
I.Kolingerová



� Dendrits, Corals
� Coastline
� Landscapes
� Planets
� Clouds
� Plant Ecosystems
� Fire, Smoke, Water

2 main approaches to modelling nature elements: 

� Simulation of physical processes
� Emulation of resulting appearance



� Straightforward application of Brownian 
movement

� Electrical discharge, patterns on frozen 
windows, corals…

� Dilution with a condensation core and flowing 
molecules

� The moving molecule caught by the core –
becomes also a condensation core

� New cores and new shapes due to diffusion



� In 2D, fractal structures with dimension about 
1.7 arise

� 2D: a 2D matrix at the beginning, non-zero 
elements – condensation cores

� Cycle: particles at the matrix boundaries, 
Brownian movement

� Particles after travelling to the condensation 
core connect to it, we set the matrix element as 
„occupied“

� A particle out of the screen: stop its tracing, a 
new particle



Condensation from a point, condensation from a line segment [Zar04]



� Modification: 
� To attach the molecule to the core only as late as 

after several touches (a counter of touches on the 
surface)

� To attach the molecule with some probability

� Lengthy (exponential complexity),  although 
acceleration with gradual area filling 

� Speedup: outside the minmax box a faster 
movement



� Islands nearby the coastline – independent 
objects

� Details see in the fractal lecture



� Random (mid)point relocation: in the fractal 
lecture 

� Other possibilities: 
see the planets



� Results from the Terragen program [TerG]



� Input: a sphere-shaped mesh
� One iteration: the sphere is cut by a randomly 

chosen plane into two hemispheres,  the radius 
of one is randomly increased, of the other 
decreased

a) after 1 iter., b) after 10 iter., c) after 100 iter., d) after 1000 iter. [Lin07]



� Input: a sphere-shaped mesh (2 tetras will do)
� 1 iteration: the triangle is subdivided into 4 

smaller,

the new vertex gets the height ~ the average of its 
parents + random relocation decreased according 
to the already done number of subdivions

a) after 1 iter., b) after 3 iter., c) after 5 iter., d) after 7 iter. [Lin07]



� To look more authentic, a different level of 
detail in different parts – relocation is not only 
decreased according to the number of 
subdivisions but also multiplied by the 
parents’ heights average => bigger changes in 
bigger heights

Ex.: Offset = random (-Amp,+Amp);
Offset = Offset/2↑L;
Offset = Offset + Offset*average (parents) *k;

k – height scale change



� Input:  a sphere arbitrarily defined (usually a 
mesh)

� 1 iteration is enough
� The height (x,y,z) on the sphere is changed by the 

value of 3D Perlin noise in this point
� Version 1: a multifractal – computation of Perlin

function considers the terrain height of already 
computed Perlin function

� Version 2: so-called ridge P. noise – slightly 
modified function produces longer, thinner 
islands, peninsulas, mountain ridges



a) Normal Perlin noise b) Ridge Perlin noise [Lin07]



� Basical approach: to color by height, see 
geodetic scale or Kinect sandbox

� Colours are interpolated linearly or by a spline
+ mild randomness, e.g., using Perlin noise or a 
random deviation, see particle systems



Colouring by height with various random perturbations [Lin07]



Result from TerraJ [TerJ]

Results using Perlin noise[Lin07]



� 2D clouds: perpendicular projection of a fractal surface, 
height represented by colours/grey intensities

� 3D: generalize by 1 dimension, the 4th dimension –
density

� Projection from 3D to 2D: ray tracing or animation for 
moving clouds

� Clouds usually serve as a background, thus often 
billboards and half-transparent layers are used

� The most general approach: 3D noise functions 
represented as a 3D volume



� [Dob00]
� Simple, fast, inaccurate, produces only cumuli

� Clouds – air bubbles, they thin due to the heat 
from the Earth, rise to the areas of lower pressure 
where the bubble expands, thus it is cooled and its 
humidity increases, a phase transition into water 
drops appears and so a cloud comes into being

Fig.: Wikipedia



� In each cell 3 logical variables: humidity hum,  
cloud cld, phase transition (activation) act

� Rules: formation, extinguishment, shift by 
wind

� Result: cell status – cloud or not (cld)
� Visualization: smoothing by density 

computation, 
then voxel visualization 



� Initialization: cld=0, hum and act have random values 
0 or 1

� hum=1 - vapour enough to form a cloud
� act=1 - phase transition from vapour to water should 

be done
� cld=1 - cloud will be formed 



� Basic rules:



� Add probability of extinguishing pext

� If cld=1 
Generate r , 0<=r<= 1, randomly; 
if r < pext cld := 0  endif

endif

� To enable cloud revival in the cell, change randomly 
also act and hum to 1 (prob. pact, phum)

� Rules:

where IS returns T/F of a logical expression



� Clouds are moved in the direction of wind – variables 
in cells are moved adequately, wind velocity v(zk) can 
be modified according to height, integer values

� Rules:



� Movement for animation can be controlled by 
ellipsoids - pact, phum bigger near their centres than near 
edges, pext  vice versa

� The whole ellipsoid is moved
� Position and shape of ellipsoids – random or given by 

the operator

Results from [Dob00]
256x128x20 cells, random generation of ellipsoids,

pext, = 0.1,  pact= 0.001, phum=0.1



Simulation results from [Dob00]
256x128x20 cells, ellipsoids placed in hand around the mountains,

pext, = 0.1,  pact= 0.001, phum=0.1, zero inside the mountains



� Possibility to combine with light rays

Results of simulation from [Dob00] , 
256x256x20 cells, combination with sun rays,

daily and nightly light



Results from [Pon03]



� First a terrain is modelled
� Then a plant population specified

� How to distribute the plants on the surface:
� By measurements in countryside
� Or the simulation of plants’ interactions – often cell 

automata
� Or the user sets interactively (e.g., by bitmap edit)
� Or an artificial generation on the base of some “good 

looking“ distribution function



� Simulation example: 
� Each plant grows and exists in sc. ecologic 

neighbourhood – a circle got by the projection of the 
plant on the ground 

� At first, circles placed randomly in a grid, with 
random initial starting radii from a given interval

� As the plant grows, the neighbourhood grows
� When two plants collide, the stronger wins, the 

weaker dies
� When the plant achieves its limit size, it is 

considered old and dies



� After several iterations we get visually 
authentic plants distribution

99, 134 and 164th simulation step; green – common plants, 
red – dominant, yellow – old plants [Deu98]



� More complex system:  more kinds of plants
� Each kind described by parameters – max. size, 

average growth, xerophily, average increase of 
population size in one simulation step, ability to 
survive in comparison to other plant kinds, etc.

� If the circles of different plant intersect, the stronger 
dominates, the weaker may die

Ex.: 8 kinds, blue prefer humidity
[Deu98]



� A plant – L-system or particle system
� Plants generated procedurally– memory 

savings in comparison to polygons
� To save more memory, instances are used 

(more plants derived from one) and hierarchy
(groups of plants, a plant, branches, leaves, 
blossoms…)

� Sometimes an agent model is used: agents 
enter and bring discomfort, they, e.g., try to 
remove some kind of plants at some place



Ex. Results of a simulation after 99 and 164 iterations, 
7 different plants for each kind, changed according to their
age, 16, 000 plants at a total, due to instancing only 6.7 MB
[Deu98]



Ex. Zoom on a mountain meadow – 8 kinds 
of plants, 
100,000 plants in the scene, only 151 MB 
(polygons would have about 200GB) [Deu98]



Ex. Lawn from 10 various instances of grass 
clusters, daisies concentration controlled by 
a parameter [Deu98]



Scene with a basic distribution of plant 
systems done interactively [Deu98]



� See a previous lecture



[Dob00] Dobashi Y., Kanoda K., Yamashita H., Okita T., Nishita T.: A 
Simple, Efficient Method for Realistic Animation of Clouds, 
SIGGRAPH 2000, pp.19-28

[Deu98] Deussen O., Hanrahan P., Lintermann B., Měch R.: Realistic
Modeling and Rendering of Plant Ecosystems, s.275-286, 
SIGGRAPH 1998

[Lin07] O. Linda: Generation of Planetary Models by Means of Fractal 
Algorithms, bakalářská práce, vedoucí ing.J.Sloup, ČVUT, 2007

[Pon03] M. Poneš: Modleování a renderování mraků, bakalářská 
práce, vedoucí ing.J.Sloup, ČVUT, 2007

[TerG] Terragen project home page, URL: 
http://www.planetside.co.uk/terragen/

[TerJ] TerraJ project home page, URL: http://terraj.sourceforge.net/
[Zar04] J.Žára, B. Beneš, J. Sochor, P.Felkel: Moderní počítačová 

grafika, Computer Press, Praha, 2004


