methods. Finally, the methods 
are compared. 
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1 Introduction to Volume Data 

1.1 Surface Representation 
Different approaches can be taken to represent objects in space. Intuitive and thus 
commonly used are techniques that use geometric primitives. These primitives include 
boxes, spheres, cylinders, cones and others. The point is to choose the right combination of 
primitives in order to give the true picture of the object. This can be rather efficient way for 
simple objects. However, in case of complex objects this often becomes unfeasible and 
some approximation has to be chosen.  

Very popular is representation of surfaces using triangles. Triangles form a triangle mesh 
that can be used to approximate every shape. Thanks to the hardware support that is given 
by modern graphic cards, the visualization of the triangle meshes becomes very fast. But 
the hardware has some limitations for the number of triangles that can be effectively 
rendered. These limits often prevent us from choosing sufficiently accurate representation. 

Surface can be also described directly using mathematic functions. The advantage is that 
large variety of shapes can be described precisely. However, operations with such objects 
have rather mathematical than purely geometrical character and involve solution of 
nontrivial equations. Furthermore, some objects can not be described without compositing 
large number of functions and thus it looses the efficiency. 

Generally speaking, the surface representation has a serious disadvantage. It is suitable as 
long as we are interested just in the shape of an object. Once we are interested in the 
interior as well, we find it useless. 

1.2 Volume Representation 
Unlike the surface representations mentioned above, volume representation does not 
describe space as set of objects. It describes whole section of space (usually limited by a 
bounding box) using sample points. In the simplest case the sample points create a 
3-dimensional grid. In every node of this grid a sample is taken that reflects somehow 
properties of the material in that point.  

We can illustrate the basic idea of this approach on an example of a 2-dimensional object. 
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Figure 1.1: Binary classification of a 2D object. 

In the Figure 1.1 we can see the grid. Samples are taken in the nodes. In this case the 
binary classification is used. That means that value in the node is either 1 (the black nodes 
lying inside an object) or 0 (white nodes that lie outside the object). 

The node in 3D grid is in the terminology of volume data visualization called voxel 
(volume element) which is a 3D analogy of pixel (picture element). Voxel represents a unit 
of volume. 

The voxels can have different shapes and sizes. These properties often depend on the way 
the data are acquired. Most common are uniform rectangular voxels which are also easy to 
handle. This kind of voxels is also used further in this thesis. 

1.3 Character of Volume Data 
Data sampled in the grid nodes can have different meaning. Most commonly used are the 
following types: 

Binary data –  the voxels contain either ones or zeroes depending on whether they lie 
inside or outside an object respectively. This representation describes shapes of the objects. 
We can consider this data as a special case of scalar data. 

Scalar data –  each voxels contains one value. Typical meaning of the value is the density 
of material where greater values represent higher densities than the lower values. 

Vector data –  each voxel contains one-dimensional array of values. The vector can 
represent e.g. fluid velocity.  

Tensor data –  each voxel contains a matrix of values. This data can represent more 
complex physical measurements. 

Further in this thesis we will be dealing with the scalar data only. 
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1.4 Sources of Volume Data 
A source can be the sampled data of real objects, artificial data produced by a computer 
simulation or voxelization of a geometric model (a synthetic model is converted into 
volume representation). 

Examples of applications that generate sampled data are medical imaging (CT –  computer 
tomography, MRI –  magnetic resonance imaging, ultrasonography), geoscience (seismic 
measurements, oil resources explorations) and industry (CT inspections). 

Applications that generate computed datasets include for example computational fluid 
dynamics and meteorology. 

Voxelized terrain models as well as voxelized objects like buildings and vehicles are also 
used in computer simulators. Specific properties of terrain models can be used for 
designing special visualization algorithms that are more efficient that those for arbitrary 
models [Cohe96]. 

2 Volume Visualization 
Volume visualization can be defined as a process that projects a tree-dimensional dataset 
(array of voxels) onto a two-dimensional plane (array of pixels). This process is supposed 
to give the user an understanding of the structure contained within the data. Volume 
visualization is also called volume rendering. 

We can interpret scalar volume data in two different ways. Either as voxels - cubes having 
the same value in the whole volume or as cells- cubes that have eight different values in 
the vertices and value in the volume is interpolated using trilinear interpolation, see 
Figure 2.1. 

 

Figure 2.1: Volume data interpreted as voxels (left) and cells (right) 
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There are two basic groups of techniques used for volume data visualization. 

2.1 Volume Rendering Techniques 
This group includes techniques that visualize the whole volume at once using the 
alpha-blending. The whole volume is thus projected onto the projection plane. As the result 
of these techniques, we get an image that has a similar look to the traditional X-ray picture.  

An X-ray picture gets its look due to the different material translucencies towards the 
X-rays. The ray that passed through more translucent tissues appears as a darker dot on the 
negative because more energy penetrates those tissues. 

 

Figure 2.2: Image of a human head generated using volume rendering. 

2.2 Surface Rendering Techniques 
Surface rendering is used when visualization of a tissue surface is required.  

2.2.1 Iso-Surfaces in Volume Data 

An iso-surface is defined as a set of points having the same property (i.e. material density 
in our case). These points form a surface. The iso-surface is a 3D analogy of the iso-line in 
Figure 2.3. The dark and white dots in the figure represent values lying above and below 
the iso-value respectively. Thus the iso-line must be somewhere between these values.  
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Figure 2.3: Iso-line in 2D scalar data. 

2.2.2 Indirect Methods 

The word “indirect” means that the iso-surface in the volume data is not being visualized 
directly from the data set onto the user screen, but there is an additional step. In this step 
the iso-surface is converted into surface representation. This process is called extraction of 
iso-surface. The triangle mesh is used to represent the surface. When the surface (triangle 
mesh) is extracted, the power of graphic hardware is used to display (render) it onto the 
screen (see Figure 2.4). 

 

 
Figure 2.4: Indirect visualization process. 

The main advantage of these methods is in the speed of the rendering step. Once the 
triangle mesh is extracted, changing the viewpoint (rotating the data) means just changing 
the view parameters and rendering the mesh again using the fast graphic hardware. 

However, when an interactive change of iso-value is needed, the surface extraction 
becomes a bottleneck as it is relatively very slow. In other words, as long as we have a 
surface extracted and want to rotate it to explore it from the other side, it is fast. As soon as 
we need to keep the view direction and want to see other surface (e.g. the skull instead of 
the skin), other iso-surface has to be extracted and we have to wait for the resulting image. 
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Moreover, in the case of large datasets and complex surfaces, the number of generated 
triangles can be so high that can not be interactively rendered using the available graphic 
hardware. The problem is that many triangles are generated that can not be seen on the 
output image (are hidden by other triangles). 

 

2.2.3 Direct Methods 

Compared to the indirect methods, the direct methods render the volume data directly into 
the result image. 

 

 
Figure 2.5: Direct visualization process. 

As we can see in the Figure 2.5, the direct visualization process is dependent on both the 
iso-value and the view parameters. No matter if the iso-value or the view parameters are 
changed, the visualization works in the same way. 

2.3  Image-order Methods 
There are two approaches used in the visualization.  

The first one, the image-order approach, is driven by the image. It takes the image pixels 
one after the other and finds objects that are projected into this pixel. Depending on the 
technique, either the closest object to the observer or a combination of objects using 
alpha-blending is then projected into this pixel.  

A typical image-order technique is the ray-casting  

2.4 Object-order Methods 
On the contrary, the object-order approach takes the objects from the object space and 
project them into the image pixels. This process is called rasterization. To solve the 
visibility either the objects are taken in FTB (front to back) or BTF (back to front) order or 
a z-buffer is used. 
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3 Ray-Casting 

3.1 The Principle of Ray-Casting 
Ray-casting is a direct visualization method. It is a typical the image-order method.  

 
Figure 3.1: The principle of ray-casting 

The Figure 3.1 shows the basic principle of the ray-casting technique. The image plane on 
the right side corresponds to the resulting image. The goal is to acquire a colour value for 
every single pixel of the image. This is an image-order technique because the visualization 
process depends on the image plane properties. Every pixel of the result image corresponds 
to a point on the image plane. A viewing ray (3D line) is cast through that point in the 
direction perpendicular to the image. The ray is perpendicular because we consider just 
parallel projection where all viewing rays are parallel to each other. This ray is then traced 
along its path through the data volume until an iso-surface is hit or the ray gets out of the 
volume (there was nothing but empty space along the path). If the surface is hit, a surface 
normal has to be computed in order to perform shading. After the hit point is shaded, the 
resulting colour is set as the value for the corresponding pixel. If no surface is hit, the pixel 
value is set to background colour. This process has to be performed for every pixel. 

Size of the image plane in this implementation is given by the volume bounding box 
diagonal length. Therefore the projected data fits the plane in any position. Smaller 
projection plane could be used for rendering a defined region of interest. 

image 
(projection) 
plane 

ray 

iso-surface 
hit 

surface 
normal 

d
r

 

ur  

P  

s 

A 



8 

3.2 Casting a Ray 
The viewing parameters for the parallel projection in this implementation (see Figure 3.1) 
are given by: 

P –  a point in the object space defining the centre of the projection plane 

s –  size of the projection plane 

m –  number of rays being sent per one row/column of the projection plane, the plane 
is square shaped, together m2 rays are sent 

d
r
–  a normalized directional vector  

ur  –  a normalized vector perpendicular to the d
r

 vector, pointing in the direction “up” 

 

In the ray generating process, we divide the projection plane using an equidistant grid 
mxm. Each field of the grid corresponds to one pixel in the resulting image. We generate 
the point A in every field of the grid. The rays are then sent from these points. The ray is 
given by the equation tdAtX ⋅+=

v
)( . 

 
Figure 3.2: Sampling the volume along the rays. 

The principle of ray sampling through the volume is shown in the Figure 3.2. The sampling 
must be restricted just to the volume bounding box. This is achieved by restricting the 
parameter t, i.e. we find tmin and tmax for each ray. The ray is then sampled in equal steps for 

>∈< maxmin , ttt .We need to choose the sampling step, i.e. dt, which is problematic. 

bounding 
box 

ray 

image plane 

sample points 
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Choosing bigger steps is one of the ways of accelerating the algorithm; on the other hand 
this may cause an undersampling and loosing small details. Reasonable is choosing the 
step as the shortest distance between two voxels. 

3.3 Finding the Intersection 
The sampling along the ray is done in order to find the iso-surface given by the iso-value 
(threshold value). The sample is taken inside the cells made of eight voxels (see 
Figure 3.1) using the tri-linear interpolation. As the result of the interpolation, we get a 
scalar value in the sampling point ))(( tXf . We continue the sampling until the tmax is 

reached or until tresholdtXf ≥))(( . At this moment we know that the iso-surface is 

located between points X(t-dt) and X(t). As we know scalar values in both these points and 
the value for iso-surface, we can use the linear interpolation to get the precise location of 
the ray and iso-surface intersection: 

)))(((
))(())((

)( 1
12

tXff
tXftXf

dtdttt isoiso −
−

+−= , where fiso is the iso-surface value. 

The intersection is then at point X(tiso). 

3.4 Shading 
Further step we need to do is to compute the surface normal in the intersection point. First 
we compute the normal vectors in the eight voxels creating the cell in which is the 
intersection point situated. The surface normal vector is given by the data gradient that can 
be approximated using the central difference. Gradient vector in the voxel at position 
[x, y, z] is computer as follows: 







 −−+−−+−−+

=∇
c

zyxfzyxf
b

zyxfzyxf
a

zyxfzyxfzyxf
2

)1,,()1,,(,
2

),1,(),1,(,
2

),,1(),,1(),,( , 

where a, b and c are distances between voxels in x, y and z directions respectively. 
Different methods of gradient estimation are described e.g. in [Bentum96] or 
[Neumann00]. 

The Phong shading was used. To perform the Phong shading means to compute the surface 
normal in the intersection point. As we know the intersection point position within the cell, 
the normal vector is computed from the eight gradient vectors using trilinear interpolation. 

The central difference can not be used for voxels at the volume borders. To avoid checking 
if the voxels lies at the border or not, it is useful to add extra empty voxels around the 
volume. 
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3.5 Illumination Model 
The Lambert diffuse illumination model with just one light was used: 

)( NLrIrII dLaAV

rr
⋅+= , 

where IV is the final intensity reflected in the viewer direction, IA is intensity of the ambient 
light, IL intensity of the directional light we have, ra and rd are reflection constants that are 

specific for each material, L
r

 is the vector pointing from the surface point towards the light 

and N
r

 is the surface normal vector. 

Just a white light and a white material are used. Therefore one grey-tone value results from 
the equation. As no materials are differentiated, the coefficients ka, kd are constants. The 
light rays are parallel (the light is in infinite distance) and in order to make the visualized 
data side be directly illuminated, the light rays are parallel to the viewing direction as well.  

In the implementation, the normalized viewing direction vector d
r

 and the normalized 

gradient vector gr  are used instead of the vectors L
r

 and N
r

. 

)( gdIII LAV
rr

⋅+=  

To map the intensity value to one-byte grey value, the ambient and light intensities are 
chosen so that 255=+ LA II  

3.6 Properties 
The time needed for the rendering depends on the image size and on the number of 
samples taken. The complexity of this brute-force ray-casting algorithm is O(m2.n), where 
m is the number of pixels (rays sent) per one side of the result image and n number of 
voxels per one side of the volume. The number of samples taken along the ray path 
through the volume is proportional to n. 

The memory requirements of implemented algorithm are 2N bytes, where N is number of 
voxels in the dataset. N bytes are taken for storing the dataset and N bytes for the auxiliary 
data structure used for the sampling speedup (see below). 

3.7 Acceleration Techniques  
It is obvious that the ray-casting algorithm spends most of the time sampling the scalar 
values along the ray until an iso-surface is hit. To reduce the costs caused by trilinear 
interpolation, an auxiliary data structure was introduced in this implementation. It has the 
same size as the volume. Every element of this 3D array represents a volume cell given by 
eight voxels. In this array, there are stored the maximum voxel values for each cell. Every 
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time the sample is going to be taken, the algorithm looks into this array first. If the 
maximum voxel value within the cell is lower than the threshold value, then the 
interpolation is not performed as the interpolated value will be always lower. 

3.7.1 Adaptive Refinement 

The adaptive refinement [Levoy89a] is a typical acceleration technique that uses the image 
coherency. As the time spent on one image is influenced by the number of sent rays, we 
can get the image faster when fewer rays are sent. This image has lower quality but faster 
rendering enables interactive frame rates. When the viewpoint is changed, a lower number 
of rays are sent from the pixels uniformly spread over the projection plane. The empty 
pixels are filled using bilinear interpolation. If the user needs to change the viewpoint 
again, new low-quality image is generated. If the viewpoint change is not requested, more 
rays are sent to improve the image quality. The refinement of the image can be done 
adaptively according to the low-quality image. When two neighbouring rays gave colour 
values whose difference is relatively high, then another ray is sent between them. The 
refinement continues until the user changes the viewpoint or until rays from all pixels are 
sent. However the refinement can continue in sub-pixel accuracy to perform antialiasing. 

3.7.2 Octrees 

Spatial coherency is often exploited using various spatial structures that divide the volume 
and enable empty space leaping. One of them is the octree structure. It is a tree structure in 
that does every node has eight sons. On the highest level, the root node represents the 
whole volume box. The eight sons represent the box divided into eight equal boxes. On the 
lowest level, the leaves represent single cells. Each node contains the maximal voxel value 
within the box so that the whole box can be skipped if the threshold value is greater that 
the maximal value. A serious disadvantage of this algorithm is that the ray spends 
considerable amount of time on changing the current level in the octree. More detailed 
description of using octrees for volume rendering can be found e.g. in [Levoy89b]. 

3.7.3 Proximity Clouds 

The proximity clouds [Cohen93] represent another object order technique for space 
leaping. In the preprocessing step the volume is evaluated so that every voxel contains a 
distance to the closest iso-surface. In other words the values tell us how long sampling step 
can be made in any direction without hitting the surface. The advantage is that no tree like 
structure needs to be traversed. On the other hand the preprocessing is relatively time 
demanding and as it depends on the current threshold, interactive threshold changes are 
problematic.  
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4 Discrete Ray-Casting 

4.1 Principle 
This technique is based on the same principle as the previous one. The rays are given by 
the parametric equation and the parameter t is restricted by the data bounding box. The 
difference is in the way the ray is traced inside the volume and in the way the data is 
treated. Instead of computing the precise data values inside the cells, the data is treated as 
an array of voxels (see Figure 2.1). Therefore we do not need to know the sample position 
within the cell, but just need to know which voxels (full boxes) the ray pierces. The 
advantage of the discrete ray-casting is that it can be achieved using simple integer 
arithmetic. 

4.2 Path Generation 
The path through the volume is generated using a 3D line algorithm. See three different 
line connections that can be chosen (Figure 4.1). 

 

 
Figure 4.1: Three path generation possibilities 

If we look at the voxels as at boxes, we can say that two voxels are 6-connected if they 
share a face; they are 18-connected if they share a face or an edge and they are 
26-connected if they share a face, an edge or a vertex. 

Usually the 6-connected or 26-connected paths are used. The 6-connected path contains all 
voxels the ray pierces but can have up to three times more voxels than the 26-connected 
one (for diagonal direction). The 26-connected path was chosen for the implementation in 
order to have every sample along the ray in different volume slice. The sampling is thus 
similar to that used in the shear-warp implementation (see chapter 5). 

6-connected 18-connected 26-connected 
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We start the path generation at the first volume voxel pierced by the ray. The first voxel is 
given by the equation min)( tdAtX ⋅+=

v
where tmin is the lower parameter bound (see 

chapter 3.2). Although a Bresenham algorithm modification for 3D could be used as well 
(see [Amanatid87]), the 3D DDA algorithm was implemented. This algorithm is based on 
adding differences to the coordinates: 

xxx ii ∆+=+1  
yyy ii ∆+=+1  
zzz ii ∆+=+1  

This needs floating-point arithmetic and rounding operations to get integer coordinates. To 
use the integer arithmetic and avoid rounding operations, the numbers are represented as 
fixed-point numbers stored in 32 bit integers. The higher word is used for the whole part 
and lower 16 bits for the decimal part. Adding a difference thus means adding an integer 
number and no rounding is needed as the higher word represents the position. At the 
beginning the floating-point numbers are simply converted to fixed-point numbers by 
multiplying by 216 and rounding to an integer. 

The difference in the principal direction is always 1. Therefore in each step we traverse to 
the next data slice and the other two differences update the current position within the 
slice.  

The maximal number of steps is computed in advance from tmin and tmax. The path is 
generated until a voxel having the value greater or equal the threshold value is reached or 
until the maximal number of steps is reached. 

Finally the gradient and colour value are computed using the central difference and 
illumination model (see chapters 3.4 and 3.5). 

4.3 Properties 
The complexity of this algorithm is O(m2.n).  

The memory requirements of the algorithm are N bytes, where N is number of voxels in the 
dataset. This memory is taken for storing the dataset. 

As the algorithm treats the data as full voxels and thus no inter-cell interpolation is done, 
by sending more rays per voxel the image quality does not improve. The algorithm is 
therefore not suitable for rendering with sub-voxel precision. 

The 26-connectivity results in several problems. Firstly, a thin surface having in discrete 
space 26-connected holes can be missed. The second problem is in the way the gradient 
vector is computed. The ray may penetrate into the object “too quickly”, and all the voxels 
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taken into account in the central difference may belong to the object and have same values 
which results in a zero vector (see Figure 4.2). 

 

Figure 4.2: An example of hitting an object following a 26-connected path 
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5 Shear-Warp Factorization 
This method presented in [Lacroute95] is an object-order method. When visualizing a 
volume data, we use a view transformation that rotates the object space according to user’s 
needs. When using the classic approach, the volume needs to be traversed in arbitrary 
direction which is not very efficient. Random accesses to the volume data mean evaluating 
data indexes as well as memory access that is slow compared to the speed of CPU (see 
results in chapter 7.5). More efficient is traversing the volume in storage order. Data is 
accessed sequentially and the advantage is taken of the memory caching. 

5.1 Principle 
The arbitrary view transformation can be achieved using 3D shearing and 2D warping. In 
Figure 5.1, we can see the shear-warp process.  

 
Figure 5.1: Volume is transformed to sheared object space by translating slices. 

The shearing direction is chosen parallel to the set of slices that are most perpendicular to 
the viewing rays (viewing direction). The volume is sheared so that the viewing rays 
become parallel to the data slices. The shearing is done by translation of slices. Of course 
no slow physical data moving is done since the translation is achieved by index shifting 
during data resampling.  

In the Figure 5.2 the translation of slices and projection onto the intermediate image are 
shown. The slices are taken in front-to-back order and resampled using bilinear 
interpolation. Since the slices are just translated, the resampling weights are the same for 
the whole slice (Figure 5.3). 
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Figure 5.2: Projection of translated slices using resampling 

 

Figure 5.3: The resampling weights are same within the whole slice 

5.2 Derivation 
Four different coordinate systems are used in the shear-warp algorithm. See Figure 5.4. 

 

Figure 5.4: Four coordinate systems used in the shear-warp factorization 
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The viewing transformation is given by a view matrix Mview that transforms points from the 
object space into the image space. 
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Our goal is to find a shear matrix Mshear and a warp matrix Mwarp so that: 

PMMM shearwarpview ⋅⋅=  

The shear matrix transforms the object space into the sheared object space. The warp 
matrix transforms the sheared object space into the image space. 

The principal viewing axis is the axis of the object coordinate system that is most parallel 
to the view direction. To eliminate the three possible cases, we transform the object space 
into the standard object space. In the standard object coordinates, the principal axis is the k 
axis. We can get from the object coordinate system to the standard one by permuting the 
axes using a permutation matrix P. When the principal axis corresponds to the z axis, the 
permutation matrix is the identity matrix. When the principal axis is the x or y axis then 
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The principal viewing axis can be found very easily. As we know the view direction vector 
vo, we just find the vector element with the maximum absolute value.  

The directional vector can be also computed as 
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Let M’view be a permuted view matrix that transforms standard object space into the image 
space: 

1−=′ PMM viewview  

The view direction in the standard object space is: 

oso vPv rr
⋅=  
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After transforming to the sheared object space, this direction must be perpendicular to the 
(i, j) plane. The shear matrix has the following form: 
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The shear coefficients si and sj are equal to: 
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where ijm′ are elements of M’view. 

The k-th slice (labeled 0..kmax in front-to-back order) will be translated relative to the 
previous one by si and sj in the i and j direction respectively. 

 

Figure 5.5: Four cases of displacement computation 
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The translation coefficients ti and tj in the shear matrix specify the difference between the 
origin of the standard object space and the sheared object space. Projection of the 0-th slice 
starts at the position [ti, tj] in the intermediate image space. See Figure 5.5 for details. 

The last thing we need is to compute is the warp matrix. We get it as: 
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Because the warp operation is performed in 2D, the third coordinates do not have to be 
taken into account. We can omit the third row and column and get a 3x3 warp matrix: 
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For a more detailed derivation see [Lacroute95]. 

5.3 Acceleration Using RLE 
Traversing the volume in the storage order allows us to introduce further improvements of 
the shear-warp algorithm efficiency. Usually, the image-order algorithms are able to use 
the image coherency together with early ray termination to achieve faster visualization, but 
are not as efficient in exploiting the spatial coherency that involves traversing special data 
structures (e.g. octrees) which becomes slow as the same structure is often traversed 
multiple times. On the other hand the object-order algorithms can effectively use the 
spatial data structures, but can hardly take advantage of the image coherency. 

The way of speeding up the shear-warp algorithm, as presented in [Lacroute95], uses the 
fact that the voxel scan lines are parallel to the scan lines of the intermediate image. This 
property enables taking advantage of both image and spatial coherency. 

To exploit the spatial coherency, the voxel rows are encoded using the run the length 
encoding (RLE). In the preprocessing step, the voxels are classified as transparent or 
non-transparent according to the current threshold value and encoded. In [Lacroute95] the 
rows of voxels are encoded separately. When deciding whether to resample a voxel, 
information from both the neighbouring voxel rows is needed. If there is a non-transparent 
voxel run at least in one of the rows then the resampling proceeds, see Figure 5.6.  
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Figure 5.6: Resampling of a voxel using two neighbouring rows 

To avoid taking two rows into account, a slightly different approach in encoding the data 
was chosen in this thesis. In this approach the intermediate rows are encoded (see 
Figure 5.6). The intermediate row consists of 2D cells. The cell at position [j, i] is created 
by voxels [j, i], [j, i+1], [j+1, i] and [j+1, i+1]. In the preprocessing we find the maximum 
scalar value of these four voxels. If the maximum value is lower then the threshold, the cell 
is encoded as a transparent one, otherwise as a non-transparent one. 

In [Lacroute95] this resampling technique was used in combination with alpha-blending 
composition of computed colours to enable visualization of semi-transparent tissues. 
However, in this thesis just one fully opaque iso-surface is considered and thus no blending 
is used. Since just one colour value contributes to each pixel, the image quality 
considerably depends on its accuracy. After implementing this method, the tests showed 
that even tough the bilinear interpolation as shown in the Figure 5.6 should give better 
results than the nearest neighbour interpolation, the results were similar. It is caused by the 
absence of the interpolation between slices which would need an extension of current 
algorithm. Therefore the nearest neighbour interpolation was finally implemented and used 
for comparison with other methods. This simplification made the preprocessing and 
resampling step computationally less expensive. Due to the nearest neighbour 
interpolation, the data is treaded in the same way as in the discrete ray-casting algorithm 
(as voxels –  see Figure 2.1) and the image quality is comparable as well.  

The classic RLE encoding does not allow us to access the encoded data randomly. The 
simple data structure in Figure 5.7 enables a fast access to next non-transparent cell.  
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Figure 5.7: The data structure for a fast access to non-transparent cells 

When projecting the volume slices onto the intermediate image, we switch between 
traversing the image (using image coherency, see further) and traversing the row of cells. 
When switching from the image traversal to the volume traversal, we have an index to the 
2D cell to be processed. To avoid processing the transparent cells, we need to find the next 
non-transparent cell as fast as possible. This is achieved by looking into the data structure 
(Figure 5.7). The cell containing a zero value is non-transparent and needs to be resampled, 
otherwise the cell is transparent and the value is an offset to the next non-transparent cell. 

As the way the volume is being sliced depends on the principal viewing axis, three such 
data structures need to be constructed in the preprocessing. As the viewing direction 
changes, we switch between them. Because one byte is used for each cell, this auxiliary 
data structures take three times as much memory as the volume data. However, this is 
bearable for small 2563 volumes. In case of larger datasets the original structure used in 
[Lacroute95] should be used to save the memory since it does not store the transparent 
voxels. 

To exploit the image coherency, the similar structure is used. At the beginning all the 
pixels in the intermediate image are empty. As the projection of the volume slices 
progresses, the pixels get a colour value. After a pixel gets a colour value, all other parts of 
volume that would be projected onto this pixel are hidden (the slices are taken in 
front-to-back order). Thus we do not need to resample the volume in the point that projects 
onto the full pixel. Because the pixel scan lines are parallel to the rows of cells as they are 
traversed, by using an auxiliary data structure we can easily skip the cells that would be 
projected into the full pixels. The only problem is that the data structure is not constant as 
in the case of the volume, but needs to be updated each time a pixel is coloured. We need 
to add a new full pixel as quickly as possible but want to maintain the structure of offsets at 
the same time. Marking the pixel as full is simply done by putting the offset value 1 instead 
of 0 which meant that the pixel was empty. The offset 1 points at the next pixel. Adding a 
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new pixel to the existing run of full pixels using this simple algorithm creates a kind of tree 
where the root is the first empty pixel behind the full pixels (see Figure 5.8 a)).  

 

Figure 5.8: Auxiliary data structure for pixel traversing 

To maintain this structure suitable for the fast empty pixel search (i.e. to make the full 
pixels point directly at the root), an additional step is taken when searching for the root. 
Each time the algorithm goes through the list of pixels pointing at each other, after finding 
the root, it goes through the pixels again and changes the offsets so that they point at the 
root (Figure 5.8 b)).  

The projection algorithm can be written as follows: 

FOR each slice in FTB order 
 Compute slice displacement within the intermediate image 
 Compute resampling coefficients 
 FOR each slice row 
  pCell ß 1st row cell 
  pPixel ß corresponding pixel 
  WHILE not end of row 
   IF IsFull(pPixel) 
    Skip full pixels and corresponding cells 
   ELSE IF IsTransparent(pCell) 
     Skip transp. cells and corresponding pixels 
    ELSE 
     Image[pPixel]=ResampleAndShade(pCell); 
     SetPixelAsFull(pPixel); 
  END WHILE 
 END FOR 
END FOR 
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The ResampleAndShade(pCell) step was finally due to the nearest neighbour 
interpolation simplified to Shade(pVoxel). The gradient is computed using the central 
difference and the colour value is obtained as shown in chapter 3.5. 

5.4 Warping the Image 
The final step towards the resulting image is warping the intermediate image. There are 
two possibilities of warping the image. Fist one is the direct application of the 2D warping 
matrix: 
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where [ ]yx,  are coordinates of a pixel in the intermediate image and [ ]yx ′′,  the coordinates 

in the final image to which is the pixel mapped. The advantage of this solution is that we 
do not have to transform the pixels that have the background colour. The intermediate 
image must be large enough to fit the volume projected in any possible position and as the 
result, in some positions less than 25% of the image is used. The intermediate image size is 
2nx2n, where n is the maximal number of voxels per side. 

This solution has also a serious disadvantage. For some pixels of the final image may 
happen that no source pixel is mapped to them. This results in holes in the final image that 
are usually uniformly spread and create a pattern. 

To avoid this effect, an inverse mapping must be applied. In other words, we need to find a 
source pixel for every destination (final image) pixel. This means finding an inverse matrix 
to the warping marix. 
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When warping the image, we go through every final image pixel and find the 
corresponding coordinates in the intermediate image. As the coordinates [ ]yx,  are 

floating-point numbers, the source point lies generally somewhere between four pixels. We 
can use this for bilinear interpolation. However, the tests I made showed, that the warping 
process must be carefully optimised otherwise it becomes a bottleneck. Thus just the 
nearest neighbour interpolation was used together with integer arithmetic and look-up 
tables to get most of the computations out of the loop and make the warping time be a 
fraction of the total time.  
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5.5 Properties 
The complexity of the brute-force shear-warp algorithm is O(n3) where n is the number of 
voxels per one side of the volume. Since it is an object-order algorithm, the complexity 
does not depend on the image size. For the accelerated shear-warp technique as described 
here, the worst case complexity is still O(n3). However, for tested datasets the observed 
complexity (see the table in Figure 7.6) is approximately O(n2). The reason is that even 
though every voxel scan line (n2 scan lines) needs to be processed, the number of voxels 
that contribute to the image is proportional to n2 and thanks to the long voxel and pixel 
runs the other can be effectively skipped 

The memory requirements of the algorithm are 4N bytes, where N is number of voxels in 
the dataset. N bytes are taken for storing the dataset and N bytes for each of the three 
auxiliary data structures used for the encoded volume.  

 

5.6 Other Acceleration Techniques 
There are other acceleration techniques that use the shear-warp factorization. For example 
in [Csé bfalvi98] a fast method is described that classifies the volume into a binary volume 
and encodes each voxel as one bit in 32bit integers. The 32bit strips are always 
perpendicular to the projection plane and help to efficiently find the first ray-surface 
intersection voxel. Although the classified data is physically sheared, the moving is fast as 
32 voxels are handled at the same time. The presented algorithm is efficient for small 
shearing steps, i.e. rotation by small angles 

Other method based on shear and warp was presented in [Csé bfalvi99]. A great amount of 
work is done in the preprocessing step where the volume is classified and voxels that 
create the surfaces are selected. It means that voxels that are transparent and voxels that are 
inside the objects and hence are not be visible from any viewpoint are discarded. Just the 
voxels creating the surfaces are stored and rendered slice by slice in back-to-front order 
using painter’s algorithm to solve visibility. 
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6 Ray-Casting Acceleration Using 3D Hardware 
The ray-casting algorithm is a very simple method that enables to easily implement various 
modifications like cutting planes. The algorithm is also very easy to parallelize and no 
preprocessing is needed when the threshold value is changed. However, the algorithm is 
relatively slow due to the long time is spends traversing the volume until the iso-surface is 
hit. A space leaping technique is presented in this paragraph that I developed to quickly 
find the limits in that is the ray going to be sampled and thus to avoid the empty space 
sampling. The standard 3D graphic hardware is used for this purpose. The implementation 
was done using the OpenGL library. 

6.1 Creating the Super-Cells 
We divide the volume into super-cells. Each super-cell is a cube made of k3 cells 
((k+1)3 voxels),  kn )1( −  super-cells are created per one side of the volume, where n is 

the number of voxels per volume side. If the volume size is not a whole multiple of k, the 
super-cells at borders are smaller. 

 

Figure 6.1: An example of super-cells created by 33 cells (43 voxels) 

The super-cells actually play the role of the bounding boxes in this acceleration. The 
super-cells are created in the preprocessing. In the auxiliary 3D array, one value is stored 
for every super-cell –  the maximum scalar value of the voxels that create the super-cell. 
This data structure is independent on the current threshold value. 

cell 

super-cell 
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6.2 Rendering the Super-Cells 

As we know from the section 3.2, the ray is given by the equation tdAtX ⋅+=
v

)( . This 

algorithm tries to restrict the parameter t so that the ray is then sampled along a shorter 
path. The restriction is achieved with the help of the hardware depth buffer.  

The super-cells that have the maximal value greater or equal the threshold value are 
rendered using OpenGL. They are rendered twice. Once with the depth function set to less 
(closer objects hide the more distant) and the second time with the function set to greater. 
After each rendering, the depth buffer is retrieved into the buffers in the main memory. 
The buffers have the same size as the rendered image. The buffer values are then used as 
bounds for the cast rays. The super-cells are rendered as blocks using rectangles.  

Of course not all super-cells with value greater than the threshold need to be rendered as 
some may be hidden. Neither all six faces are rendered because just three can be visible at 
the same time. These visibility aspects are considered in another preprocessing made every 
time the threshold value changes. In the Figure 6.2, we can see the six principal directions. 
The faces that create the super-cells are perpendicular to these directions. In the 
preprocessing six lists of visible faces are created. Each list corresponds to one principal 
direction and contains faces perpendicular to this direction with respect to visibility (just 
the front face is selected). The lists are stored in GL lists to be fast rendered afterwards. 

 

Figure 6.2: The six principal directions 

An arbitrary viewing direction can be composed of three principal directions. For example 
the viewing direction with all positive coefficients is composed of principal directions 1, 2 
and 3 (see Figure 6.2). We first render the lists corresponding to these three directions and 
store the depth buffer values into the first array. Then the other lists corresponding to the 
opposite directions (4, 5 and 6) are rendered with depth function set to greater (we render 
what would be seen from the opposite side of the volume) and the depth buffer values are 
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saved into the second array. Values from the buffers are used as restriction bounds for the 
rays. Therefore the ray enters the volume in the first nonempty super-cell along its path and 
unless the iso-surface is found it leaves the volume after the last nonempty super-cell is 
sampled. 

6.3 Solving the Visibility of the Faces 
In order not to visualize the hidden faces a simple algorithm was used. It does not remove 
all hidden faces but on the other hand it is quick. 

The visibility is taken into account when the lists of faces are compiled. The face is added 
to one of the six lists if one empty and one non-empty super-cell share the face. It is 
obvious that this approach also selects the faces that create the interior surface (see 
Figure 6.3). An improved algorithm should be used to remove the interior faces. However, 
this would cost more time in the preprocessing. 

 

Figure 6.3: Visibility of the super-cell faces 

6.4 Properties 
The worst-case asymptotic complexity of any of the the ray-castings from chapters 3 and 4 
with using the hardware acceleration is O(f+m2n) where n is the number of voxels per one 
side of the volume, m is the image size and f is the number of rendered faces. This is for 
the case when the super-cells do not help at all to restrict the ray path. However, the 
expected complexity that more corresponds to the results in Figure 7.6 is O(f+m2k), where 
k is the size of the super-cell. The number of samples taken per ray is expected to be 
proportional to k. 

The accelerating technique takes at most N additional bytes for the super-cell values. 

A super-cell having 
the value < threshold 

A super-cell having 
the value ≥ threshold 

A face that will not 
be rendered 

A face to be rendered 
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7 Results 
This chapter includes the tests that were made in order to compare speed of implemented 
methods. 

The methods had been tested on a PC with Intel Celeron processor running at 900MHz, 
640MB of main memory and a GeForce2 graphic card under the Windows XP operating 
system. 

7.1 Tested Data 
The methods were tested on real datasets.  

Dataset  Size  New dataset  Size 
syn_64.vol 64x64x64  cthead_64.vol 64x64x64 
ctmayo.vol 128x128x128  cthead_128.vol 128x128x128 
cthead.vol 256x256x113  cthead_256.vol 256x256x256 
engine.vol 256x256x110  cthead_512.vol 512x512x512 
bentum.vol 256x256x256 

 

Figure 7.1: The tested datasets. The left table shows original datasets. The right table 
shows sizes of resampled datasets. 

Although there is a variety of original data sizes, the datasets can not be compared with 
each other since the datasets include different objects. Furthermore some datasets have 
other scale than 1 along any of the axis. To compare properties of the algorithms on 
different data sizes the cthead dataset having originally 256x256x113 voxels was 
resampled to 643, 1283, 2563 and 5123 volumes (see Figure 7.1). 

The resampling was simply done by the trilinear interpolation. A 3D grid of the new 
resolution was introduced into the original volume and new scalar values were computed 
from the eight nearest original values using trilinear interpolation. The trilinear 
interpolation was chosen for its simplicity. The disadvantage is that it makes the step 
artefacts more visible; a more sophisticated filter should be used to avoid that. However, it 
is sufficient for the testing purposes. 
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7.2 Testing Principles 
Since the visualization process depends on many conditions, the conditions have to be as 
equal as possible for all tested methods in order to get correct results. See the testing 
conditions in this chapter for details about performed tests. 

The cthead resampled volumes (see the right table in the Figure 7.1) had been used for the 
performace tests. In next chapters they are referred as 643, 1283, 2563 and 5123 volumes 
respectively. 

Since the shear-warp method (chapter 5) is able to generate only intermediate images that 
are twice as big as is the size of the volume (e.g. 5122 size images for 2563 volume), the 
image sizes in tests are set to double size as well. This helps getting similar conditions for 
all methods. 

The threshold value for visualization was set to 50 which corresponds to the skin surface. 

Because the visualization depends on the viewing parameters, it is sensible to make the 
following tests: 

Test A 

The rotation around the z axis as shown in the Figure 7.2 a). This test was designed for the 
testing of the data storage order dependency. This test does not make any sense for the 
shear-warp method since the rotation around viewing direction is achieved by the final 
image warp. 

 

 

Figure 7.2: An illustration of performed tests, the volume is rotated around z axis, two 
different viewing directions are used: a) negative z axis; b) positive y axis 
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TestB 

The rotation around z axis as shown in the Figure 7.2 b). The 360 degree rotation was done 
in 10 degree steps. In this test minimal, maximal and average times were computed. 

 

Face View 

If the face view is referred, it means that the positive y axis viewing direction is used as 
shown in the Figure 7.2 b). 

 

For simplicity, the tested methods are referenced using following abbreviations: 

 

RC –  the brute-force ray-casting method described in chapter 3 

DRC –  the discrete ray-casting as described in chapter 4 

RC HW –  the RC method with hardware acceleration from chapter 6 

DRC HW –  the DRC method with hardware acceleration from chapter 6 

S&W –  the method using shear and warp factorization and RLE acceleration as 
described in chaper 5 

 

 

The times were measured using the hardware performance counter. In all cases, the times 
include time needed for shading and storing the colour values into the image buffer; times 
for S&W include warping of the intermediate mage into the frame buffer. The times do not 
include drawing from the image buffer into the user window. 

 

7.3 Hardware Acceleration 
To test the acceleration method described in chapter 6 and compare it with other methods, 
the super-cell size has to chosen. Choosing the size is quite problematic. With decreasing 
super-cell size, the number of super-cells increases and there is more work for hardware to 
render them. On the other hand larger super-cells mean longer paths to sample until a 
surface is hit. See Figure 7.3 for an example of number of faces used to visualize the 
super-cells.  
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Figure 7.3: Number of generated faces to be rendered, shown in dependency on the 
super-cell size. The 2563 volume was used. 
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Figure 7.4: An example of rendering time dependency on the super-cell size. The DRC HW 
method and face view were used. The 2563 volume was rendered, the image was 5122. The 
best time (179ms) was achieved for the 73 super-cell. 
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The cell size for which the fastest rendering is achieved depends on used hardware, dataset 
being visualized, threshold value, used rendering method and image size. For tested 
datasets it was observed that the most efficient cell size does not depend on current 
viewing direction.  

See Figure 7.4 for an example of the time dependency on the super-cell size. This 
dependency was investigated for both RC HW and DRC HW methods and all tested 
datasets. For the increasing number of super-cells, the hardware becomes the bottleneck. 
The resulting best super-cell sizes are listed in the table in Figure 7.5. 

 

RC HW DRC HW 
Data size Image size Cell size Time (ms) Cell size Time (ms) 

643 1282 33 32 83 11 
1283 2562 33 128 63 42 
2563 5122 33 577 73 179 
5123 10242 43 2580 73 735 

 

Figure 7.5: The optimal super-cell sizes for different data volumes and corresponding 
image sizes. 

The time courses look similar to that in the Figure 7.4. The differences between the 
rendering time for the optimal size and times for the neighbouring sizes are minor. Thus 
we come to an observation that the optimal super-cell sizes for the given rendering method 
and dataset resampled to different sizes does not change as long as the data size and image 
size ratio is constant.  
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7.4 Rendering Speed Comparison 
This chapter contains speed comparison of implemented methods. For the following tests, 
the rotation Test B was used (see chapter 7.2 for details). In the Figure 7.6 the minimal, 
maximal and average times are shown that were achieved during the rotation. 

 

633/1282 1283/2562 2563/5122 5123/10242   
min max avrg min max avrg min max avrg min max avrg 

RC 66 82 75 360 557 470 2502 4288 3453 17206 31932 24956 
RC HW 31 43 36 110 161 144 490 714 637 1933 3129 2721 

DRC 13 18 15 64 89 76 364 593 473 2308 4650 3246 
DRC HW 10 14 11 39 49 45 149 209 186 624 863 789 

S&W 3 4 4 12 18 16 59 101 80 286 528 406 
 

Figure 7.6: The table showing result times in milliseconds. For methods RC HW and 
DRC HW, the optimal super-cell sizes (as shown in Figure 7.5) were used. 
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Figure 7.7: A graph showing the rendering time dependency on the volume size. The 
average values from the  table in the Figure 7.6 were used. 
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See the Figures 7.8 and 7.9 that show the acceleration achieved for RC and DRC methods 
respectively. 
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Figure 7.8: An acceleration of the RC HW method against the brute-force ray-casting. 

 

Acceleration of DRC HW method
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Figure 7.9: An acceleration of the DRC HW method against the brute-force discrete ray-
casting. The shear-warp method is shown for comparison. 
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7.5 Data Storage Coherency 
A test was made that shows how the order in which the data is accessed influences the 
rendering times. This issue is critical since the slow memory access becomes a bottleneck 
in traversing the data volume. As the CPU is much faster than the main memory, there is 
the local CPU cache that helps the processor to get the data faster. When there is a memory 
read request at an address, the neighbouring data is stored in the cache as well so that later 
it can be accessed faster. However, this assumes that the data is accessed in the storage 
order. Otherwise the cached data is replaced by data from other addresses since the cache 
size is relatively small. 

To measure the access order dependency, the test A was used (see chapter 7.2 for details). 
The test is based on the fact that the same viewing direction is used and the view is being 
rotated around the viewing axis. This means that the same rays are sent however in 
different order. 

The data voxels are stored in rows in the x direction (see Figure 7.2). The rows are stored 
in the y direction and create data slices. Finally, slices are stored in the z direction. 

0

1000

2000

3000

4000

5000

6000

7000

0 45 90 135 180 225 270 315 360
Angle

Ti
m

e 
(m

s) RC
DRC
RC HW
DRC HW
S&W

 

Figure 7.10: Rendering times vary depending on the rotation angle. It was measured for 
the 2563 dataset in 5 degree steps. 

The Figure 7.10 shows that the fastest times were achieved for 0° and 180° angles as the 
image rows were parallel to the data rows and the ray could take advantage of the data 
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cached by any of the previous rays. The slowest times were measured at 90° and 270° for 
image rows perpendicular to the data rows. 

In the Figure 7.11 the previous results are expressed as a relative slowdown. The most 
noticeable slowdown can be observed for the discrete ray-casting method. In this method 
the time spent on one sample is minimized since no interpolation is done. The sampling 
loop thereby relies on the memory speed much more then the ray-casting method that does 
more computations in one step. Using the acceleration, the relative slowdown decreases 
since the rays do not traverse such long distances.  
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Figure 7.11: The relative slowdown expressed relatively to the time measured at 0 degrees. 

 

7.6 Preprocessing Speed Comparison 
Besides the rendering times that were discussed in previous chapters, there is another issue 
that has to be taken into account –  the time needed for preprocessing. The preprocessing is 
used in RC HW, DRC HW and S&W methods each time the threshold value changes. The 
preprocessing time is not very important as long as the user does not need an interactive 
change of the threshold value. However, it becomes critical when rather threshold value 
changing than data rotation is needed. See Figure 7.12 for resulting preprocessing times. It 
can be observed that the preprocessing in the shear-warp method becomes with growing 
dataset relatively very slow. It is caused by the fact that it has to go through the whole 
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volume. The other two methods process just the super-voxels to determine which will be 
visible for the given threshold. 

 

10

100

1000

10000

100000

64 128 192 256 320 384 448 512

Volume size

Pr
ep

ro
ce

ss
in

g 
tim

e 
(m

s)

RC HW
DRC HW
S&W

 

Figure 7.12: Times needed for preprocessing measured for 642, 1282, 2562 and 5122 
volumes and threshold equal to 50. For the RC HW and DRC HW methods, the rendering 
optimal super-cell sizes from Figure 7.5 were used. The RC and DRC methods are not 
included since they do not use any preprocessing.  

However, in practice, when the user changes the threshold value, both the preprocessing 
and rendering must be done in order to give a response. We thus need to consider both 
times to see how quick the response for a threshold change is. 

The Figure 7.3 shows the sum of the preprocessing times from Figure 7.12 and the average 
rendering times from Figure 7.7. Interesting results can be seen in that graph. Even though 
the RC and DRC methods do not need any preprocessing at all, the acceleration gain of the 
RC HW and DRC methods can easily compensate the low preprocessing costs.  

However, notice that the high preprocessing costs of the S&W method make it unsuitable 
for interactive threshold changes since the total time becomes almost as slow as is that for 
the RC method.  
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Figure 7.13: Times needed for a threshold change and following rendering. 

Finally see Figure 7.14 for response speeds expressed in frames per second. 

 

Rotation (FPS) Threshold change (FPS) 
 643 1283 2563 5123 643 1283 2563 5123 

RC 13,33 2,13 0,29 0,04 13,33 2,13 0,29 0,04 
RC HW 27,44 6,95 1,57 0,37 27,44 6,95 1,57 0,37 

DRC 65,69 13,14 2,12 0,31 15,33 7,29 1,59 0,24 
DRC HW 89,11 22,19 5,36 1,27 22,61 10,10 4,11 1,05 

S&W 268,66 64,52 12,45 2,46 22,87 3,44 0,39 0,04 
 

Figure 7.14: Table showing the frame rates for volume rotation in the left part (computed 
from time values in Figure 7.6) and for the threshold change response (include the 
threshold change and rendering). 

7.7 Image Quality 
This thesis is orientated to the rendering speed rather than to the output image quality. 
However, the image quality is a very important issue in volume data visualization. It 
depends primarily on the way the surface normal is computed and on the interpolation 
technique.  
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As two different interpolation approaches were used, the resulting images have different 
quality. The RC method gives the best results thanks to the trilinear interpolation it uses. 
The DRC and S&W methods use the nearest neighbour interpolation which trades the 
image quality for faster rendering times. The differences in the image quality are getting 
more obvious when more rays per one voxel/cell are sent. Furthermore the nearest 
neighbour interpolation used in the 2D warp in the S&W method causes the image causes 
slightly worse image quality than is that of the DRC method. 

The acceleration technique used in the RC HW and DRC HW methods does not influence 
the output quality. 

See Appendix C for a visual comparison of RC, DRC and S&W methods. There are also 
the RC method sample outputs for other datasets. 
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8 Conclusion 
The ray-casting, discrete ray-casting and shear-warp methods were described and 
implemented in this thesis. The ray-casting method gives best image quality thanks to the 
inter-cell interpolation. The discrete ray-casting method is less computationally expensive 
and thus gives faster rendering times. However, the image quality is worse due to the 
nearest neighbour interpolation. An accelerating technique was introduced and 
implemented that uses the 3D graphic hardware to speedup the ray-casting. The 
acceleration does not influence the image quality as it only helps to skip the empty space. 

It was shown that as the number of memory accesses increases, the algorithm speed 
becomes influenced by the memory access time. The speed of CPU is then not important as 
it has to wait for the slow memory. The data should be accessed so that advantage of the 
memory caching is taken. 

The implemented shear-warp method achieved the fastest rendering times thanks to using 
both the image and data coherency and thanks to the effective way the data is accessed. 
However, the basic implementation does not enable the inter-cell interpolation that would 
have to be introduced in order to produce higher quality images. The shear-warp method 
has considerably slower preprocessing than the hardware accelerated methods which 
makes is less suitable for interactive iso-surface changing. 

In practice, it is useful to have a combination of visualization techniques: a fast technique 
to interactively explore the data and another one that is slower but uses more precise 
interpolation and surface normal computation. 
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Appendix A –  User’s Guide 

Running the Application 

The application was tested and should run at Microsoft Windows NT/2000/XP/98. A 3D 
graphic card and installed OpenGL are required as well. 

For a non-problematic testing of supported methods, it is recommended that the system 
main memory is at least 4 times as large as the largest dataset to be tested. 

To run the application, execute the \public\IsoVolume.exe file that can be found on 
the enclosed CD. 

Loading the Data 

Choose the File/Open from the main menu. The open dialog enables loading the *.vol 
files. Go e.g. to the \public\data directory to get a sample dataset. 

Setting the Viewing Parameters 

When a dataset is loaded, the window containing user controls appears. Choose the View 
page to set the view parameters. 

 

Figure A.1: Controlling the view parameters 
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Data rotation 

To rotate the data, use the six rotation buttons as shown in the Figure A.1. The 
functionality is obvious from the button icons. In the left part of the panel, there are the 
four buttons that enable the rotation around axes perpendicular to the viewing direction. By 
pressing the other two buttons in the left part, the data rotates around the viewing axis.  

Keeping the buttons pressed causes continuous rotation.  

You can choose the rotation step to change the rotation speed. Choose the appropriate 
angle step in degrees from the combo box placed close to the rotation buttons. 

 

Projection plane size 

This combo box sets the number of rays that are sent per image. The default size is 
256x256 which means that 256 rays are sent per image side. Together 2562 rays are sent. If 
the zoom is set to 100%, resulting image size is 256x256 as one ray is sent per resulting 
image pixel. 

This parameter considerably influences the image quality as well as the rendering speed. 
However, for the shear-warp algorithm the rendering time is not influenced as the internal 
size is twice the size of the dataset (e.g. 2562 size for a 1283 dataset) and using other image 
sizes means a warp from the optimal size to the required size. 

 

View zoom 

To resize the image, select the percentage value from the combo box. Selecting the zoom 
factor causes stretching the image to required size. It does not influence the rendering 
speed as no additional rays are sent. 

 

Setting the threshold 

In the lower part, the threshold value can be set. The control part is marked as Iso value 
(see Figure A.1). You can either use the slider or write the required value into the edit box 
and then press the Set button. The value can be in the range <1..255>. 
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Choosing the Algorithm 

To select the current rendering algorithm, go to the Algorithm control page as shown in the 
Figure A.2. 

 

Figure A.2: Choosing the algorithm 

In the Algorithm block use the radio buttons to choose current rendering algorithm. By 
changing the algorithm, the view parameters remain constant. 

For the OpenGL accelerated algorithms use the combo box marked as Super-cell size to set 
the size of used super-cells. 
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Other Functions 

See Figure A.3 that shows the rendering window with the main menu. 

 

Saving the image 

Use the View/Save to BMP command from the main menu to save the current image to a 
BMP file in current directory. The image is saved in original size, i.e. the zoom factor is 
not taken into account. 

 

Logging the times 

Use the Debug/Start log times and Debug/Stop log times to open and close the times.log 
file in the current directory. When the time logging is active, each time a frame is rendered 
the rendering time is written into the file. 

 

 

Figure A.3: The rendering window  
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Appendix B –  Programmer’s Guide 
The implementation was done for MS Windows in C++ language using Visual C++ 6.0 
and MFC. The source code can be found in the \private\src directory on the enclosed 
CD. 

The project modules can be divided into following logical groups: 

 

Framework classes 

Class CIsoVolumeApp is placed in IsoVolume.h and IsoVolume.cpp files. This class 
was automatically generated by the project wizard. It includes basic application 
initialization as well as new OnIdle message handler used to perform the continuous 
rotation. 

Class CMainFrame is placed in MainFrm.h and MainFrm.cpp files. It includes 
handlers for the main menu commands and messages sent to the main window frame. This 
class also creates instances of the CChildView and CProperties classes. 

Class CChildView is placed in files ChildView.cpp and ChildView.h. This class 
handles the window painting and scrolling messages. It creates instances of the renderers 
according to the selected algorithm. It drives the visualization process. It contains instances 
of CData, CCamera and CScreenBuffer classes. 

Class CProperties is placed in file CProperties.h. It is the frame for the window 
Controls and includes instances of CCameraProperties and CAlgorithmProperties classes.  

Class CCameraProperties is placed in files CameraProperties.cpp and 
CameraProperties.h. This class creates the controls contained in the View page and 
handles messages from these controls.  

Class CAlgorithmProperties is placed in files AlgorithmProperties.cpp and 
AlgorithmProperties.h. This class creates the controls contained in the Algorithm 
page and handles the messages from these controls. 

 

Renderers 

The abstract class CAbstractTracer is placed in file AbstractTracer.h. It defines which 
methods will be included in the renderers that are derived from this abstract class.  

Class CTracer is placed in files Tracer.cpp and Tracer.h. It includes the methods that 
perform the brute-force ray-casting algorithm from chapter 3. 
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Class CTracer3DLine is placed in files Tracer3DLine.cpp and Tracer3DLine.h. It 
includes the discrete ray-casting algorithm from chapter 4. 

Class CTracerGL is placed in files TracerGL.cpp and TracerGL.h. It includes the 
rendering ray-casting methods as implemented in the classes CTracer and CTracer3DLine 
together with the OpenGL acceleration from chapter 6. It contains an instance of the 
CReducedVolume class. 

Class CTracerSW is placed in files TracerSW.cpp and TracerSW.h. It includes the 
shear-warp rendering algorithm from chapter 5. 

 

Supporting classes and files 

Class CCamera is placed in files Camera.cpp and Camera.h. It includes the view 
parameters and methods for view rotation. 

Class CData is placed in files Data.cpp and Data.h. It includes the dataset as well as 
methods for reading the dataset from a file and adding borders to the dataset. 

Class CReducedVolume is placed in files ReducedVolume.cpp and ReducedVolume.h. 
This class contains the super-cells data structure as well as methods for creating this data 
structure. It also includes a method that solves the face visibility and compiles the GL lists 
according to current threshold value. 

Class CScreenBuffer is placed in files ScreenBuffer.cpp and ScreenBuffer.h. This 
class is used as an output for the renderers. Ii includes the screen buffer as well as methods 
for drawing the buffer into the window and storing the buffer into the BMP file. 

The file Def.h contains various macros mostly for vector operations. 

The file DefMatrix.h contains matrix operations that are used in the shear-warp 
renderer. 

Files OpenGL.cpp and OpenGL.h include functions that initialize the OpenGL . 

Files Timer.cpp and Timer.h support time measurements. 

 

See the comments in the source code for more detailed information. 
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Appendix C - Output Examples 
The next three images show outputs generated by the RC (ray-casting), DRC (discrete 
ray-casting) and S&W (shear-warp) methods respectively. The cthead_256.vol dataset was 
used (2563 size). The threshold value was set to 100. The projection plane size was 
512x512. The three images you can see below were obtained from the rendered images by 
cutting off part of the black background. Otherwise the skulls would be relatively smaller 
and the quality differences would be harder to recognize. 

 

 

 

Ray-casting 
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Discrete ray-casting 

 

Shear-warp 
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The following sample images were generated using the ray-casting method. The generated 
image sizes were 1024x1024. No cut-offs were applied. The source file name, dataset size 
and used threshold value are written under each image. 

 

 

cthead_256.vol (2563), threshold = 50 
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bentum.vol (2563), threshold = 20 

 

ctmayo.vol (1283), threshold = 120 



 

v 

 

engine.vol (256x256x110), threshold = 50 

 

syn_64.vol (643), threshold = 50 



 

vi 

 



 

 

Evidenční list 

Souhlasím s tím, aby moje diplomová práce byla pů jčována k prezenčnímu studiu v 
Univerzitní knihovně ZČU v Plzni. 
 

Datum: Podpis: 
Uživatel stvrzuje svým čitelným podpisem, že tuto diplomovou práci použil ke 
studijním účelů m a prohlašuje, že ji uvede mezi použitými prameny. 

 

 Jmé no  Fakulta/katedra  Datum  Podpis 

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        
 



 

 

 


