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Abstract

This thesis contains a basic introduction to scalar volume data and iso-surfaces. Three
direct iso-surface visualization methods are described: ray-casting, discrete ray-casting and
the shear-warp method. An alternative acceleration technique is described that uses the 3D
hardware for an effective space-leaping in the ray-casting methods. Finaly, the methods
are compared.

Keywords: volume visualization, iso-surface rendering, ray-casting, shear-warp, Space-
leaping, hardware acceleration, OpenGL.
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1 Introduction to Volume Data

1.1 Surface Representation

Different approaches can be taken to represent objects in space. Intuitive and thus
commonly used are techniques that use geometric primitives. These primitives include
boxes, spheres, cylinders, cones and others. The point is to choose the right combination of
primitivesin order to give the true picture of the object. This can be rather efficient way for
simple objects. However, in case of complex objects this often becomes unfeasible and
some approximation has to be chosen.

Very popular is representation of surfaces using triangles. Triangles form a triangle mesh
that can be used to approximate every shape. Thanks to the hardware support that is given
by modern graphic cards, the visualization of the triangle meshes becomes very fast. But
the hardware has some limitations for the number of triangles that can be effectively
rendered. These limits often prevent us from choosing sufficiently accurate representation.

Surface can be also described directly using mathematic functions. The advantage is that
large variety of shapes can be described precisely. However, operations with such objects
have rather mathematical than purely geometrical character and involve solution of
nontrivial equations. Furthermore, some objects can not be described without compositing
large number of functions and thus it looses the efficiency.

Generally speaking, the surface representation has a serious disadvantage. It is suitable as
long as we are interested just in the shape of an object. Once we are interested in the
interior aswell, we find it useless.

1.2 Volume Representation

Unlike the surface representations mentioned above, volume representation does not
describe space as set of objects. It describes whole section of space (usually limited by a
bounding box) using sample points. In the ssimplest case the sample points create a
3-dimensional grid. In every node of this grid a sample is taken that reflects somehow
properties of the material in that point.

We can illustrate the basic idea of this approach on an example of a 2-dimensional object.
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Figure 1.1: Binary classification of a 2D object.

In the Figure 1.1 we can see the grid. Samples are taken in the nodes. In this case the
binary classification is used. That means that value in the node is either 1 (the black nodes
lying inside an object) or 0 (white nodes that lie outside the object).

The node in 3D grid is in the terminology of volume data visualization called voxel
(volume element) which isa 3D analogy of pixel (picture element). Voxel represents a unit
of volume.

The voxels can have different shapes and sizes. These properties often depend on the way
the data are acquired. Most common are uniform rectangular voxels which are also easy to
handle. Thiskind of voxelsis aso used further in thisthesis.

1.3 Character of Volume Data

Data sampled in the grid nodes can have different meaning. Most commonly used are the
following types:

Binary data — the voxels contain either ones or zeroes depending on whether they lie
inside or outside an object respectively. This representation describes shapes of the objects.
We can consider this data as a special case of scalar data.

Scalar data — each voxels contains one value. Typical meaning of the value is the density
of material where greater values represent higher densities than the lower values.

Vector data — each voxel contains one-dimensional array of values. The vector can
represent e.g. fluid velocity.

Tensor data — each voxel contains a matrix of values. This data can represent more
complex physical measurements.

Further in this thesis we will be dealing with the scalar data only.



1.4 Sources of Volume Data

A source can be the sampled data of real objects, artificial data produced by a computer
simulation or voxelization of a geometric model (a synthetic model is converted into
volume representation).

Examples of applications that generate sampled data are medical imaging (CT — computer
tomography, MRI — magnetic resonance imaging, ultrasonography), geoscience (seismic
measurements, oil resources explorations) and industry (CT inspections).

Applications that generate computed datasets include for example computationa fluid
dynamics and meteorology.

Voxelized terrain models as well as voxelized objects like buildings and vehicles are also
used in computer simulators. Specific properties of terrain models can be used for
designing special visualization algorithms that are more efficient that those for arbitrary
models [ Cohe96].

2 Volume Visualization

Volume visualization can be defined as a process that projects a tree-dimensional dataset
(array of voxels) onto atwo-dimensiona plane (array of pixels). This process is supposed
to give the user an understanding of the structure contained within the data. Volume
visualization is also called volume rendering.

We can interpret scalar volume data in two different ways. Either as voxels - cubes having
the same value in the whole volume or as cells- cubes that have eight different values in
the vertices and value in the volume is interpolated using trilinear interpolation, see
Figure 2.1.

/

Figure 2.1: Volume data interpreted as voxels (left) and cells (right)



There are two basic groups of techniques used for volume data visualization.

2.1 Volume Rendering Techniques

This group includes techniques that visualize the whole volume at once using the
alpha-blending. The whole volume is thus projected onto the projection plane. Asthe result
of these techniques, we get an image that has a similar look to the traditional X-ray picture.

An X-ray picture gets its look due to the different material translucencies towards the
X-rays. The ray that passed through more translucent tissues appears as a darker dot on the
negative because more energy penetrates those tissues.

Figure 2.2: Image of a human head generated using volume rendering.

2.2 Surface Rendering Techniques

Surface rendering is used when visualization of atissue surface isrequired.

2.2.1 Iso-Surfaces in Volume Data

An iso-surface is defined as a set of points having the same property (i.e. material density
in our case). These points form a surface. The iso-surface is a 3D analogy of theiso-linein
Figure 2.3. The dark and white dots in the figure represent values lying above and below
the iso-value respectively. Thus the iso-line must be somewhere between these values.
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Figure 2.3: Iso-linein 2D scalar data.

2.2.2 Indirect Methods

The word “indirect” means that the iso-surface in the volume data is not being visualized
directly from the data set onto the user screen, but there is an additional step. In this step
the iso-surface is converted into surface representation. This process is called extraction of
iso-surface. The triangle mesh is used to represent the surface. When the surface (triangle
mesh) is extracted, the power of graphic hardware is used to display (render) it onto the
screen (see Figure 2.4).

Volumetric | so-surface Triangle . Output
data mesh @' image

T A}

| o View
so-value parameters

Figure 2.4: Indirect visualization process.

The main advantage of these methods is in the speed of the rendering step. Once the
triangle mesh is extracted, changing the viewpoint (rotating the data) means just changing
the view parameters and rendering the mesh again using the fast graphic hardware.

However, when an interactive change of iso-value is needed, the surface extraction
becomes a bottleneck as it is relatively very slow. In other words, as long as we have a
surface extracted and want to rotate it to explore it from the other side, it is fast. As soon as
we need to keep the view direction and want to see other surface (e.g. the skull instead of
the skin), other iso-surface has to be extracted and we have to wait for the resulting image.



Moreover, in the case of large datasets and complex surfaces, the number of generated
triangles can be so high that can not be interactively rendered using the available graphic
hardware. The problem is that many triangles are generated that can not be seen on the
output image (are hidden by other triangles).

2.2.3 Direct Methods

Compared to the indirect methods, the direct methods render the volume data directly into
the result image.

Volumetric | so-surface Output
data visualization image

| o View
so-value parameters

Figure 2.5: Direct visualization process.

As we can see in the Figure 2.5, the direct visualization process is dependent on both the
iso-value and the view parameters. No matter if the iso-value or the view parameters are
changed, the visualization works in the same way.

2.3 Image-order Methods

There are two approaches used in the visualization.

The first one, the image-order approach, is driven by the image. It takes the image pixels
one after the other and finds objects that are projected into this pixel. Depending on the
technique, either the closest object to the observer or a combination of objects using
alpha-blending is then projected into this pixel.

A typical image-order technigque is the ray-casting

2.4 Object-order Methods

On the contrary, the object-order approach takes the objects from the object space and
project them into the image pixels. This process is called rasterization. To solve the
visibility either the objects are taken in FTB (front to back) or BTF (back to front) order or
az-buffer is used.



3 Ray-Casting

3.1 The Principle of Ray-Casting

Ray-casting is adirect visualization method. It isatypical the image-order method.
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Figure 3.1: The principle of ray-casting

The Figure 3.1 shows the basic principle of the ray-casting technique. The image plane on
the right side corresponds to the resulting image. The goal is to acquire a colour value for
every single pixel of theimage. Thisis an image-order technique because the visualization
process depends on the image plane properties. Every pixel of the result image corresponds
to a point on the image plane. A viewing ray (3D line) is cast through that point in the
direction perpendicular to the image. The ray is perpendicular because we consider just
paralel projection where all viewing rays are parallel to each other. Thisray is then traced
along its path through the data volume until an iso-surface is hit or the ray gets out of the
volume (there was nothing but empty space along the path). If the surface is hit, a surface
normal has to be computed in order to perform shading. After the hit point is shaded, the
resulting colour is set as the value for the corresponding pixel. If no surface is hit, the pixel
value is set to background colour. This process has to be performed for every pixel.

Size of the image plane in this implementation is given by the volume bounding box
diagonal length. Therefore the projected data fits the plane in any position. Smaller
projection plane could be used for rendering a defined region of interest.



3.2 Casting a Ray

The viewing parameters for the parallel projection in this implementation (see Figure 3.1)
are given by:

P — apoint in the object space defining the centre of the projection plane
s— size of the projection plane

m — number of rays being sent per one row/column of the projection plane, the plane
is square shaped, together ¥ rays are sent

d — anormalized directional vector

U — anormalized vector perpendicular to the d vector, pointing in the direction “up”

In the ray generating process, we divide the projection plane using an equidistant grid
mxm. Each field of the grid corresponds to one pixel in the resulting image. We generate
the point A in every field of the grid. The rays are then sent from these points. The ray is
given by the equation X (t) = A+ dx.

bounding

sampl e points
DeR box

o

Figure 3.2: Sampling the volume along the rays.

The principle of ray sampling through the volume is shown in the Figure 3.2. The sampling
must be restricted just to the volume bounding box. This is achieved by restricting the
parameter t, i.e. we find tyin and tmax fOr each ray. Theray isthen sampled in equal steps for
tT <t_ .t >.We need to choose the sampling step, i.e. dt, which is problematic.



Choosing bigger stepsis one of the ways of accelerating the algorithm; on the other hand
this may cause an undersampling and loosing small details. Reasonable is choosing the
step as the shortest distance between two voxels.

3.3 Finding the Intersection

The sampling along the ray is done in order to find the iso-surface given by the iso-value
(threshold value). The sample is taken inside the cells made of eight voxels (see
Figure 3.1) using the tri-linear interpolation. As the result of the interpolation, we get a
scaar value in the sampling point f (X (t)). We continue the sampling until the thax is

reached or until f (X(t)) 3 treshold . At this moment we know that the iso-surface is

located between points X(t-dt) and X(t). As we know scalar values in both these points and
the value for iso-surface, we can use the linear interpolation to get the precise location of
the ray and iso-surface intersection:

to, =(t- dt)+ dt (fi - F(X(t))),wherefiy istheiso-surface value.

F(X(t)) - F(X(t)

The intersection is then at point X(tis).

3.4 Shading

Further step we need to do is to compute the surface normal in the intersection point. First
we compute the normal vectors in the eight voxels creating the cell in which is the
intersection point situated. The surface normal vector is given by the data gradient that can
be approximated using the central difference. Gradient vector in the voxel at position
[X,Y, z] iscomputer asfollows:

d(x+Ly 2- f(x-1y,2 f(xy+12- f(xy-12 f(xy,z+D- f(xy,z-Do

Nf ,Z= 1 ’
*xVv.2 g 2a = % .

where a, b and c are distances between voxels in X, y and z directions respectively.
Different methods of gradient estimation are described eg. in [Bentum96] or
[NeumannQ0Q].

The Phong shading was used. To perform the Phong shading means to compute the surface
normal in the intersection point. As we know the intersection point position within the cell,
the normal vector is computed from the eight gradient vectors using trilinear interpol ation.

The central difference can not be used for voxels at the volume borders. To avoid checking
if the voxels lies at the border or not, it is useful to add extra empty voxels around the
volume.



3.5 lllumination Model

The Lambert diffuse illumination model with just one light was used:

l, =1, + 1, (LN,

where |y isthe final intensity reflected in the viewer direction, |5 isintensity of the ambient
light, I intensity of the directional light we have, r, and rq are reflection constants that are
specific for each material, L is the vector pointing from the surface point towards the light
and N Is the surface normal vector.

Just awhite light and a white material are used. Therefore one grey-tone value results from
the equation. As no materials are differentiated, the coefficients k,, kg are constants. The

light rays are parallel (the light is in infinite distance) and in order to make the visualized
data side be directly illuminated, the light rays are parallel to the viewing direction as well.

In the implementation, the normalized viewing direction vector d and the normalized

gradient vector ¢ are used instead of the vectors II_ and N .

Yor
Iy =1Ta+1(d>9)

To map the intensity value to one-byte grey value, the ambient and light intensities are
chosensothat |, +1, =255

3.6 Properties

The time needed for the rendering depends on the image size and on the number of
samples taken. The complexity of this brute-force ray-casting algorithm is O(nr.n), where
m is the number of pixels (rays sent) per one side of the result image and n number of
voxels per one side of the volume. The number of samples taken along the ray path
through the volume is proportional to n.

The memory requirements of implemented algorithm are 2N bytes, where N is number of
voxelsin the dataset. N bytes are taken for storing the dataset and N bytes for the auxiliary
data structure used for the sampling speedup (see below).

3.7 Acceleration Techniques

It is obvious that the ray-casting algorithm spends most of the time sampling the scalar
values along the ray until an iso-surface is hit. To reduce the costs caused by trilinear
interpolation, an auxiliary data structure was introduced in this implementation. It has the
same size as the volume. Every element of this 3D array represents a volume cell given by
eight voxels. In this array, there are stored the maximum voxel values for each cell. Every
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time the sample is going to be taken, the algorithm looks into this array first. If the
maximum voxel value within the cell is lower than the threshold value, then the
interpolation is not performed as the interpolated value will be always lower.

3.7.1 Adaptive Refinement

The adaptive refinement [Levoy894] is atypical acceleration technique that uses the image
coherency. As the time spent on one image is influenced by the number of sent rays, we
can get the image faster when fewer rays are sent. This image has lower quality but faster
rendering enables interactive frame rates. When the viewpoint is changed, a lower number
of rays are sent from the pixels uniformly spread over the projection plane. The empty
pixels are filled using bilinear interpolation. If the user needs to change the viewpoint
again, new low-quality image is generated. If the viewpoint change is not requested, more
rays are sent to improve the image quality. The refinement of the image can be done
adaptively according to the low-quality image. When two neighbouring rays gave colour
values whose difference is relatively high, then another ray is sent between them. The
refinement continues until the user changes the viewpoint or until rays from all pixels are
sent. However the refinement can continue in sub-pixel accuracy to perform antialiasing.

3.7.2 Octrees

Spatial coherency is often exploited using various spatia structures that divide the volume
and enable empty space leaping. One of them is the octree structure. It is atree structure in
that does every node has eight sons. On the highest level, the root node represents the
whole volume box. The eight sons represent the box divided into eight equal boxes. On the
lowest level, the leaves represent single cells. Each node contains the maximal voxel value
within the box so that the whole box can be skipped if the threshold value is greater that
the maximal value. A serious disadvantage of this algorithm is that the ray spends
considerable amount of time on changing the current level in the octree. More detailed
description of using octrees for volume rendering can be found e.g. in [Levoy89b].

3.7.3 Proximity Clouds

The proximity clouds [Cohen93] represent another object order technique for space
leaping. In the preprocessing step the volume is evaluated so that every voxel contains a
distance to the closest iso-surface. In other words the values tell us how long sampling step
can be made in any direction without hitting the surface. The advantage is that no tree like
structure needs to be traversed. On the other hand the preprocessing is relatively time
demanding and as it depends on the current threshold, interactive threshold changes are
problematic.
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4 Discrete Ray-Casting

4.1 Principle

This technique is based on the same principle as the previous one. The rays are given by
the parametric equation and the parameter t is restricted by the data bounding box. The
difference is in the way the ray is traced inside the volume and in the way the data is
treated. Instead of computing the precise data values inside the cells, the data is treated as
an array of voxels (see Figure 2.1). Therefore we do not need to know the sample position
within the cell, but just need to know which voxels (full boxes) the ray pierces. The
advantage of the discrete ray-casting is that it can be achieved using simple integer
arithmetic.

4.2 Path Generation

The path through the volume is generated using a 3D line agorithm. See three different
line connections that can be chosen (Figure 4.1).

6-connected 18-connected 26-connected

Figure 4.1: Three path generation possibilities

If we look at the voxels as at boxes, we can say that two voxels are 6-connected if they
share a face; they are 18-connected if they share a face or an edge and they are
26-connected if they share aface, an edge or a vertex.

Usually the 6-connected or 26-connected paths are used. The 6-connected path contains all
voxels the ray pierces but can have up to three times more voxels than the 26-connected
one (for diagonal direction). The 26-connected path was chosen for the implementation in
order to have every sample along the ray in different volume dlice. The sampling is thus
similar to that used in the shear-warp implementation (see chapter 5).

12



We start the path generation at the first volume voxel pierced by the ray. The first voxel is
given by the equation X(t) = A+d %, Where tnin is the lower parameter bound (see
chapter 3.2). Although a Bresenham agorithm modification for 3D could be used as well
(see [Amanatid87]), the 3D DDA algorithm was implemented. This algorithm is based on
adding differences to the coordinates:

X1 = X% + DX
Yia =Y, + Dy
z,,=7+0z

This needs floating-point arithmetic and rounding operations to get integer coordinates. To
use the integer arithmetic and avoid rounding operations, the numbers are represented as
fixed-point numbers stored in 32 bit integers. The higher word is used for the whole part
and lower 16 bits for the decimal part. Adding a difference thus means adding an integer
number and no rounding is needed as the higher word represents the position. At the
beginning the floating-point numbers are simply converted to fixed-point numbers by
multiplying by 2*° and rounding to an integer.

The difference in the principal direction is always 1. Therefore in each step we traverse to
the next data slice and the other two differences update the current position within the
dlice.

The maximal number of steps is computed in advance from tnyi, and tpax. The path is
generated until a voxel having the value greater or equal the threshold value is reached or
until the maximal number of stepsis reached.

Finally the gradient and colour value are computed using the centra difference and
illumination model (see chapters 3.4 and 3.5).

4.3 Properties

The complexity of this algorithm is O(n.n).

The memory requirements of the algorithm are N bytes, where N is number of voxelsin the
dataset. This memory istaken for storing the dataset.

As the algorithm treats the data as full voxels and thus no inter-cell interpolation is done,
by sending more rays per voxel the image quality does not improve. The algorithm is
therefore not suitable for rendering with sub-voxel precision.

The 26-connectivity results in several problems. Firstly, a thin surface having in discrete
space 26-connected holes can be missed. The second problem is in the way the gradient
vector is computed. The ray may penetrate into the object “too quickly”, and al the voxels

13



taken into account in the central difference may belong to the object and have same values
which resultsin a zero vector (see Figure 4.2).

| object hit

—— object
voxel

empty
first sampled voxel
voxel

Figure 4.2: An example of hitting an object following a 26-connected path
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5 Shear-Warp Factorization

This method presented in [Lacroute9d5] is an object-order method. When visuaizing a
volume data, we use a view transformation that rotates the object space according to user’s
needs. When using the classic approach, the volume needs to be traversed in arbitrary
direction which is not very efficient. Random accesses to the volume data mean evaluating
data indexes as well as memory access that is sslow compared to the speed of CPU (see
results in chapter 7.5). More efficient is traversing the volume in storage order. Data is
accessed sequentially and the advantage is taken of the memory caching.

5.1 Principle

The arbitrary view transformation can be achieved using 3D shearing and 2D warping. In
Figure 5.1, we can see the shear-warp process.

viewing shear
rays

< i

\ \ \ vo!ume shgared i

\ \ \ slices ‘ slices :
\ \ I‘ warp

project

intermediate \
image
_ final
Image image

plane

Figure 5.1: Volume is transformed to sheared object space by trandlating slices.

The shearing direction is chosen parallel to the set of dlices that are most perpendicular to
the viewing rays (viewing direction). The volume is sheared so that the viewing rays
become parallel to the data slices. The shearing is done by translation of dlices. Of course
no slow physical data moving is done since the trandation is achieved by index shifting
during data resampling.

In the Figure 5.2 the trandlation of slices and projection onto the intermediate image are
shown. The dices are taken in front-to-back order and resampled using bilinear
interpolation. Since the dices are just trandated, the resampling weights are the same for
the whole dlice (Figure 5.3).
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Figure 5.3: The resampling weights are same within the whole slice

5.2 Derivation

Four different coordinate systems are used in the shear-warp algorithm. See Figure 5.4.

wx 4 -
Xo k u - X
-»> . Y -

Yo _ | Jv Y J'
\ 4 y

volume

object standard object sheared object image
coordinates coordinates (intermediate image) coordinates

coordinates

Figure 5.4: Four coordinate systems used in the shear-war p factorization
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The viewing transformation is given by aview matrix M,iey that transforms points from the
object space into the image space.

éx U éX, U
é, U é, U
&¥i-y &by
ézu "Méz
T T
&N a ol

Our goal is to find a shear matrix Mgear and awarp matrix Myarp SO that:

M =M °M P

view shear

The shear matrix transforms the object space into the sheared object space. The warp
matrix transforms the sheared object space into the image space.

The principal viewing axis is the axis of the object coordinate system that is most parallel
to the view direction. To eliminate the three possible cases, we transform the object space
into the standard object space. In the standard object coordinates, the principal axis is the k
axis. We can get from the object coordinate system to the standard one by permuting the
axes using a permutation matrix P. When the principal axis corresponds to the z axis, the
permutation matrix is the identity matrix. When the principal axisisthe x or y axis then

@ 1 0 0y @ 0 1 0y
© 01 o 9 0 o oY

p=¢€ Uor p=€ U respectively.
& 0 0 0u @© 1 0 0d
0 0 0 1§ @0 0 0 1§

The principal viewing axis can be found very easily. Aswe know the view direction vector
Vo, We just find the vector element with the maximum absolute value.

The directional vector can be also computed as

r énlzmzs - mzzmlal;I
Vo = gmmmla - mummg where my; are elements of Myiew.

gnlmzz - rnerané

Let M iew be a permuted view matrix that transforms standard object space into the image
space:

M\%w = '\/Iviewl:r1

The view direction in the standard object spaceis.

I I
Vy, = Py,
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After transforming to the sheared object space, this direction must be perpendicular to the
(i, ) plane. The shear matrix has the following form:

L 0 s tu
é u
M. =& 18 by
shear A -
@ 0 1 00
00 1

The shear coefficients s and 5 are equal to:

- Vooi - mi,m; - mimi; S =- Vao,i — mgmg, - mgmg

Vor  MEME- mgmg T v, mgmg - mgmg

where m are elements of M yiew.

s:

The k-th dlice (labeled 0..kyax in front-to-back order) will be translated relative to the
previous one by s and s inthei and j direction respectively.

§>0,5>0 s>0,5§<0
u,i u,
V,j v t% VW
i
J A
'S
ti:oiti:O ti:0,tj=-§kmax
$s<0,§=0 $<0,§<0
y \ y
V ¥ J V ¢
iL
jir
ti:’ﬁkmax’tizo ti:'ﬁkmax,tj:'ﬁkmax

Figure 5.5: Four cases of displacement computation
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The trandlation coefficients t; and t; in the shear matrix specify the difference between the
origin of the standard object space and the sheared object space. Projection of the O-th dlice
starts at the position [t;, tj] in the intermediate image space. See Figure 5.5 for details.

The last thing we need is to compute is the warp matrix. We get it as:

60 -5 -t
01 -s -t
M__=M¢ ML =M¢ € j i
warp \gfew shear \ﬂ:ew%) O 1 Ol:J
00 0 1§

Because the warp operation is performed in 2D, the third coordinates do not have to be
taken into account. We can omit the third row and column and get a 3x3 warp matrix:

émf mE m§-tmg-t;mGu
Myapoo = g0 M Mg, - tmé; - t;mg
g0 O 1 4

For amore detailed derivation see [Lacroute95].

5.3 Acceleration Using RLE

Traversing the volume in the storage order allows us to introduce further improvements of
the shear-warp algorithm efficiency. Usualy, the image-order algorithms are able to use
the image coherency together with early ray termination to achieve faster visualization, but
are not as efficient in exploiting the spatial coherency that involves traversing special data
structures (e.g. octrees) which becomes slow as the same structure is often traversed
multiple times. On the other hand the object-order algorithms can effectively use the
gpatial data structures, but can hardly take advantage of the image coherency.

The way of speeding up the shear-warp algorithm, as presented in [Lacroute95], uses the
fact that the voxel scan lines are paralléel to the scan lines of the intermediate image. This
property enables taking advantage of both image and spatial coherency.

To exploit the spatial coherency, the voxel rows are encoded using the run the length
encoding (RLE). In the preprocessing step, the voxels are classified as transparent or
non-transparent according to the current threshold value and encoded. In [Lacroute95] the
rows of voxels are encoded separately. When deciding whether to resample a voxe,
information from both the neighbouring voxel rows is needed. If there is a non-transparent
voxel run at least in one of the rows then the resampling proceeds, see Figure 5.6.
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Figure 5.6: Resampling of a voxel using two neighbouring rows

To avoid taking two rows into account, a slightly different approach in encoding the data
was chosen in this thesis. In this approach the intermediate rows are encoded (see
Figure 5.6). The intermediate row consists of 2D cells. The cell at position [j, i] is created
by voxels [j, i], [J, i+1], [j+1, i] and [j+1, i+1]. In the preprocessing we find the maximum
scalar value of these four voxels. If the maximum value islower then the threshold, the cell
is encoded as atransparent one, otherwise as a non-transparent one.

In [Lacroute9d5] this resampling technique was used in combination with alpha-blending
composition of computed colours to enable visualization of semi-transparent tissues.
However, in thisthesisjust one fully opaque iso-surface is considered and thus no blending
is used. Since just one colour value contributes to each pixel, the image quality
considerably depends on its accuracy. After implementing this method, the tests showed
that even tough the bilinear interpolation as shown in the Figure 5.6 should give better
results than the nearest neighbour interpolation, the results were similar. It is caused by the
absence of the interpolation between slices which would need an extension of current
algorithm. Therefore the nearest neighbour interpolation was finally implemented and used
for comparison with other methods. This simplification made the preprocessing and
resampling step computationally less expensive. Due to the nearest neighbour
interpolation, the data is treaded in the same way as in the discrete ray-casting algorithm
(as voxels— see Figure 2.1) and the image quality is comparable as well.

The classic RLE encoding does not allow us to access the encoded data randomly. The
simple data structure in Figure 5.7 enables a fast access to next non-transparent cell.
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Figure 5.7: The data structure for a fast access to non-transparent cells

When projecting the volume dlices onto the intermediate image, we switch between
traversing the image (using image coherency, see further) and traversing the row of cells.
When switching from the image traversal to the volume traversal, we have an index to the
2D cell to be processed. To avoid processing the transparent cells, we need to find the next
non-transparent cell as fast as possible. Thisis achieved by looking into the data structure
(Figure 5.7). The cell containing a zero value is non-transparent and needs to be resampled,
otherwise the cell is transparent and the value is an offset to the next non-transparent cell.

As the way the volume is being sliced depends on the principal viewing axis, three such
data structures need to be constructed in the preprocessing. As the viewing direction
changes, we switch between them. Because one byte is used for each cell, this auxiliary
data structures take three times as much memory as the volume data. However, this is
bearable for small 256° volumes. In case of larger datasets the original structure used in
[Lacroute95] should be used to save the memory since it does not store the transparent
voxels.

To exploit the image coherency, the similar structure is used. At the beginning all the
pixels in the intermediate image are empty. As the projection of the volume slices
progresses, the pixels get a colour value. After a pixel gets a colour value, al other parts of
volume that would be projected onto this pixel are hidden (the dices are taken in
front-to-back order). Thus we do not need to resample the volume in the point that projects
onto the full pixel. Because the pixel scan lines are parallel to the rows of cells as they are
traversed, by using an auxiliary data structure we can easily skip the cells that would be
projected into the full pixels. The only problem is that the data structure is not constant as
in the case of the volume, but needs to be updated each time a pixel is coloured. We need
to add anew full pixel as quickly as possible but want to maintain the structure of offsets at
the same time. Marking the pixel asfull is simply done by putting the offset value 1 instead
of 0 which meant that the pixel was empty. The offset 1 points at the next pixel. Adding a
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new pixel to the existing run of full pixels using this simple algorithm creates akind of tree
where the root is the first empty pixel behind the full pixels (see Figure 5.8 a)).

> LN
1 1 3 2 1 (0]

0 empty pixel
root

occupied pixel

2 with offset to
b) next empty
pixel

Figure 5.8: Auxiliary data structure for pixel traversing

To maintain this structure suitable for the fast empty pixel search (i.e. to make the full
pixels point directly at the root), an additional step is taken when searching for the root.
Each time the algorithm goes through the list of pixels pointing at each other, after finding
the root, it goes through the pixels again and changes the offsets so that they point at the
root (Figure 5.8 b)).

The projection algorithm can be written as follows:

FOR each slice in FTB order
Compute slice displacenment within the internediate i nage
Comput e resanpling coefficients
FOR each slice row
pCell R 1° row cell
pPi xel (3 correspondi ng pi xel
WHI LE not end of row
I F IsFull (pPixel)
Skip full pixels and corresponding cells
ELSE | F | sTransparent (pCel |)
Skip transp. cells and correspondi ng pi xels
ELSE
| mge[ pPi xel ] =Resanpl eAndShade( pCel | );
Set Pi xel AsFul | (pPi xel );
END WHI LE
END FOR
END FOR
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The Resanpl eAndShade(pCell) step was finally due to the nearest neighbour
interpolation simplified to Shade( pVoxel ). The gradient is computed using the central
difference and the colour value is obtained as shown in chapter 3.5.

5.4 Warping the Image

The final step towards the resulting image is warping the intermediate image. There are
two possibilities of warping the image. Fist one is the direct application of the 2D warping
matrix:

6w e
e — e u
éyéljl_ IvlwarpZD éyl]’
el &lH

where [x, y] are coordinates of a pixel in the intermediate image and [x(, y<] the coordinates

in the final image to which is the pixel mapped. The advantage of this solution is that we
do not have to transform the pixels that have the background colour. The intermediate
image must be large enough to fit the volume projected in any possible position and as the
result, in some positions less than 25% of the image is used. The intermediate image sizeis
2nx2n, where n is the maximal number of voxels per side.

This solution has also a serious disadvantage. For some pixels of the final image may
happen that no source pixel is mapped to them. This resultsin holes in the final image that
are usually uniformly spread and create a pattern.

To avoid this effect, an inverse mapping must be applied. In other words, we need to find a
source pixel for every destination (final image) pixel. This means finding an inverse matrix
to the warping marix.

&xt &t
e u_ -1 e

éyl:l =M warp2D éyéiI
eld ely

When warping the image, we go through every final image pixel and find the
corresponding coordinates in the intermediate image. As the coordinates [x, y] are
floating-point numbers, the source point lies generally somewhere between four pixels. We
can use this for bilinear interpolation. However, the tests | made showed, that the warping
process must be carefully optimised otherwise it becomes a bottleneck. Thus just the
nearest neighbour interpolation was used together with integer arithmetic and look-up
tables to get most of the computations out of the loop and make the warping time be a
fraction of the total time.
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5.5 Properties

The complexity of the brute-force shear-warp agorithm is O(n®) where n is the number of
voxels per one side of the volume. Since it is an object-order algorithm, the complexity
does not depend on the image size. For the accelerated shear-warp technique as described
here, the worst case complexity is still O(n®). However, for tested datasets the observed
complexity (see the table in Figure 7.6) is approximately O(n?). The reason is that even
though every voxel scan line (n? scan lines) needs to be processed, the number of voxels
that contribute to the image is proportional to n? and thanks to the long voxel and pixel
runs the other can be effectively skipped

The memory requirements of the algorithm are 4N bytes, where N is number of voxelsin
the dataset. N bytes are taken for storing the dataset and N bytes for each of the three
auxiliary data structures used for the encoded volume.

5.6 Other Acceleration Techniques

There are other acceleration techniques that use the shear-warp factorization. For example
in [Csébfalvio8] afast method is described that classifies the volume into a binary volume
and encodes each voxel as one bit in 32bit integers. The 32bit strips are aways
perpendicular to the projection plane and help to efficiently find the first ray-surface
intersection voxel. Although the classified data is physically sheared, the moving is fast as
32 voxels are handled at the same time. The presented algorithm is efficient for small
shearing steps, i.e. rotation by small angles

Other method based on shear and warp was presented in [Csébfalvi99]. A great amount of
work is done in the preprocessing step where the volume is classified and voxels that
create the surfaces are selected. It means that voxels that are transparent and voxels that are
inside the objects and hence are not be visible from any viewpoint are discarded. Just the
voxels creating the surfaces are stored and rendered slice by slice in back-to-front order
using painter’s algorithm to solve visibility.
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6 Ray-Casting Acceleration Using 3D Hardware

The ray-casting algorithm is avery simple method that enables to easily implement various
modifications like cutting planes. The algorithm is also very easy to parallelize and no
preprocessing is needed when the threshold value is changed. However, the algorithm is
relatively slow due to the long time is spends traversing the volume until the iso-surface is
hit. A space leaping technique is presented in this paragraph that | developed to quickly
find the limits in that is the ray going to be sampled and thus to avoid the empty space
sampling. The standard 3D graphic hardware is used for this purpose. The implementation
was done using the OpenGL library.

6.1 Creating the Super-Cells

We divide the volume into super-cells. Each super-cell is a cube made of k® cells
((k+1)° voxels), gn - 1) /k( super-cells are created per one side of the volume, where n is

the number of voxels per volume side. If the volume size is not a whole multiple of k, the
super-cells at borders are smaller.
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Figure 6.1: An example of super-cells created by 3° cells (4° voxels)

The super-cells actually play the role of the bounding boxes in this acceleration. The
super-cells are created in the preprocessing. In the auxiliary 3D array, one value is stored
for every super-cell — the maximum scalar value of the voxels that create the super-cell.
This data structure is independent on the current threshold value.
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6.2 Rendering the Super-Cells

As we know from the section 3.2, the ray is given by the equation X (t) = A+dx. This

algorithm tries to restrict the parameter t so that the ray is then sampled along a shorter
path. The restriction is achieved with the help of the hardware depth buffer.

The super-cells that have the maxima value greater or equa the threshold value are
rendered using OpenGL. They are rendered twice. Once with the depth function set to less
(closer objects hide the more distant) and the second time with the function set to greater.
After each rendering, the depth buffer is retrieved into the buffers in the main memory.
The buffers have the same size as the rendered image. The buffer values are then used as
bounds for the cast rays. The super-cells are rendered as blocks using rectangles.

Of course not all super-cells with value greater than the threshold need to be rendered as
some may be hidden. Neither all six faces are rendered because just three can be visible at
the same time. These visibility aspects are considered in another preprocessing made every
time the threshold value changes. In the Figure 6.2, we can see the six principal directions.
The faces that create the super-cells are perpendicular to these directions. In the
preprocessing six lists of visible faces are created. Each list corresponds to one principal
direction and contains faces perpendicular to this direction with respect to visibility (just
the front face is selected). The lists are stored in GL lists to be fast rendered afterwards.

6 /1

v

A

F——t-———1--

Figure 6.2: The six principal directions

An arbitrary viewing direction can be composed of three principal directions. For example
the viewing direction with all positive coefficients is composed of principal directions 1, 2
and 3 (see Figure 6.2). We first render the lists corresponding to these three directions and
store the depth buffer values into the first array. Then the other lists corresponding to the
opposite directions (4, 5 and 6) are rendered with depth function set to greater (we render
what would be seen from the opposite side of the volume) and the depth buffer values are
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saved into the second array. Vaues from the buffers are used as restriction bounds for the
rays. Therefore the ray enters the volume in the first nonempty super-cell along its path and
unless the iso-surface is found it leaves the volume after the last nonempty super-cell is
sampled.

6.3 Solving the Visibility of the Faces

In order not to visualize the hidden faces a simple algorithm was used. It does not remove
all hidden faces but on the other hand it is quick.

The visibility is taken into account when the lists of faces are compiled. The face is added
to one of the six lists if one empty and one non-empty super-cell share the face. It is
obvious that this approach also selects the faces that create the interior surface (see
Figure 6.3). An improved algorithm should be used to remove the interior faces. However,
this would cost more time in the preprocessing.

A super-cell having
the value < threshold

A super-cell having
the value > threshold

A facethat will not
be rendered

— A faceto be rendered

Figure 6.3: Visibility of the super-cell faces

6.4 Properties

The worst-case asymptotic complexity of any of the the ray-castings from chapters 3 and 4
with using the hardware acceleration is O(f+m?n) where n is the number of voxels per one
side of the volume, mis the image size and f is the number of rendered faces. Thisis for
the case when the super-cells do not help at al to restrict the ray path. However, the
expected complexity that more corresponds to the results in Figure 7.6 is O(f+nk), where
k is the size of the super-cell. The number of samples taken per ray is expected to be
proportional to k.

The accelerating technique takes at most N additional bytes for the super-cell values.
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7 Results

This chapter includes the tests that were made in order to compare speed of implemented

methods.

The methods had been tested on a PC with Intel Celeron processor running at 900MHz,
640MB of main memory and a GeForce2 graphic card under the Windows XP operating

system.

7.1 Tested Data

The methods were tested on real datasets.

Dataset Size New dataset Size
syn_64.vol 64x64x64 cthead 64.vol | 64x64x64
ctmayo.vol 128x128x128 cthead 128.vol | 128x128x128
cthead.vol 256x256x113 cthead 256.vol | 256x256x256
engine.vol 256x256x110 cthead 512.vol | 512x512x512
bentum.vol 256x256x256

Figure 7.1: The tested datasets. The left table shows original datasets. The right table
shows sizes of resampled datasets.

Although there is a variety of original data sizes, the datasets can not be compared with
each other since the datasets include different objects. Furthermore some datasets have
other scale than 1 along any of the axis. To compare properties of the algorithms on
different data sizes the cthead dataset having originally 256x256x113 voxels was
resampled to 64°, 1282, 256° and 512° volumes (see Figure 7.1).

The resampling was simply done by the trilinear interpolation. A 3D grid of the new
resolution was introduced into the original volume and new scalar values were computed
from the eight nearest original values using trilinear interpolation. The trilinear
interpolation was chosen for its smplicity. The disadvantage is that it makes the step
artefacts more visible; a more sophisticated filter should be used to avoid that. However, it
is sufficient for the testing purposes.
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7.2 Testing Principles

Since the visualization process depends on many conditions, the conditions have to be as
equal as possible for all tested methods in order to get correct results. See the testing
conditionsin this chapter for details about performed tests.

The cthead resampled volumes (see the right table in the Figure 7.1) had been used for the
performace tests. In next chapters they are referred as 643, 128°, 256° and 512° volumes
respectively.

Since the shear-warp method (chapter 5) is able to generate only intermediate images that
are twice as big as is the size of the volume (e.g. 512° size images for 256° volume), the
image sizes in tests are set to double size as well. This helps getting similar conditions for
all methods.

The threshold value for visualization was set to 50 which corresponds to the skin surface.

Because the visualization depends on the viewing parameters, it is sensible to make the
following tests:

Test A

The rotation around the z axis as shown in the Figure 7.2 @). This test was designed for the
testing of the data storage order dependency. This test does not make any sense for the
shear-warp method since the rotation around viewing direction is achieved by the final
Image warp.

Figure 7.2: An illustration of performed tests, the volume is rotated around z axis, two
different viewing directions are used: a) negative z axis; b) positivey axis
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TestB

The rotation around z axis as shown in the Figure 7.2 b). The 360 degree rotation was done
in 10 degree steps. In thistest minimal, maximal and average times were computed.

Face View

If the face view is referred, it means that the positive y axis viewing direction is used as
shown in the Figure 7.2 b).

For simplicity, the tested methods are referenced using following abbreviations:

RC — the brute-force ray-casting method described in chapter 3

DRC - the discrete ray-casting as described in chapter 4

RC HW - the RC method with hardware acceleration from chapter 6
DRC HW - the DRC method with hardware acceleration from chapter 6

S& W — the method using shear and warp factorization and RLE acceleration as
described in chaper 5

The times were measured using the hardware performance counter. In all cases, the times
include time needed for shading and storing the colour values into the image buffer; times
for S& W include warping of the intermediate mage into the frame buffer. The times do not
include drawing from the image buffer into the user window.

7.3 Hardware Acceleration

To test the acceleration method described in chapter 6 and compare it with other methods,
the super-cell size has to chosen. Choosing the size is quite problematic. With decreasing
super-cell size, the number of super-cells increases and there is more work for hardware to
render them. On the other hand larger super-cells mean longer paths to sample until a
surface is hit. See Figure 7.3 for an example of number of faces used to visualize the
super-cells.
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Figure 7.3: Number of generated faces to be rendered, shown in dependency on the
super-cell size. The 2562 volume was used.
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Figure 7.4: An example of rendering time dependency on the super-cell size. The DRC HW
method and face view were used. The 256° volume was rendered, the image was 512%. The
best time (179ms) was achieved for the 7° super-cell.
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The cell size for which the fastest rendering is achieved depends on used hardware, dataset
being visualized, threshold value, used rendering method and image size. For tested
datasets it was observed that the most efficient cell size does not depend on current
viewing direction.

See Figure 7.4 for an example of the time dependency on the super-cell size. This
dependency was investigated for both RC HW and DRC HW methods and all tested
datasets. For the increasing number of super-cells, the hardware becomes the bottleneck.
The resulting best super-cell sizes are listed in the table in Figure 7.5.

RC HW DRC HW

Datasize | Imagesize "caigze | Time(ms) | Celsize | Time(ms)
64° 128° 3 32 8° 11
128° 2567 3 128 6° 42
256° 5127 3 577 7 179
512° 10247 42 2580 7 735

Figure 7.5. The optimal super-cell sizes for different data volumes and corresponding
image sizes.

The time courses look similar to that in the Figure 7.4. The differences between the
rendering time for the optimal size and times for the neighbouring sizes are minor. Thus
we come to an observation that the optimal super-cell sizes for the given rendering method
and dataset resampled to different sizes does not change as long as the data size and image
sizeratio is constant.
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7.4 Rendering Speed Comparison

This chapter contains speed comparison of implemented methods. For the following tests,
the rotation Test B was used (see chapter 7.2 for details). In the Figure 7.6 the minimal,
maximal and average times are shown that were achieved during the rotation.

63%/128° 128°/256° 256°/512 512°/1024°
min| max |avrg| min|max favrg| min | max |avrg| min | max | avrg

RC 66 | 82 | 75 | 360|557 | 470 | 2502 | 4288 | 3453 [ 17206 | 31932 | 24956
RCHW | 31 | 43 | 36 110|161 | 144 | 490 | 714 | 637 | 1933 | 3129 | 2721
DRC 13|18 | 15 | 64 | 89 | 76 | 364 | 593 | 473 | 2308 | 4650 | 3246
DRCHW | 10| 14 | 11 |39 | 49 | 45 | 149 | 209 | 186 | 624 | 863 | 789
SEW | 3| 4| 4 |12|18| 16 | 59 |101| 80 | 286 | 528 | 406

Figure 7.6: The table showing result times in milliseconds. For methods RC HW and
DRC HW, the optimal super-cell sizes (as shown in Figure 7.5) were used.
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Figure 7.7: A graph showing the rendering time dependency on the volume size. The
average values fromthe tablein the Figure 7.6 were used.
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See the Figures 7.8 and 7.9 that show the acceleration achieved for RC and DRC methods
respectively.

Acceleration

Acceleration of RC HW method

—e —RC
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Figure 7.8: An acceleration of the RC HW method against the brute-force ray-casting.
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Figure 7.9: An acceleration of the DRC HW method against the brute-force discrete ray-
casting. The shear-warp method is shown for comparison.
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7.5 Data Storage Coherency

A test was made that shows how the order in which the data is accessed influences the
rendering times. Thisissue is critical since the slow memory access becomes a bottleneck
in traversing the data volume. As the CPU is much faster than the main memory, there is
the local CPU cache that hel ps the processor to get the data faster. When there is a memory
read request at an address, the neighbouring data is stored in the cache as well so that later
it can be accessed faster. However, this assumes that the data is accessed in the storage
order. Otherwise the cached data is replaced by data from other addresses since the cache
sizeisrelatively small.

To measure the access order dependency, the test A was used (see chapter 7.2 for details).
The test is based on the fact that the same viewing direction is used and the view is being
rotated around the viewing axis. This means that the same rays are sent however in
different order.

The data voxels are stored in rows in the x direction (see Figure 7.2). The rows are stored
in they direction and create data slices. Finally, slices are stored in the z direction.
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Figure 7.10: Rendering times vary depending on the rotation angle. It was measured for
the 256° dataset in 5 degree steps.

The Figure 7.10 shows that the fastest times were achieved for 0° and 180° angles as the
image rows were parallel to the data rows and the ray could take advantage of the data
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cached by any of the previous rays. The slowest times were measured at 90° and 270° for
image rows perpendicular to the data rows.

In the Figure 7.11 the previous results are expressed as a relative slowdown. The most
noticeable slowdown can be observed for the discrete ray-casting method. In this method
the time spent on one sample is minimized since no interpolation is done. The sampling
loop thereby relies on the memory speed much more then the ray-casting method that does
more computations in one step. Using the acceleration, the relative slowdown decreases
since the rays do not traverse such long distances.

— = RC
—DRC
- —— RCHW
—— DRC HW

Slowdown

Angle
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0 45 90 135 180 225 270 315 360

Figure 7.11: The relative slowdown expressed relatively to the time measured at O degrees.

7.6 Preprocessing Speed Comparison

Besides the rendering times that were discussed in previous chapters, there is another issue
that has to be taken into account — the time needed for preprocessing. The preprocessing is
used in RC HW, DRC HW and S&W methods each time the threshold value changes. The
preprocessing time is not very important as long as the user does not need an interactive
change of the threshold value. However, it becomes critical when rather threshold value
changing than datarotation is needed. See Figure 7.12 for resulting preprocessing times. It
can be observed that the preprocessing in the shear-warp method becomes with growing
dataset relatively very slow. It is caused by the fact that it has to go through the whole
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volume. The other two methods process just the super-voxels to determine which will be
visible for the given threshold.

100000 -
’(;)\ . X
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£
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8 - % - - S&W
o
o
et
o
10 I I I I I I I VOIl\Jme Slze
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Figure 7.12: Times needed for preprocessing measured for 64% 128% 256° and 512
volumes and threshold equal to 50. For the RC HW and DRC HW methods, the rendering
optimal super-cell sizes from Figure 7.5 were used. The RC and DRC methods are not
included since they do not use any preprocessing.

However, in practice, when the user changes the threshold value, both the preprocessing
and rendering must be done in order to give a response. We thus need to consider both
times to see how quick the response for athreshold changeis.

The Figure 7.3 shows the sum of the preprocessing times from Figure 7.12 and the average
rendering times from Figure 7.7. Interesting results can be seen in that graph. Even though
the RC and DRC methods do not need any preprocessing at all, the acceleration gain of the
RC HW and DRC methods can easily compensate the low preprocessing costs.

However, notice that the high preprocessing costs of the S& W method make it unsuitable
for interactive threshold changes since the total time becomes almost as slow as is that for
the RC method.
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Figure 7.13: Times needed for a threshold change and following rendering.

Finally see Figure 7.14 for response speeds expressed in frames per second.

Rotation (FPS) Threshold change (FPS)
64> 1283 256° 512° 64> 1283 256° 512°
RC 13,33 2,13 0,29 0,04] 13,33 2,13 0,29 0,04
RC HW 27,44 6,95 1,57 0,37| 27,44 6,95 1,57 0,37
DRC 65,69| 13,14 2,12 0,31] 15,33 7,29 1,59 0,24
DRCHW | 89,11 22,19 5,36 1,27 2261| 10,10 411 1,05
S&W 268,66| 64,52| 1245 246 22,87 3,44 0,39 0,04

Figure 7.14: Table showing the frame rates for volume rotation in the left part (computed
from time values in Figure 7.6) and for the threshold change response (include the
threshold change and rendering).

7.7 Image Quality

This thesis is orientated to the rendering speed rather than to the output image quality.
However, the image quality is a very important issue in volume data visualization. It
depends primarily on the way the surface normal is computed and on the interpolation

technique.
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As two different interpolation approaches were used, the resulting images have different
quality. The RC method gives the best results thanks to the trilinear interpolation it uses.
The DRC and S&W methods use the nearest neighbour interpolation which trades the
image quality for faster rendering times. The differences in the image quality are getting
more obvious when more rays per one voxel/cell are sent. Furthermore the nearest
neighbour interpolation used in the 2D warp in the S& W method causes the image causes
slightly worse image quality than is that of the DRC method.

The acceleration technique used in the RC HW and DRC HW methods does not influence
the output quality.

See Appendix C for a visual comparison of RC, DRC and S& W methods. There are also
the RC method sample outputs for other datasets.
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8 Conclusion

The ray-casting, discrete ray-casting and shear-warp methods were described and
implemented in this thesis. The ray-casting method gives best image quality thanks to the
inter-cell interpolation. The discrete ray-casting method is less computationally expensive
and thus gives faster rendering times. However, the image quality is worse due to the
nearest neighbour interpolation. An accelerating technique was introduced and
implemented that uses the 3D graphic hardware to speedup the ray-casting. The
acceleration does not influence the image quality as it only helpsto skip the empty space.

It was shown that as the number of memory accesses increases, the algorithm speed
becomes influenced by the memory access time. The speed of CPU is then not important as
it has to wait for the Slow memory. The data should be accessed so that advantage of the
memory caching is taken.

The implemented shear-warp method achieved the fastest rendering times thanks to using
both the image and data coherency and thanks to the effective way the data is accessed.
However, the basic implementation does not enable the inter-cell interpolation that would
have to be introduced in order to produce higher quality images. The shear-warp method
has considerably slower preprocessing than the hardware accelerated methods which
makes is less suitable for interactive iso-surface changing.

In practice, it is useful to have a combination of visualization techniques. a fast technique
to interactively explore the data and another one that is slower but uses more precise
interpolation and surface normal computation.
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Appendix A — User’s Guide

Running the Application

The application was tested and should run at Microsoft Windows NT/2000/XP/98. A 3D
graphic card and installed OpenGL are required as well.

For a non-problematic testing of supported methods, it is recommended that the system
main memory is at least 4 times as large as the largest dataset to be tested.

To run the application, execute the \ publ i c\ | soVol une. exe file that can be found on
the enclosed CD.

Loading the Data

Choose the File/Open from the main menu. The open dialog enables loading the *. vol
files. Go e.g. tothe\ publ i c\ dat a directory to get a sample dataset.

Setting the Viewing Parameters

When a dataset is loaded, the window containing user controls appears. Choose the View
page to set the view parameters.

View ]| Algarithm ]

[iata rotation

_G___ Angle step (deg)
10 -
Projection plane size View zoom

| 256256 -] |z =

lso value

Figure A.1: Controlling the view parameters



Datarotation

To rotate the data, use the six rotation buttons as shown in the Figure A.1. The
functionality is obvious from the button icons. In the left part of the panel, there are the
four buttons that enable the rotation around axes perpendicular to the viewing direction. By
pressing the other two buttons in the left part, the data rotates around the viewing axis.

K eeping the buttons pressed causes continuous rotation.

You can choose the rotation step to change the rotation speed. Choose the appropriate
angle step in degrees from the combo box placed close to the rotation buttons.

Projection plane size

This combo box sets the number of rays that are sent per image. The default size is
256x256 which means that 256 rays are sent per image side. Together 256 rays are sent. If
the zoom is set to 100%, resulting image size is 256x256 as one ray is sent per resulting
image pixel.

This parameter considerably influences the image quality as well as the rendering speed.
However, for the shear-warp algorithm the rendering time is not influenced as the internal
sizeis twice the size of the dataset (e.g. 256> size for a 128° dataset) and using other image
sizes means awarp from the optimal size to the required size.

View zoom

To resize the image, select the percentage value from the combo box. Selecting the zoom
factor causes stretching the image to required size. It does not influence the rendering
speed as no additional rays are sent.

Setting the threshold

In the lower part, the threshold value can be set. The control part is marked as Iso value
(see Figure A.1). You can either use the slider or write the required value into the edit box
and then press the Set button. The value can be in the range <1..255>.



Choosing the Algorithm

To select the current rendering algorithm, go to the Algorithm control page as shown in the

Figure A.2.

View  Algorthm l

Algorithm
(" Ray-casting

r> Ray-casting
+ OpenGL acceleration

(" Discrete ray-casting

Dizcrete ray-casting
+ Openal acceleration

{" Shear &wamp + RLE

Supercell size

BBl -

Figure A.2: Choosing the algorithm

In the Algorithm block use the radio buttons to choose current rendering algorithm. By
changing the algorithm, the view parameters remain constant.

For the OpenGL accelerated algorithms use the combo box marked as Super-cell size to set
the size of used super-cells.



Other Functions

See Figure A.3 that shows the rendering window with the main menu.

Saving theimage

Use the View/Save to BMP command from the main menu to save the current image to a
BMP file in current directory. The image is saved in original size, i.e. the zoom factor is
not taken into account.

L ogging thetimes

Use the Debug/Sart log times and Debug/Stop log times to open and close the times.log
filein the current directory. When the time logging is active, each time aframe is rendered
the rendering time is written into thefile.

M engine.vol

File View Debug Help

Last frame rendering took 149.23msec

Figure A.3: The rendering window



Appendix B — Programmer’s Guide

The implementation was done for MS Windows in C++ language using Visua C++ 6.0
and MFC. The source code can be found in the\ pri vat e\ sr ¢ directory on the enclosed
CD.

The project modules can be divided into following logical groups:

Framework classes

Class ClsoVolumeApp is placed in | soVol unme. h and I soVol une. cpp files. This class
was automatically generated by the project wizard. It includes basic application
initialization as well as new Onldle message handler used to perform the continuous
rotation.

Class CMainFrame is placed in Mai nFrm h and Mai nFrm cpp files. It includes
handlers for the main menu commands and messages sent to the main window frame. This
class also creates instances of the CChildView and CProperties classes.

Class CChildView is placed in files Chi |l dVi ew. cpp and Chi | dVi ew. h. This class
handles the window painting and scrolling messages. It creates instances of the renderers
according to the selected algorithm. It drives the visualization process. It contains instances
of CData, CCamera and CScreenBuffer classes.

Class CProperties is placed in file CProperties. h. It is the frame for the window
Controls and includes instances of CCameraProperties and CAlgorithmProperties classes.

Class CCameraProperties is placed in files CaneraProperties.cpp and
Caner aProperties. h. This class creates the controls contained in the View page and
handles messages from these controls.

Class CAlgorithmProperties is placed in files Al gorithnProperties.cpp and
Al gorithnProperties. h. This class creates the controls contained in the Algorithm
page and handles the messages from these controls.

Renderers

The abstract class CAbstractTracer is placed in file Abst r act Tr acer . h. It defines which
methods will be included in the renderers that are derived from this abstract class.

Class CTracer isplaced in files Tr acer . cpp and Tr acer . h. It includes the methods that
perform the brute-force ray-casting algorithm from chapter 3.



Class CTracer3DLine is placed in files Tr acer 3DLi ne. cpp and Tr acer 3DLi ne. h. It
includes the discrete ray-casting algorithm from chapter 4.

Class CTracerGL is placed in files Tracer G.. cpp and Tracer GL. h. It includes the
rendering ray-casting methods as implemented in the classes CTracer and CTracer3DLine
together with the OpenGL acceleration from chapter 6. It contains an instance of the
CReducedVolume class.

Class CTracerSW is placed in files Tracer SWcpp and Tracer SW h. It includes the
shear-warp rendering algorithm from chapter 5.

Supporting classes and files

Class CCamera is placed in files Canera. cpp and Caner a. h. It includes the view
parameters and methods for view rotation.

Class CData is placed in files Dat a. cpp and Dat a. h. It includes the dataset as well as
methods for reading the dataset from a file and adding borders to the dataset.

Class CReducedVolume is placed in files ReducedVol ure. cpp and ReducedVol une. h.
This class contains the super-cells data structure as well as methods for creating this data
structure. It also includes a method that solves the face visibility and compiles the GL lists
according to current threshold value.

Class CcreenBuffer is placed in files Scr eenBuf f er . cpp and Scr eenBuf f er. h. This
classis used as an output for the renderers. li includes the screen buffer as well as methods
for drawing the buffer into the window and storing the buffer into the BMP file.

Thefile Def . h contains various macros mostly for vector operations.

The file Def Matri x. h contains matrix operations that are used in the shear-warp
renderer.

FilesOpenG.. cpp and Qpen@.. h include functions that initialize the OpenGL .

Files Ti mer . cpp and Ti mer . h support time measurements.

See the comments in the source code for more detailed information.



Appendix C - Output Examples

The next three images show outputs generated by the RC (ray-casting), DRC (discrete
ray-casting) and S& W (shear-warp) methods respectively. The cthead 256.vol dataset was
used (256° size). The threshold value was set to 100. The projection plane size was
512x512. The three images you can see below were obtained from the rendered images by
cutting off part of the black background. Otherwise the skulls would be relatively smaller
and the quality differences would be harder to recognize.

Ray-casting






The following sample images were generated using the ray-casting method. The generated
image sizes were 1024x1024. No cut-offs were applied. The source file name, dataset size
and used threshold value are written under each image.

cthead_256.vol (256°), threshold = 50



bentum.vol (256°), threshold = 20

ctmayo.vol (128%), threshold = 120

iv



engine.vol (256x256x110), threshold = 50

syn_64.vol (64%), threshold = 50
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