
IFS and Chaos Game

I.Kolingerová

1. IFS

2. Modification: Chaos Game

3. Possible Modifications

References

� M.F.Barnsley: Fractals Everywhere, Springer-Verlag, New
York, 1988

� H.-O.Peitgen, D.Saupe [Eds]: The Science of Fractal
Images, Springer-Verlag, New York, 1988

� H.-O.Peitgen, H. Jurgens, D. Saupe: Fractals for the
Classroom, Springer-Verlag, New York, 1988

� R.L. Bowman: Fractal Metamorphosis: A Brief Student
Tutorial, Computers & Graphics, Vol.19, No.1, pp.157-
164, 1995

� H.J.Jeffrey: Chaos Game Visualization of Sequences,
Computers&Graphics, Vol.16, No.1, pp.25-33, 1992

1. Iterated Function System (IFS)

� M.F.Barnsley, Fractals Everywhere, Springer-Verlag, New
York, 1988

� We need the term of affine transformation:

Rfedcba
dc

ba

f

e

y

x

dc

ba

y

x

y

x
w

∈≠

+

=

,,,,,,0

'

'
:

=> An inversion transformation exists

� IFS=[{w1,w2,...,wn},{p1,p2,...,pn}], ∑pi=1

� wi – a set of affine transformations (“contraction
mapping")

� pi – their probabilities

� The transformations have to be average contractive, i.e.,
they have to contract a point-to-point distances “in
average"

� All so transformed points are gradually “drawn" into the
area of one set – the so-called IFS attractor

� Coefficients a,b,c,d – rotation, shear, scale, e,f -
translation

� One iteration – a new point from an old one; on the
beginning, several points are not drawn, then the points
converge to the attractor

� Ex. The Sierpinski triangle – 3 functions

� Higher dimensions – equations also for further
coordinates

� Colors or non-linear transformations can be included

w a b c d e f p

1 0.5 0 0 0.5 0 0 1/3

2 0.5 0 0 0.5 0.5 0 1/3

3 0.5 0 0 0.5 0.5 0.5 1/3

2 algorithms to compute fractals from IFS

a) Deterministic

� Fill a 2D array T by ones in the first and last rows and
columns, otherwise by zeroes

� Then apply wi functions on T, store in a different array S

for i :=1 to 100 do for j :=1 to 100 do

if T[i,j]=1 then

begin

S[a[1]*i+b[1]*j+e[1],c[1]*i+d[1]*j+f[1]]=1;

S[a[2] ...], S[a[3]...] etc. // apply all functions

end

� Then flip T, S, reset the output array, draw cells with
T[i,j]=1

� It is possible to start with other (unempty) array of
values, the same result

� Check indices not to over/underflow the array
boundaries

b) Random iteration

x:=0;y:=0; niter:= 1000;

for i:=1 to niter do

begin

k := Random(3)+1;

// choose one number from {1,2,…,n}

// with equal probability

newx :=a[k]*x+b[k]*y+e[k];

newy :=c[k]*x+d[k]*y+f[k];

x := newx; y := newy;

if i>10 then plot (x,y)

end

� The starting point would be nice to lie in the attractor
but we do not know the attractor in advance => any
starting point, e.g., the origin, is OK

� The condition of contraction ensures that after several
iterations all the points lie in the attractor

� Ex.: A square

w a b c d e f p

1 0.5 0 0 0.5 1 1 1/4

2 0.5 0 0 0.5 50 1 1/4

3 0.5 0 0 0.5 1 50 1/4

4 0.5 0 0 0.5 50 50 1/4

� Ex.: The fern

w a b c d e f p

1 0 0 0 0.16 0 0 0.01

2 0.85 0.04 -0.04 0.85 0 1.6 0.85

3 0.2 -0.26 0.23 0.22 0 1.6 0.07

4 -0.15 0.28 0.26 0.24 0 0.44 0.07

� Ex.: A fractal tree

w a b c d e f p

1 0 0 0 0.5 0 0 0.05

2 0.42 -0.42 0.42 0.42 0 0.2 0.4

3 0.42 0.42 -0.42 0.42 0 0.2 0.4

4 0.1 0 0 0.1 0 0.2 0.15

???

� Ex.: The Cantor discontinuum

w a b c d e f p

1 0.33 0 0 0 0 0 0.5

2 0.33 0 0 0 0.67 0 0.5

Where did the affinity disappear ???? ;-)

� Further examples

© Frolík, Havránek, Kučera,
http://www.geocities.com/capecanaveral/lab/
1837/index_a.html

IFS – a big role in the fractal compression

� IFS can serve as an image (fractal) representation, it is
enough to know the transformation matrix (6 real
numbers) and the probability vector

� An image is represented by n functions =>

7n real numbers – very efficient compression

� Independent of resolution

� Decompression – the image can be done

of any size

� Fundamental problem: to find transformations

� How to find the transformations?

– Subdivide the image into the same or different areas,
an adaptive subdivision using a quadtree, or
subdivision into triangles

– Goal: maximal self-similarity

– Next step: apply transformations and compare
similarity

– Time-demanding, equality improbable, usually only
some similarity => always a lossy compression

– Found transformations = compressed image
representation

2. Modification: Chaos Game

� The simplest is to try in hand

1. Draw 3 triangle vertices and number them (1,2 3,4
5,6)

2. Pick the starting point anywhere

3. Toss a dice

4. Place a mark in the middle of the path between the last
point and the vertex whose number was provided by
the dice

5. Repeat since 3

� The attractor - the Sierpinski triangle

� 5, 6, 7 vertices – an n-gon with patterns

� 8 and more – a filled n-gon without the centre

� 4 – a regularly filled square

� Chaos Game is in fact an IFS

� If the probability is irregular, the same attractor but a
different shading (the same holds for a general IFS)

� If, e.g., the square is irregularly filled although the
probabilities are the same => a bad random number
generator

� Use: e.g., the square can represent a 1D sequence in
a 2d form, keeping the structure of the sequence, if
any exists

� A structure => non-randomness

� Ex.: DNA sequence – formally a string of characters
a,c,g,t (or u) => a square with adequately marked
corners

� If the alphabet >= 4, rather n equal non-overlapping
squares than n-gon (n-gon is not regularly filled)

� Non-uniformity in the sequence leads to a non-
uniformity in the image

� Ex.:DNA, 24 classes of equivalence of aminoacid triads

� Ex.: a similarity of writing characteristics of different
writings by one author

3. Possible modifications

a) R.A.Bowman, 1995

Slightly different IFS equations:

X = SC*(XP-XF(I))+XF(I)

Y = SC*(YP-YF(I))+YF(I)

where I – a random index of one of given vertices

(XP,YP) – last drawn point

SC=1/B, where B is a strength of attraction

in each vertex, B>1

It iterates 100 000 times

� Ex.: A snowflake modification – 6 outer vertices, 5
inner, a missing vertex spoils the symmetry

� B is changed from 2 to 6

B=2 B=3

B=5B=4

B=6

� Ex.: 5 vertices without changes while B is changed

B=2 B=2.1

B=3B=2.4

B 1.7, 2,
2.1, 2.4

a) Original situation
b) The centre of weight added
c) Another point in the centre of the right edge added
d) Another point

in the centre
of the bottom edge
added

4th vertex moved
to the triangle

Free art – "Forest Lake" – winter and summer

� Rotations can be included

X=SC*

(COS(TH)*(XP-XF(I))-SIN(TH)*(YP-YF(I)))+XF(I)

Y=SC*

(SIN(TH)*(XP-XP(I))+COS(TH)*(YP-YF(I))+YF(I)

� Another possible modification: various Bs for each
vertex (instead of SC then SC(I))

b)R. L. Dewaney, 1995

A change of the distance in which we go to a vertex:

c) I.Kolingerová, P. Lobaz

Constrained fractals: iterations include some constraining
area

Compute xi+1,yi+1

if (xi+1,yi+1) outside a constraining area then

begin

xi := xi+1; yi := yi+1;

plot (xi, yi)

end

- If we enter the constraining area, we leave the old point

- A fractal can be used as
a constrained area

- Up to 10 vertices,
then not distinct enough

� Points can be colored according to the number of hits

