IFS and Chaos Game

I.Kolingerova

1. IFS
2. Modification: Chaos Game
3. Possible Modifications

References

M.F.Barnsley: Fractals Everywhere, Springer-Verlag, New
York, 1988

H.-O.Peitgen, D.Saupe [Eds]: The Science of Fractal
Images, Springer-Verlag, New York, 1988

H.-O.Peitgen, H. Jurgens, D. Saupe: Fractals for the
Classroom, Springer-Verlag, New York, 1988

R.L. Bowman: Fractal Metamorphosis: A Brief Student
Tutorial, Computers & Graphics, Vol.19, No.1, pp.157-
164, 1995

H.J.Jeffrey: Chaos Game Visualization of Sequences,
Computers&Graphics, Vol.16, No.1, pp.25-33, 1992

1. Iterated Function System (IFS)

m M.F.Barnsley, Fractals Everywhere, Springer-Verlag, New
York, 1988

m We need the term of affine transformation:

b
p #0,a,b,c,d,e, f € R

=> An inversion transformation exists

IFS=[{wl,w2,...,.wn}{pl,p2,...,pn}], >2pi=1

wi — a set of affine transformations (“contraction
mapping")

pi — their probabilities

The transformations have to be average contractive, i.e.,

they have to contract a point-to-point distances “in
average"

All so transformed points are gradually “drawn" into the
area of one set — the so-called IFS attractor

Coefficients a,b,c,d — rotation, shear, scale, e,f -
translation

One iteration — a new point from an old one; on the
beginning, several points are not drawn, then the points
converge to the attractor

Ex. The Sierpinski triangle — 3 functions

d

W
1 |05 é
: 2
3

0.5 5 |0. 4

, vvv ,
0.5 _ _ _ £ L5 L o

Higher dimensions — equations also for further
coordinates

Colors or non-linear transformations can be included

2 algorithms to compute fractals from IFS
a) Deterministic

m Fill a 2D array T by ones in the first and last rows and
columns, otherwise by zeroes

m Then apply wi functions on T, store in a different array S
fori:=1to 100 do forj :=1 to 100 do

if T[i,j]=1 then
begin
S[a[1]*i+b[1]*j+e[1],c[1]*i+d[1]*j+f[1]]=1;
S[a[2] ...], S[a[3]...] etc. // apply all functions
end

m Thenflip T, S, reset the output array, draw cells with
T[i,j]=1

m [t is possible to start with other (unempty) array of
values, the same result

m Check indices not to over/underflow the array
boundaries

b) Random iteration
X:=0;y:=0; niter:= 1000;
for i:=1 to niter do
begin
kK := Random(3)+1;
// choose one number from {1,2,...,n}

// with equal probabili

newx :=a[k]*x+b[k]

newy :=c[k]*x+d[k]

X 1= NEWX; Y := NEWY;

if i>10 then plot (X,y)
end

m The starting point would be nice to lie in the attractor
but we do not know the attractor in advance => any
starting point, e.g., the origin, is OK

m The condition of contraction ensures that after several
iterations all the points lie in the attractor

m EXx.: Asquare

m Ex.: The fern

m Ex.: A fractal tree

m Ex.: The Cantor discontinuum

a € P
0.33 0 0.5
0.33 0.67 0.5

Where did the affinity disappear ???? ;-)

m Further examples

Wwww.geocities.com/ca
1837/index a.html

IFS — a big role in the fractal compression

IFS can serve as an image (fractal) representation, it is
enough to know the transformation matrix (6 real
numbers) and the probability vector

m An image is represented by n functions =>
/n real numbers — very efficient compression

m Independent of resolution
m Decompression — the image can be done
of any size
m Fundamental problem: to find transformations

m How to find the transformations?

— Subdivide the image into the same or different areas,
an adaptive subdivision using a quadtree, or
subdivision into triangles

— Goal: maximal self-similarity
— Next step: apply transformations and compare

similarity
— Time-demanding, equality improbable, usually only
some similarity => always a lossy compression

— Found transformations = compressed image
representation

2. Modification: Chaos Game

The simplest is to try in hand

. Draw 3 triangle vertices and number them (1,2 3,4
5,6)

. Pick the starting point anywhere

. Toss a dice

. Place a mark in the middle of the path between the last
point and the vertex whose number was provided by
the dice

. Repeat since 3

The attractor - the Sierpinski triangle

5, 6, 7 vertices — an n-gon with patterns

8 and more — a filled n-gon without the centre
4 — a reqularly filled square

Chaos Game is in fact an IFS

If the probability is irregular, the same attractor but a
different shading (the same holds for a general IFS)

If, e.q., the square is irregularly filled although the
probabilities are the same => a bad random number
generator

Use: e.qg., the square can represent a 1D sequence in
a 2d form, keeping the structure of the sequence, if

any exists
A structure => non-randomness

m Ex.: DNA sequence — formally a string of characters
a,c,g,t (or u) => a square with adequately marked
corners

it

£ ..."
Y R TN

I
LR
t

CGR of human beta globin region on chromosome 11
(HUMHBB) (73,357 bases).

If the alphabet >= 4, rather n equal non-overlapping
squares than n-gon (n-gon is not regularly filled)

Non-uniformity in the sequence leads to a non-
uniformity in the image

Ex.:DNA, 24 classes of equivalence of aminoacid triads

Ex.: a similarity of writing characteristics of different
writings by one author

3. Possible modifications

a) R.A.Bowman, 1995
Slightly different IFS equations:

X = SC*(XP-XF(I))+XF(I)
Y = SC*(YP-YF(I))+YF(I)

where I — a random index of one of given vertices
(XP,YP) — last drawn point
SC=1/B, where B is a strength of attraction
in each vertex, B>1
It iterates 100 000 times

5

ices,

6 outer verti

tex spoils the symmetry

a missing ver
B is changed from 2 to 6

4

_
-
O
S
O
O
=
S
o
S
Q
2
e
U
=
o
C
0
<
>
1

InNer

R ¥
[

waPhagapn

S
A AL AT RN

XesSornition
% AN XK

. INX LR Sa %l L

aTatadad
xR

Coordinates

(x.y)

WO ~JAWL W=

0.0
1.0
0.5
-0.5
-1.0
-0.5
0.5
0.5
—0.25
-0.5
—-0.25
0.25

0.0
0.0
0.866025447845459
0.866025447845459
0.0
—0.866025447845459
—~(0.866025447845459
0.0
0.4330127239227295
0.0
—0.4330127239227295
—0.4330127239227295

m Ex.: 5 vertices without changes while B is changed

a) Original situation
b) The centre of weight added
c) Another point in the centre of the right edge added
d) Another point) : i
in the centre
of the bottom edge
added

O
D
>
o
S
>
O
)
| -
o,
>

Q
(@)
c
©

-
)
)

e

)
@)

=

4th

Free art — "Forest Lake" — winter and summer

m Rotations can be included
X=SC*
(COS(TH)*(XP-XF(I))-SIN(TH)*(YP-YF(I)))+XF(I)
Y=SC*
(SIN(TH)*(XP-XP(I))+COS(TH)*(YP-YF(I))+YF(I)

m Another possible modification: various Bs for each
vertex (instead of SC then SC(I))

b)R. L. Dewaney, 1995
A change of the distance in which we go to a vertex:

C) I.Kolingerova, P. Lobaz

Constrained fractals: iterations include some constraining
area

Compute Xi,1,Yi+1
if (X;;1,Yi+1) OUtside a constraining area then
begin
Xi += Xix1r Yi = Yis1r
plot (x; yi)
end

- If we enter the constraining area, we leave the old point

Figure 3: Fractal with a constraint : asquare Figure 4: Tractal with a constraint
+ a circle a hexagon + a circle

Figure 5: Fractal with a constraint : a pen- Figure 6: Fractal with a constraint : a square
tagon + a circle + (2 + ¥ < 2axy,xy > 0

- A fractal can be used as
a constrained area

- Up to 10 vertices, S
then not distinct enough o i o+ Fsans b s

Fractal with a constraint
a hexagon + (x2 + y2)? < ay(3x® — y2) + an outside of a circle

Figure 10: Fractal with a constraint :

Figure 9: Fractal with a constraint : a pen-
a quadruple + a filled Julia set

tagon + a filled Julia set

Figure 11: Fractal with a constraint :
a quadruple + a filled Julia set

m Points can be colored according to the number of hits

