
Particle systems

I.Kolingerová

1. Particle systems – basic description

2. Particle generations

3. Particle attributes

4. Particle dynamics

5. Particle removal

6. Particle rendering

7. Systems with mutual interaction

8. Examples

Reference:

� W.T.Reeves: Particle Systems – a Technique for

Modeling a Class of Fuzzy Objects, ACM

Transactions on Graphics, Vol. 2, No. 2, 1983,

pp.91-108

KPG2/32

1. Particle systems – basic description

� A method to generate fuzzy objects - fires,

fireworks, explosions, grass, clouds, water ...

� Fuzzy objects – difficult to represent, they do not

have smooth, well-defined surfaces, their

movements cannot be described by affine

transformations

� Particle system – the object is modelled as a

cloud of primitive particles defining the object

volume

� Particles can be assigned dynamics and a

model of their look

� Generating shape: sphere, circle, rectangle,...

KPG3/32

� Differences from the usual representations:

� Instead of a set of simple surface elements, a lot of

particles defining the volume

� Particles are born and die

� Not totally deterministic, stochastic processes are

used to create and change the look

� Advantages:

� Particles more simple than a polygon

� Procedural definition, controlled by random numbers

=> a fast design

� Level-of-detail (LOD) according to the view

parameters can be done

� “Living" system – the dynamics is easier than with the

surface description

KPG4/32

� 1st frame computation:

� Generation of new particles into the system

� New particles get individual attributes

� Particles older than prescribed are killed

� The surviving particles are shifted and transformed

according to their attributes

� Living particles are rendered into the frame buffer

Flames

KPG5/32

� Example:

bin/psys.exe

KPG6/32

2. Particle generation

� Supervised stochastic process controlls the

number of particles entering the system in each

frame

Npartsf = MeanPartsf + Rand () x VarPartsf

Or:

Npartsf = (MeanPartssaf + Rand () x VarPartssaf) x

ScreenArea

Current number

of particles in the frame n
Random number

with the uniform

distribution in <0,1>

DeviationMean value of the number

Mean value of the number/

Screen area

Deviation of the number/

Screen areaScreen area

covered by the system

KPG7/32

Number of particles can vary in time:

Meanpartsf = InitialMeanPartsf + DeltaMeanParts x

(f-f0)

� Similarly for MeanPartssaf

� VarParts without a change

� The change can be quadratic, cubic,

stochastic...

The current

frame

Speed of change

1st frame when the system

is alive

Mean value

of the particles’ number

in the first frame

KPG8/32

Particle hierarchy

� The mean value and dispersion are used for the

group of offspring of the given particle

KPG9/32

3. Particle attributes

� Starting position – inside a generating shape, 3D

point + 2 angles for the orientation

� Initial speed – size and direction

InitialSpeed = MeanSpead + Rand()xVarSpeed

� Initial size – it gets the average and the

maximum dispersion

� Initial colour – it gets the average of R,G,B and

the maximum dispersion

� Initial translucency – it gets the average and the

maximum dispersion

� Shape – sphere, rectangle, ...

� Life expectancy – number >= 0, decremented

KPG10/32

4. Particle dynamics

� The simplest: the position – a function of time

� More complex behavior – external forces

influencing the particles

� Movement equations:

� Approximation:

∫

∫

+=

+=

vdtpp

adtvv

0

0

p – particle position

v – velocity vector

p0, v0 – initial position and velocity

a = f/m (external force/

particle mass)

tvpp

tavv

nnn

nn

∆+=

∆+=

++

+

11

1 ∆t – simulation

time step

KPG11/32

The most often force - gravitation:

� Visual result: parabolic movement

mgdf
g

=
g – gravitational acceleration

d – directional vector

Particle movement

around the centre of gravitation

KPG12/32

Neigbourhood counteraction: against the

movement direction

vkf
rr

−=
kr – constant of the ngb. counteraction

v – original velocity vector

KPG13/32

Reflex from geometrical objects:

� Particle reflects as late as from a position under

the surface to which it penetrated in the previous

step of the simulation – it looks unnatural for a

bigger simulation step

� Possible solution: compute more exact reflection

point from the previous particle position,

compute new velocity from it

nvnvv)(2' −=
v´ – particle velocity vector

after the reflex

v – original velocity vector

n – normal vector

of the reflecting surface

KPG14/32

Further imprecissement: elastic collision:

� Velocity after the reflex has two components,

normal and tangent

� New velocity after the collision is

nt

n

vvv

nvnv

−=

=)(

nt
vvv εµ −−=)1('

µ – decreases the tangent

component

– friction coefficient

ε – influences the normal

component

– flexibility coefficient

KPG15/32

5. Particle removal

� When life expectancy is achieved

� In case the particle moves in the given direction

by more than allowed

Waterfall

KPG16/32

6. Particle rendering

� Mutual overlap of particles and classical objects,

transparency, invisibility

� Possible simplification:

� To divide one particle system into more to eliminate

intersections with surface-modeled primitives,

compilation done later

� Particles – point light sources – neither shadow-

casting, nor invisibility (only the pixels cummulate the

light), values only cut to max., no depth-sort needed

� Simplification OK for explosions and fires, not

suitable for clouds and water

� Often instead of particles,

texture rectangles (sprites)

KPG17/32

7. Systems with mutual particle interaction

� Mutual attraction and repulsion, collision detection,

splints, animals, birds, people … instead of particles

� Main idea: relatively simple rules how

an individual behaves in a flock/herd:

� Collision avoidance

� Adaptation to the near-individuals movement

� Keeping near the flock\herd – direction to the centre

of near individuals

� For the i-th particle:

vi´ = vi + ai∆t, ai=fext(pi,vi)/m, fext=fg+fr+fenv,

fg = migd - gravitation, fr = -εvi - environment repulsion,

fenv= fenv(pi,vi) - neighbourhood (the user defines)

KPG18/32

� Environment

� For ex. Perlin noise – causes irregular flame waving

and particles clustering into little clouds =>

approximation to gas turbulations

� Or a repulsing force on the gas surface => flowing

around

Flames with and without a noise function Sphere runarounded by particles

KPG19/32

8. Examples

Wall of fire and explosion (1):

� Genesis Demo from StarTrek II: The Wrath of

Khan (Paramount, 1992) – sequence generated

in Lucasfilm – dead planet changed to alive by

Genesis bomb explosion – after the explosion,

walls of fire spread from the impact point,

mountains and other terrain features are born

� 2-level particle system with the centre in the

impact point, concentric circles of two levels

KPG20/32

Wall of fire and explosion (2):

Distribution of particle systems on the planet surface

KPG21/32

Wall of fire and explosion (3):

2nd level particles system (its appearance immitates an explosion)

KPG22/32

Wall of fire and explosion (4):

Initial explosion

KPG23/32

Wall of fire and explosion (5):

Proceeding firewall

KPG24/32

Wall of fire and explosion (6):

Further examples from the same application

KPG25/32

Firework:

KPG26/32

Grass:

KPG27/32

3D Max: sprey, snow, superspray, blizzard,

movement can be further influenced bz the so-

called space-warps, materials can be attached

and modified according to the particle age

2 particle systems – fire and smoke

(intensity is added to or subtracted

from the background)

Waterfall – particles are reflected

from the object

KPG28/32

Snow: the user defines objects instead of particles

KPG29/32

Forrest: the area is subdivided into squares, in

each a centre is randomly shifted but only inside

the square, about ten per cent of points are

eliminated, in the other a simple tree model from

several cylinders with a suitable texture is

generated, the result is OK from a sufficient

distance

KPG30/32

Dynamic simulation: a basket of balls spread on

stairs, the emitting object – the basket, particles

- the balls. The ball properties – initial velocity,

direction, flexibility, color (texture), mass, all

balls move downstairs, they can collide, bounce

from the balustrade, etc.

KPG31/32

Bubbles in soda water: the inner surface of the

glass generates them, they have a different size,

direct upwards, die on the surface

Useful also for complex physical simulations –

particle tracing: to model a complex physical

field with a limited accuracy in case of limited

time for computation, we visualize the particle

trajectories, we accent , e.g., the places with big

trajectory changes and so with bigger friction by

red

Plant growth simulation: they avoid obstacles,

react on the light

KPG32/32

