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1. Particle systems – basic description

� A method to generate fuzzy objects - fires, 

fireworks, explosions, grass, clouds, water ...

� Fuzzy objects – difficult to represent, they do not 

have smooth, well-defined surfaces, their 

movements cannot be described by affine 

transformations

� Particle system – the object is modelled as a 

cloud of primitive particles defining the object 

volume

� Particles can be assigned dynamics and a 

model of their look

� Generating shape: sphere, circle, rectangle,...
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� Differences from the usual representations: 

� Instead of a set of simple surface elements, a lot of 

particles defining the volume

� Particles are born and die

� Not totally deterministic, stochastic processes are 

used to create and change the look

� Advantages:

� Particles more simple than a polygon

� Procedural definition, controlled by random numbers 

=> a fast design

� Level-of-detail (LOD) according to the view 

parameters can be done

� “Living" system – the dynamics is easier than with the 

surface description
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� 1st frame computation:

� Generation of new particles into the system

� New particles get individual attributes

� Particles older than prescribed are killed

� The surviving particles are shifted and transformed 

according to their attributes

� Living particles are rendered into the frame buffer

Flames
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� Example:

bin/psys.exe 
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2. Particle generation

� Supervised stochastic process controlls the 

number of particles entering the system in each 

frame

Npartsf = MeanPartsf + Rand () x VarPartsf

Or:

Npartsf = (MeanPartssaf + Rand () x VarPartssaf) x 

ScreenArea

Current number 

of particles in the frame n
Random number 

with the uniform 

distribution in <0,1>

DeviationMean value of the number

Mean value of the number/

Screen area

Deviation of the number/

Screen areaScreen area 

covered by the system
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Number of particles can vary in time:

Meanpartsf = InitialMeanPartsf + DeltaMeanParts x 

(f-f0)

� Similarly for MeanPartssaf

� VarParts without a change

� The change can be quadratic, cubic, 

stochastic...

The current 

frame

Speed of change

1st frame when the system 

is alive

Mean value 

of the particles’ number

in the first frame
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Particle hierarchy

� The mean value and dispersion are used for the 

group of offspring of the given particle
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3. Particle attributes

� Starting position – inside a generating shape, 3D 

point + 2 angles for the orientation

� Initial speed – size and direction

InitialSpeed = MeanSpead + Rand()xVarSpeed

� Initial size – it gets the average and the 

maximum dispersion

� Initial colour – it gets the average of R,G,B and

the maximum dispersion

� Initial translucency – it gets the average and the 

maximum dispersion

� Shape – sphere, rectangle, ...

� Life expectancy – number >= 0, decremented
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4. Particle dynamics

� The simplest: the position – a function of time

� More complex behavior – external forces 

influencing the particles

� Movement equations:

� Approximation: 

∫

∫
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p – particle position

v – velocity vector

p0, v0 – initial position and velocity

a = f/m (external force/

particle mass)

tvpp

tavv
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1 ∆t – simulation

time step
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The most often force - gravitation:

� Visual result: parabolic movement

mgdf
g

=
g – gravitational acceleration

d – directional vector

Particle movement

around the centre of gravitation
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Neigbourhood counteraction: against the 

movement direction

vkf
rr

−=
kr – constant of the ngb. counteraction

v – original velocity vector
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Reflex from geometrical objects:

� Particle reflects as late as from a position under 

the surface to which it penetrated in the previous 

step of the simulation – it looks unnatural for a 

bigger simulation step

� Possible solution: compute more exact reflection 

point from the previous particle position, 

compute new velocity from it

nvnvv )(2' −=
v´ – particle velocity vector

after the reflex

v – original velocity vector

n – normal vector 

of the reflecting surface
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Further imprecissement: elastic collision:

� Velocity after the reflex has two components, 

normal and tangent

� New velocity after the collision is

nt

n

vvv

nvnv

−=

= )(

nt
vvv εµ −−= )1('

µ – decreases the tangent 

component

– friction coefficient

ε – influences the normal 

component

– flexibility coefficient
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5. Particle removal

� When life expectancy is achieved

� In case the particle moves in the given direction 

by more than allowed

Waterfall
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6. Particle rendering

� Mutual overlap of particles and classical objects, 

transparency, invisibility ....

� Possible simplification: 

� To divide one particle system into more to eliminate 

intersections with surface-modeled primitives, 

compilation done later

� Particles – point light sources – neither shadow-

casting, nor invisibility (only the pixels cummulate the 

light), values only cut to max., no depth-sort needed

� Simplification OK for explosions and fires, not 

suitable for clouds and water

� Often instead of particles, 

texture rectangles (sprites)
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7. Systems with mutual particle interaction

� Mutual attraction and repulsion, collision detection, 

splints, animals, birds, people … instead of particles

� Main idea: relatively simple rules how

an individual behaves in a flock/herd:

� Collision avoidance

� Adaptation to the near-individuals movement

� Keeping near the flock\herd – direction to the centre

of near individuals

� For the i-th particle:

vi´ = vi + ai∆t, ai=fext(pi,vi)/m, fext=fg+fr+fenv,

fg   = migd - gravitation,  fr  = -εvi - environment repulsion,

fenv= fenv(pi,vi) - neighbourhood (the user defines)
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� Environment

� For ex. Perlin noise – causes irregular flame waving 

and particles clustering into little clouds =>

approximation to gas turbulations

� Or a repulsing force on the gas surface => flowing 

around

Flames with and without a noise function Sphere runarounded by particles
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8. Examples

Wall of fire and explosion (1):

� Genesis Demo from StarTrek II: The Wrath of 

Khan (Paramount,  1992) – sequence generated

in Lucasfilm – dead planet changed to alive by 

Genesis bomb explosion – after the explosion, 

walls of fire spread from the impact point, 

mountains and other terrain features are born

� 2-level particle system with the centre in the 

impact point, concentric circles of two levels
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Wall of fire and explosion (2):

Distribution of particle systems on the planet surface

KPG21/32



Wall of fire and explosion (3):

2nd level particles system (its appearance immitates an explosion)
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Wall of fire and explosion (4):

Initial explosion
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Wall of fire and explosion (5):

Proceeding firewall 
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Wall of fire and explosion (6):

Further examples from the same application
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Firework:
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Grass:
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3D Max: sprey, snow, superspray, blizzard, 

movement can be further influenced bz the so-

called space-warps, materials can be attached 

and modified according to the particle age

2 particle systems – fire and smoke

(intensity is added to or subtracted

from the background)

Waterfall – particles are reflected 

from the object
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Snow: the user defines objects instead of particles
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Forrest: the area is subdivided into squares, in 

each a centre is randomly shifted but only inside 

the square, about ten per cent of points are 

eliminated, in the other a simple tree model from 

several cylinders with a suitable texture is 

generated, the result is OK from a sufficient 

distance
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Dynamic simulation: a basket of balls spread on 

stairs, the emitting object – the basket, particles 

- the balls. The ball properties – initial velocity, 

direction, flexibility, color (texture), mass, all 

balls move downstairs, they can collide, bounce 

from the balustrade, etc.
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Bubbles in soda water: the inner surface of the 

glass generates them, they have a different size, 

direct upwards, die on the surface

Useful also for complex physical simulations –

particle tracing: to model a complex physical 

field with a limited accuracy in case of limited 

time for computation, we visualize the particle 

trajectories, we accent , e.g., the places with big 

trajectory changes and so with bigger friction by 

red

Plant growth simulation: they avoid obstacles, 

react on the light
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