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1. Golden ratio

Golden rectangle: sides Φ, 
1, not too thick, not too
thin

We can find in the Greek
Parthenon, Mona Lisa, 
Dalí, Escher ...

When we cut out the
square, we have again
a golden rectangle
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In fact an infinite
picture regression ...

1/ Φ – the rate of edge lengths
of a golden rectangle, see fig.

Another Φ computation: the rate of two following Fibonacci numbers
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Pentagram is a rich source of golden
ratios

Diagonals cut in golden ratios
- the rate of a diagonal and an edge is golden
- diagonals form 5-star, 

inside again a regular pentagram

Logarithmic spiral

- Follows golden ratios

Regular dodecahedron

- 3 mutually rectangular „golden“ rectangles
can be inscribed



Golden ratio in widelife

� Logarithmic spiral – the growth of various inorganic
parts (beaks, horns, teeth, tusks, conches …)
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Africký kudu
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Central composition

� Static, calm, sometimes
even boring, the central
object might have too
much space around

Golden ratio

� Uses the direction of
human view of an image

� OK to divide in about 1/3

Golden ratio for composition of photos or pictures

1

4
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The direction of view



Gold ratio in art

� Most often used in reneissance

� Picture format – „golden“ rectangle in both orientations

� Placement into the golden ratio

8

� Construction of human body model

by golden ratio (rate of lengths

above and below the waist,  

these parts can be again subdivided

in golden ratio)
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2. Tiling

� Regular patterns pleasant for human vision

� But: too regular - boring

� Artists utilize a tension between regularity and 
surprise

� Patterns: a small set of figures repeated in the 
whole plane – a tiling, a tessellation

� The simplest: 
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� Variations:

� Usage: networks, VLSI design for memories 
(6gons – processors)
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� Semiregular patterns – consisting of more than

1 type of polygon

� In each vertex

the same polygon types

in the same order
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A simple tessellation:

� for i :=0 to NumRows-1 do

� begin

� if Odd(i) then Offset := shift 

� else Offset := 0;

� for j := 0 to NumCols-1 do   

� begin

� Triangle (j*ColWidth + Offset, 

� i*RowWidth,1)

� end 

� end



13

More general:

� Deformation of a square
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� Brick deformation

� Deformations 

on the opposite sides 

must correspond
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� Tiling
� Periodic -

incidence of 

corresponding vertices, 

edge incidence, 

connection of face decorations,

created by a translation

� Aperiodic

Triangles in periodic
and aperiodic tiling
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� An example of an aperiodic tiling (1 type of tile)
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� The tile for the previous example – fits together
either after a rotation or by a vertical reflection
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Aperiodic tiling

� Symmetry is safe and boring

� More types of tiles, 

together aperiodic patterns

� Seeked dozens of years, 

the first one: 26,000

of tile types

� Now: several (according 

to the type of tiling, 

at least 2)

Robinson tiling
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� Use: 3x3 and 7x7

“nearly periodic"
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� Or with decorations

Decorated set 7x7
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� Other possibilities

Decorated set 7x7
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� With intentionally corrupted pattern – e.g., 
during connection of tiled polygons

A corrupted row and column
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� In a decorated version

Decorated set with a corruption
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� Robinson cannot be set only by translations –
aperiodic (look not only at patterns but also at 
the shape)

block 3x3 block 7x7 (rotations needed)

block 15x15 (rotations needed)
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� Ammann tiling
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� Use: 3x3 and 7x7

“nearly periodic"
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� Similar results to Robinson

� Use of Rob. and Ammann besides esthetic 
images: non-uniform samples for stochastic
sampling in, e.g., distributed ray tracing

Decorated 7x7

etc.
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� Penrose tiles

� The lengths of neighbouring sides must be the 
same and arcs of neighbouring sides must 
correspond

Φ – golden ratio, 
θ – angle 36̊

Face decoration, arcs must
correspond in the tiling

2 types of tiles, "kite" (the bigger) 
and "dart" (the smaller)
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� Symmetrical – if done as real objects, it is 
enough to decorate one side

� 1.6 times more of darts than kites is needed

� It is easy to deadlock

� To produce the tiling manually is relatively 
difficult (about 100 pieces in hand – a good 
work)
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� Dictionary of possible sets
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� An alternative: overlap allowed

� Similar structures

(so called quasicrystals)

in materials

How to do it
(overlapped areas must be 
the same colour)

Overlapping of these tiles
produces Penrose tiling
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� Penrose kosočtverce

� Arcs must correspond

Φ – golden ratio, 
θ – angle 36̊
All sides of the same length
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� Dictionary of possible sets
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Implementation
� For example to divide into triangles, triangles are 

recursively replaced by new ones, the result is either 
further subdivided or joined to darts and kites

Further applications:
We want a growing town – not 100% planned in advance

=> Tiles with the decorations of building grounds, used to 
tile the plane, on them buildings are erected

=> A structure but not boring

Similarly matrices for geometry, materials, tekoucí lávu  
etc. – a structure but not a repetition
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How to decorate

� Patterns either symmetrical according to the 
drawn axis or closed “inside"
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• Pink – incorrect, 
• Green – correct
• Thick line –

the edge of connection
• The lower left corner 

of the matrix the same 
as the upper right

• Grey squares –
edges of different length, 
do not fit
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Examples 

of decorations
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Examples

of decorations

With some asymmetry
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3. Celtic knotwork

� From about the 6th century, a decoration of 
religious texts at the Irish monks

� G. Bain in 1951 – proposed a simple 
construction algorithm on the basis of study of 
old celtic manuscripts

� Algorithm: based on a grid – from a 
fundamental regular pattern

� Classical celtic knotwork usually one thread/strip
but more can me done
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Basic steps

� Ex.: a pattern 2x3
a) Primary grid 2x3 squqres
b) A new point to the centre

of each square -
a secundary grid

c) Tertiary grid
d) Basic pattern added
e) Outer connection added
f) The same with 

an enlargement of mutual 
overlap – the first step is
chosen, then it is given

g) A strip around the skeleton 
added

h) Result incl. the original grid
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� In this way any resolution

� If vertical and horizontal sizes have no common 
divisor, then 1 strip, else several strips

� Enrichment: breaklines – they redirect the 
intersection

� Breaklines won’t intersect, they can join 
horizontal or vertical neighbours in the same 
primary or secondary grid (not primary with 
secondary, not distant neighbours ...)
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a) Breakline in primary grid
b) Resulting skeleton
c) Strip
d) Result

e) 4 breaklines
f) Skeleton
g) Strip
h) Result

Example of a strip construction:
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More advanced 
example

� The breakline may change not only the strip 
type but also the number of strips

� Primary grid x *y cells can have 1 to xy strips
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Implementation

� Primary grid xy => a data structure 2x2y for 
tertiary grid

� Information for one cell:
� Break identification – whether the upper left corner of 

the cell has a break, has a line to the right, to the 
bottom or both

� a Visited flag

� No of the strip

� Edge code – where the line 

touches the cell - LOR of codes,

e.g., a line from lower left corner

to the centre on the right – code 18
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Skeleton drawing 1

� Go through all tertiary cells, set edge codes

� Without break: the skeleton in the cell in the 
upper left corner goes from lower left to upper 
right corner => check of the breaklines for this 
cell and corresponding modification of the 
diagonal 

� max. 2 breaks per cell

(<= tertiary cell)

� After the cell is coded,

move right, here the opposite direction of the 
diagonal, etc.



46

Skeleton drawing 2
� After all the cells have been evaluated, we set the 

number of strip in the first cell and each visited cell gets 
Visited <= true (only 1 stip in each cell)

� Continue according to the skeleton into further cells

� When the strip is being closed, look for another unvisited 
cell, it gets one higher number of strip, etc.

� Drawing: inspect cells in the order of strip, alternate the 
strip drawing ‘above’ and ‘below’

a) Even rows
b) Odd rows
c) Together
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Strip drawing

� Instead of the skeleton, draw a strip of the 
width w

� 6 elements – short, long arc and 4 below, 
parameters are the strip width and orientation
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� Results can be further improved in Photoshop
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Modification 1

� Instead of intersection, connect the opposite 
sides of the cell

a) 1 strip
b) 2 strips

=> By intersection removal,
number of strips may change
by +1/-1
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Modification 2

� Add the orientation: either as a new pattern or 
to find whether the number of strips was 
preserved or not

a) 1 more strip
b) No change
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Modification 3 - snakes

� Snakes – by removal of all intersections

� The shape 

according to 

the order 

of changes

Orientation 
must be changed 
during 
the construction
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6 versions of snakes obtained from the running 
example
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Modification 4

� Can be done as a tile, see before
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Modification 5

� Instead of 4gons, a matrix of triangles, circular 
slices – still 4 sides, but curved and different 
connectivity

a) 2 strips
b) After intersection replacement
c) b) smoothed
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Examples (improved in Photoshop)
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Modification 6

� 3D version
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Strip lift into 3D

� A cubic curve s(x) for x from <0,1>, x modified
by another curve t, which using an optional 
parameter n makes various types of the lift
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Strip lift into 3D 2

A cylinder instead of a strip: Bézier curve for the 
strip axis, used in 3D Max as a path for an 
extruded spline or a lofted surface

u(x,n) for various n 

(n=0.005 blue,
n=0.6 green,
n=3.5 red
- value for the previous page)
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Modification 7

� Other than rectangular boxes: possible, but 
more difficult – usually there are not 4 sides

Tetrahedron faces


