
Julia and Mandelbrot sets

I.Kolingerová

KPG 2

References:

� Francis S.Hill Jr.: Computer Graphics, Macmillan

Publishing Company, New York, 1990

� H.A. Lauwerier, J.A. Kaandrop: Fractals

(Mathematics, Programming and Applications),

TR CS-R8762, Centre for Mathematics and

Computer Science, Amsterdam, The

Nietherlands, 1980

� J.C.Sprott, C.A. Pickover: Automatic Generation

of General Quadratic Map Basins, Computers &

Graphics, Vol.19, No.2, pp.309-313, 1995

KPG 3

Julia sets

� French mathematician G.Julia, 1918

� J. set: zn+1 = F(zn), zn – a complex number

� It preserves angles but the scale depends on the

z value (locally, it is a rotation with a scale, the

scale factor |F´(z)|

� Standard example: zn+1 = zn
2 + c, c = a+ib

in real numbers: xn+1 = xn
2 - yn

2 + a,

yn+1 = 2xnyn + b

� It is important to inspect fixed and periodic points

of F

KPG 4

� Fixed point: given by z = F(z)

� If |F'(z)| < 1, the point is stable. If z0 is near a fixed

point z, then the orbit z0, z1,z2,z3,.. converges to

z. Then z is the attractor.

� If |F'(z)| > 1, then the point is unstable, a repellor.

� If |F'(z)| = 1, the fixed point is neutral.

� Periodic orbit (m-cycl): zm = F(zm-1)=z0, m – the

smallest integer, for which the equality holds; z0 –

a periodic point of order m. M-cycl is stable if

|F'(z0)F'(z1)F'(z2)...F'(zm-1)| < 1, analogically for

unstability.

� Stability and unstability are very useful for

systems control, attractors for graphics

KPG 5

Monotonous function,

positive derivation, does

not produce chaos

Fixed points are x (1) =0,

x (2) =3/10, x (5) =4/5,

interval J=1/2 to 3/5

From the starting point

x0, x0': x (1) and x (5) are

attractors, x (2) is a

repellor while

J attracts close points

on the left and repells

close points on the right

Example 1

KPG 6

Monotonous function,

negative derivation,

does not produce chaos

Example 2

KPG 7

The function f.5: x=0 is a

repellor and x=0.5 an

attractor,

f.8: x=0 is a repellor,

x=11/16 is also a

repellor and the 2-cycl (x

~ 0.51, x ~ 0.8) is an

attractor

f.9 has periodic orbits 2n

and the iterations are

chaotic

Example 3

KPG 8

� Definition: Julia set – a set of all complex

numbers z for which the iteration F(z) ->z2+c je

is limited for some c.

� In other words: the graph of all complex

numbers z which are not growing to ∞ when they

are iterated in F(z) ->z2+c, where c is constant.

� Take a given c, find the color for the pixel (x,y)

using z0=x+iy as a starting point

� More iterations – more details in the drawing

� Julia set is continuous if c lies on the

corresponding Mandelbrot set and vice versa

(i.e. the orbit for c=0 decides).

KPG 9

Julia sets for F(z) ->z2+c

KPG 10

function JuliaCount (x,y: extended; num: longint) : longint;

{ num is the maximum number of iterations }

const thresh = 4.0; { a larger threshold may yield better pictures }

var

cx,cy,tmp,fsq : extended;

count : longint;

begin

cx := 0.0005; cy := 0.87;

fsq := 0;

count := 0;

while (count < num) and (fsq <= thresh) do

begin

count := count+1;

tmp := x;

x := x*x - y*y + cx;

y := 2.0*tmp*y + cy;

fsq := x*x + y*y;

end;

JuliaCount := count;

end; { JuliaCount }

KPG 11

procedure Fill_pixels (var cells : TArray);

{ procedura spocte Juliovu mnozinu do pole cells }

var i,j : integer;

count,num : longint;

x,y : real;

col : TColor;

begin

nrows := Form1.ClientHeight; ncols := Form1.ClientWidth;

num := 1000;

for i := 0 to nrows-1 do

begin

y := ymin+(ymax-ymin)*i/(nrows-1);

for j := 0 to ncols-1 do

begin

x := xmin+(xmax-xmin)*j/(ncols-1);

count := JuliaCount (x,y,num);

if count=num then cells[j,i] := clBlack { point in the Julia set }

else

cells[j,i] := clWhite;

end;

end

end; { Fill_pixels }

KPG 12

KPG 13

KPG 14

100 iterations, c=0.005+0.65i 1000 iterations

c=0.005+0.65i

10000 iterations

KPG 15

1 mil. iterations 500 000 iterations 100 000 iterations

1000 iterations
100 iterations

KPG 16

Various equations to inspire

KPG 17

Mandelbrot sets

� B.Mandelbrot, 1980

� We draw the points c=x+iy in the complex plane,

for which the function value “remains small"

Fk+1 = Fk
2 + c, F0 = 0 + 0i

F1 = c

F2 = c2 + c

F3 = (c2 + c)2 + c

F4 = ((c2 + c)2 + c)2 + c atd.

� Inspected value: |Fk|

KPG 18

� It is inspected whether |Fk| for k=0,1,2,... And

given c grows above all limits

� Compute first N iterations, N ~ 1000, often even

less

� If |Fk| ≤ 2 up to Nth iteration, we expect that the

point lies in the M. set, we color it black

� If |Fk| > 2 , the sequence will grow above all

limits, the point does not lie in M set, we color it

white or according to the number of iterations

which |Fk| needed to grow above 2

� The boundary of M. set is a fractal curve

� M. set is continuous

KPG 19

� Ex.: Behaviour for one particular c = -0.2 + 0.5i

F2 = 0.41+0.3i,

F3 = -0.1219+0.254i

F4 = -0.2497+0.4381 atd.

After ~ 80 iterations it converges to Fk = -

0.2499+0.33368i

- fixed point of the function

|Fk| = 0.416479 => c lies in M. set

� For computation use at lest the double type,

compute more iterations nearby the boundary

� Although M. set is self-similar in zoom, details

are not identical with the whole

KPG 20

� Definition: Mandelbrot set – a set of all complex

c for which the iterations F(z) ->z2+c are limited

(the start is in z=0+0i)

� In other words: a graph of all complex numbers c

which are not growing to ∞ when iterated in F(z)

->z2+c with the starting value z=0+0i.

100 iterations

(more iterations would bring more details)

KPG 21

function MandelCount (cx,cy: extended; num: longint) : longint;

{ num is the maximum number of iterations }

const thresh = 4.0; { a larger threshold may yield better pictures }

var

x,y,tmp,fsq : extended;

count : longint;

begin

x := cx; y := cy; fsq := x*x+y*y;

count := 0;

while (count < num) and (fsq <= thresh) do

begin

count := count+1;

tmp := x;

x := x*x - y*y + cx;

y := 2.0*tmp*y + cy;

fsq := x*x + y*y;

end;

MandelCount := count;

end; { MandelCount }

KPG 22

procedure Fill_pixels (var cells : TArray);

{ procedura spocte Manedlbrotovu mnozinu do pole cells }

var i,j : integer;

count,num : longint; cx,cy : real;

col : TColor;

begin

nrows := Form1.height; ncols := Form1.width; num := 1000;

for i := 0 to nrows-1 do

begin

cy := ymin+(ymax-ymin)*i/(nrows-1);

for j := 0 to ncols-1 do

begin

cx := xmin+(xmax-xmin)*j/(ncols-1);

count := MandelCount (cx,cy,num);

if count=num then cells[j,i] := clBlack { point in the

Mandelbrot set }

else

cells[j,i] := clWhite;

end;

end

end; { Fill_pixels }

KPG 23

KPG 24

10 000 iterations 1000 iterations

KPG 25

� z=z2+c – the best known M. set, but other

equations also possible – other M. sets

� To get M.set, c musít be a variable and z start in

(0,0i)

� Mandelbrot set – various c values in the plane

are drawn,

Juliova set – various starting z values are drawn

while c is constant.

� Use of J. and M. sets: studies of phase

transformations, dynamic systems + theory of

chaos, biology of evolution

KPG 26

KPG 27

� Modification: authomatic fractals generation – to

produce nice pictures (J.C.Sprott, C.A.Pickover,

1995)

� Take simple equations with randomly chosen

coefficients

� Solve them on a computer

� Visualize only those which have some “artistic quality"

� General 2D quadratic iterated map:

xnew = a + bx+ cx2 + dxy + ey + fy2

ynew = g + hx + ix2 + jxy + ky + ly2

where a-l are randomly chosen, kept constant

for computation of one fractal

KPG 28

� Visualization: either to draw (x,y) or solve for
various starting values and compute number od
iterations needed to leave some area, the color
is set according to the number of iterations

� Also possible for Julia sets

� Coefficients: -1.2 až 1.2, inc 0.1the the
equations are iterated with the initial condition
x=y=0, if within 100 up to 1000 iteration the
computation escapes from the circle centred in
the origin with r=1000, then we save parameters
and compute the so-called Escape fractal for
some area

� Time to escape the area can be represented by
a height, like a terrain

KPG 29

� Visually interesting fractals: those escaping

slowly (100-1000 iterations)

KPG 30

� ~ 1 interesting case of 300

KPG 31

