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Problem formulations: 
 

Interpolation or approximation – explicit functions 

𝑦 = 𝑓(𝑥1, … , 𝑥𝑑  ) 

scalar field case 

, resp. 𝒚 = 𝒇(𝑥1, … , 𝑥𝑑  ) 

vector field case, e.g. flow 

 

Interpolation or approximation – implicit functions – finding a curve in 𝐸2 or a surface in 𝐸3. 

𝒙 = [𝑥1, … , 𝑥𝑑]𝑇 𝐹(𝑥1, … , 𝑥𝑑  ) = 0 𝐹(𝒙) = 0 

Generally, points 𝒙𝑖 , 𝑖 = 1,…𝑁 are scattered in the domain. 

 

 

Task 

Find an analytical function 𝑓(𝒙), resp. 𝐹(𝒙), which interpolates, resp. approximate the given scattered data,  

generally for  𝑑-dimensional case. 

 

 

In the following, meshless methods for explicit functions interpolation or approximation based on Radial Basis Functions 

(RBF) will be shortly introduced. 
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Surface approximation  

Mount Saint Helens dataset 6.7 106. points 

Tornado - Vector fields (speed) approximation 

 5.5 106 points - after 1: 7 ∗ 103  compression 

with an error around 1% 

 

  



Radial Basis Functions        4 / 36 

EECSS 2022 - 8th World Congress on Electrical Engineering and Computer Systems and Science Prague, July 28-30, 2022 

Image reconstruction 

 

  
Original image with 60% missing pixels Reconstructed image 

 

Inpainting and cracks removal 

 
 

Original image Reconstructed image without inpainting 

 Interpolation and approximation of color images – RGB is not the best color system  
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Surface reconstruction from points 
 

Different problem 

 

 Given only points in the space without associated values. 

 

 
Surface reconstruction (438 000 points) [Carr et al. 2001] 

Some additional conditions, presumption must be specified in order to reconstruct a surface from a cloud of points 

 Application – reverse engineering (CAD/CAM systems etc.) 
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Interpolation and approximation of structured data 
 Explicit functions - polynomial regression, etc.   

𝑦 = 𝑓(𝒙)            𝑓(𝑥, 𝑦) = 𝑎0 + 𝑎1 log 𝑥 + 𝑎2𝑥 log 𝑥 + 𝑎3𝑥
2 + 𝑎4𝑥

3 log 𝑥 + 𝑎5𝑥𝑦 + 𝑎6𝑥𝑦2 + ⋯ 

 Parametric curves and surfaces 

𝑥 = 𝑓𝑥(𝑡),   𝑦 = 𝑓𝑦(𝑡),   𝑧 = 𝑓𝑧(𝑡) 

  𝑥(𝑢, 𝑣) = 𝑓𝑥(𝑢, 𝑣),   𝑦(𝑢, 𝑣) = 𝑓𝑦(𝑢, 𝑣),   𝑧 = 𝑓𝑧(𝑢, 𝑣) 
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Examples 

 

 

Bezier parametric curve Tea-Pot 

 

Advantages: 

 Simple computation, resp. evaluation 
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Unstructured data  
 

 
 

Clustered data example Scattered data example 

Generally, with each point a scalar data are associated, e.g. temperature, pressure, or in the case of vector data – speed, 

acceleration or rotation etc. 
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Scattered data  
Scalar data interpolation or approximation 

  
Scalar values at different scattered positions Approximation of the given data 

This is the case of 𝑧 = 𝑓(𝑥, 𝑦), i.e. two dimensional data domain case with associated scalar value.   
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Possible solution and problems: 

 

 Tessellation of the domain to 2D or 3D meshes, e.g. using Delaunay triangulation/tetraheronization. 

Problem – computational complexity  

𝑂(𝑁⌊(𝑑2+1) 2⁄ ⌋) 

which is for high 𝑁 prohibitive (usual size of 104 − 108 elements processed) 

 

 The Delaunay triangulation is not numerically stable if points are closed do regular grid and also some 

computational methods prefer different kinds of tessellation as it produces long thin triangles/tetrahedrons. 

 

 Smooth interpolation of the associated values, i.e. height, temperature, speed etc., over triangular or 

tetrahedral mesh is not easy 

 

 Approximation, i.e. reduction is very difficult as it must take also associated values, e.g. of the physical 

phenomena, not only as simplification of the definition domain 
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Radial Basis Functions 
 

The Radial Basis Function (RBF) interpolation is based on computing of the distance of two points in the 𝑑-dimensional 

space and it is defined by a function: 

𝑓(𝒙) = ∑𝜆𝑗 𝜑(‖𝒙 − 𝒙𝑗‖)

𝑀

𝑗=1

= ∑𝜆𝑗 𝜑(𝑟𝑗)

𝑀

𝑗=1

 

where: 𝑟𝑗 = ‖𝒙 − 𝒙𝑗‖2
≝ √(𝑥 − 𝑥𝑗)

2
+ (𝑦 − 𝑦𝑗)

2
 

 

It means that for the given data set  {〈𝒙𝑖, ℎ𝑖〉}1
𝑀, where ℎ𝑖 are associated values to be interpolated and 𝒙𝑖 are domain 

coordinates, we obtain a linear system of equations: 

ℎ𝑖 = 𝑓(𝒙𝑖) = ∑𝜆𝑗 𝜑(‖𝒙𝑖 − 𝒙𝑗‖)

𝑀

𝑗=1

 + 𝑃𝑘(𝒙𝑖) 𝑖 = 1,… ,𝑀 𝒙 = [𝑥, 𝑦, 1]𝑇 

Due to some stability issues, usually a polynomial 𝑃𝑘(𝒙) of a degree k is added.  

 

For a practical use, the polynomial of the 1st degree is used, i.e. linear polynomial 𝑃1(𝒙) = 𝒂𝑇𝒙 in many applications.  
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Therefore, the interpolation function has the form:  

 

𝑓(𝒙𝑖) = ∑𝜆𝑗 𝜑(‖𝒙𝑖 − 𝒙𝑗‖)

𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊 = ∑𝜆𝑗 𝜑𝑖,𝑗

𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊  ℎ𝑖 = 𝑓(𝒙𝑖) 𝑖 = 1,… ,𝑀 

 

and additional conditions are to be applied: 

 

∑𝜆𝑖𝒙𝑖 = 𝟎

𝑀

𝑗=1

 i.e. ∑𝜆𝑖𝑥𝑖 = 0

𝑀

𝑗=1

 ∑𝜆𝑖𝑦𝑖 = 0

𝑀

𝑗=1

 ∑𝜆𝑖 = 0

𝑀

𝑗=1

 

 

It can be seen that for 𝑑-dimensional case a system of (𝑀 + 𝑑 + 1) LSE has to be solved, where M is a number of points 

in the dataset and 𝑑 is the dimensionality of data.   
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For 𝑑 = 2 vectors 𝒙𝑖 and 𝒂 are in the form 𝒙𝑖 = [𝑥𝑖 , 𝑦𝑖 , 1]𝑇 and 𝒂 = [𝑎𝑥, 𝑎𝑦, 𝑎0]
𝑇

, we can write : 

 

[
 
 
 
 
 
𝜑1,1 . . 𝜑1,𝑀 𝑥1 𝑦1 1

: ⋱ : : : :
𝜑𝑀,1 . . 𝜑𝑀,𝑀 𝑥𝑀 𝑦𝑀 1

𝑥1 . . 𝑥𝑀 0 0 0
𝑦1 . . 𝑦𝑀 0 0 0
1 . . 1 0 0 0]

 
 
 
 
 

[
 
 
 
 
 
𝜆1

:
𝜆𝑀

𝑎𝑥

𝑎𝑦

𝑎0 ]
 
 
 
 
 

=

[
 
 
 
 
 
ℎ1

:
ℎ𝑀

0
0
0 ]

 
 
 
 
 

 

 

 

This can be rewritten in the matrix form as: 

 

[ 
𝑩 𝑷
𝑷𝑇 𝟎

] [
𝝀
𝒂
] = [

𝒇
𝟎
] 𝑨𝒙 = 𝒃 𝒂𝑇 𝒙𝒊 = 𝑎𝑥  𝑥𝑖 + 𝑎𝑦 𝑦𝑖 + 𝑎0 

 

For the two-dimensional case and 𝑀 points given a system of (𝑀 + 3) linear equations has to be solved.  

 

Then the extension to 𝑑-dimensional case is straightforward. 
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RBF function selection 
 

The RBF interpolation was originally introduced by multiquadric method in 1971, which was called Radial Basis Function 

(RBF) method. Since then many different RFB interpolation schemes have been developed with some specific 

properties, e.g. uses 𝜑(𝑟) = 𝑟2𝑙𝑔 𝑟, which is called Thin-Plate Spline (TPS), a function 𝜑(𝑟) = 𝑒−(𝜖𝑟)2, was proposed. 

 

 

 
 

 If “global” functions, e.g. TPS (𝜑(𝑟) = 𝑟2𝑙𝑔 𝑟, are used, then the matrix 𝑩 is “full”,  

 If “local” functions (Compactly Supported RBF – CSRBF) are used, the matrix 𝑩 can be sparse. 

 

  



Radial Basis Functions        15 / 36 

EECSS 2022 - 8th World Congress on Electrical Engineering and Computer Systems and Science Prague, July 28-30, 2022 

The Chyba! Nenalezen zdroj odkazů.Compactly Supported Radial Basis Functions ( CSRBFs) were introduced as: 

 

𝜑(𝑟) = {
(1 − 𝑟)𝑞 𝑃(𝑟),     0 ≤ 𝑟 ≤ 1

 0,                   𝑟 > 1
  , 

where: 𝑃(𝑟) is a polynomial function and 𝑞 is a parameter.  

 

 In the case of global functions, the linear system of equations is becoming ill conditioned and problems with 

convergence can be expected.  

 

On the other hand  

 

 If the CSRBFs are taken, the matrix 𝑨 is becoming relatively sparse, i.e. computation of the LSE will be faster, but 

we need to carefully select the scaling factor 𝛼 (which can be “tricky”) and the final function might tend to be 

“blobby” shaped. 

 

However, the matrix 𝑨 is still very large which causes numerical and computational robustness problems. 
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Examples of Compactly Supported Radial Basis Functions 

Typical examples of “local” functions - CSRBF 

ID Function ID Function 

1 (1 − 𝑟)+ 6 (1 − 𝑟)+
6 (35𝑟2 + 18𝑟 + 3) 

2 (1 − 𝑟)+
3 (3𝑟 + 1) 7 (1 − 𝑟)+

8 (32𝑟3 + 25𝑟2 + 8𝑟 + 3) 

3 (1 − 𝑟)+
5 (8𝑟2 + 5𝑟 + 1) 8 (1 − 𝑟)+

3  

4 (1 − 𝑟)+
2  9 (1 − 𝑟)+

3 (5𝑟 + 1) 

5 (1 − 𝑟)+
4 (4𝑟 + 1) 10 (1 − 𝑟)+

7 (16𝑟2 + 7𝑟 + 1) 

 

 

 

The compactly supported RBFs are defined for the interval 

 𝑟 ∈ 〈0 ,  1 〉, but for the practical use a scaling is used, i.e. the value 

𝑟 is multiplied by a scaling factor 𝛼, where 𝛼 > 0.  

 
Geometrical properties of CSRBF 
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Meshless techniques are primarily based on approaches mentioned above. They are used in engineering problem 

solutions, nowadays, e.g. partial differential equations, surface modeling, surface reconstruction of scanned objects, 

reconstruction of corrupted images, etc. More generally, meshless object representation is based on specific 

interpolation or approximation techniques. 

 

The resulting matrix 𝑨 tends to be large and ill-conditioned. Therefore, some specific numerical methods have to be 

taken to increase robustness of a solution, like preconditioning methods or parallel computing on GPU, etc. In addition, 

subdivision or hierarchical methods are used to decrease sizes of computations and increase robustness.  

  



Radial Basis Functions        18 / 36 

EECSS 2022 - 8th World Congress on Electrical Engineering and Computer Systems and Science Prague, July 28-30, 2022 

 

Computational complexity of meshless methods actually covers complexity of tessellation itself and interpolation and 

approximation methods. This results into problems with large data set processing, i.e. numerical stability and memory 

requirements, etc.  

 

If global RBF functions are considered, the RBF matrix is full and in the case of 106 of points, the RBF matrix is of the size 

approx.106 × 106 ! On the other hand, if CSRBF used, the relevant matrix is sparse and computational and memory 

requirements can be decreased significantly using special data structures.  

 

On the other hand, in the case of physical phenomena visualization, data received by simulation, computation or 

obtained by experiments usually are oversampled in some areas and also numerically more or less precise. It seems 

possible to apply approximation methods to decrease computational complexity significantly by adding virtual points in 

the place of interest and use analogy of the least square method modified for the RBF case.  

 

Due to CSRBF representation the space of data can be subdivided, interpolation, resp. approximation can be split to 

independent parts and computed more or less independently. This process can be also parallelized and if appropriate 

computational architecture is used, e.g. GPU etc. It will lead to faster computation as well. This approach was 

experimentally verified for scalar and vector data used in visualization of physical phenomena.  

  



Radial Basis Functions        19 / 36 

EECSS 2022 - 8th World Congress on Electrical Engineering and Computer Systems and Science Prague, July 28-30, 2022 

 

 

A possible solution is application of the space subdivision using cells 

with some overlap with blending on the cell border 

 

Advantages: 

 Significantly decreases the size of the matrix 𝑨 

 Simplifies the function computation itself as it has significantly 

less elements in the sum 

𝑓(𝒙) = ∑𝜆𝑗 𝜑(‖𝒙 − 𝒙𝑗‖)

𝑀

𝑗=1

 

 Speed up is significant; 

speed up is in LOG scale !! 

(over 6 106 points) 
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Interpolation x approximation? 
 

The question: 

 

How the data can be reduced significantly but still having a good precision? 

 

This leads to a question, how the radial basis functions can be used for approximation 
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Meshless approximation 
 

The RBF interpolation relies on solution of a LSE 𝑨𝒙 = 𝒃 of the 

size M × M in principle, where M is a number of the data to be 

processed. If “global” functions are used, the matrix 𝑨 is full, 

while if “local” functions are used (CSRBF), the matrix 𝑨 is sparse. 

 

 

However, in visualization applications, it is necessary to compute 

the final function 𝑓(𝒙) many many times and even for already 

computed 𝜆𝑖 values, the computation of 𝑓(𝒙) is too expensive. 

Therefore, it is reasonable to significantly “reduce” the 

dimensionality of the relevant LSE 𝑨𝒙 = 𝒃. Of course, we are 

now changing the interpolation property of the RBF to RBF 

approximation, i.e. the values computed do not pass the given 

values exactly. 

  

New reference points  ξ

Given points  x

 
RBF approximation and points’ reduction 
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Simple approach 

 

Probably the best way is to formulate the problem using the Least Square Error approximation. Let us consider the 

modified formulation of the RBF interpolation 

𝑓(𝒙𝑖) = ∑𝜆𝑗 𝜑(‖𝒙𝑖 − 𝝃𝑗‖)

𝑀

𝑗=1

 ℎ𝑖 = 𝑓(𝒙𝑖)           𝑖 = 1,… ,𝑁 

where: 𝝃𝑗  are not given points, but points in a pre-defined “virtual mesh” (in positions of area of interest etc.) as only 

coordinates are needed (there is no tessellation needed). This “virtual mesh” can be irregular, regular or adaptive etc. 

For a simplicity (just for explanation purposes), let us consider a two-dimensional squared (orthogonal) mesh in the 

following example. Then the 𝝃𝑗  coordinates are the corners of this mesh. It means that the given scattered data will be 

actually “re-sampled”, e.g. to the squared mesh. 

 

In many applications the given data sets are heavily over sampled. For fast previews, we can afford to “down sample” 

the given data set, e.g. for data visualization, WEB applications 

 

Let us consider that for the visualization purposes we want to represent the final potential field by 𝑃 values instead of 𝑀 

and 𝑃 ≪ 𝑀. The reason is very simple as if we need to compute the function 𝑓(𝒙) in many points, the formula above 

needs to be evaluated many times. We can expect that the number of evaluation 𝑄 can be easily requested at 102 𝑀 of 

points (new points) used for visualization.  
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If we consider that  𝑄 ≥ 102 𝑀  and  𝑀 ≥ 102 𝑃 then  

 

the speed up factor in evaluation can be easily about 𝟏𝟎𝟒 ! 

 

The formulation above leads to a solution of an over determined system of linear equations 𝑨𝒙 = 𝒃 where number of 

rows 𝑀 ≫ 𝑃, number of unknown 𝝀 = [𝜆1 , … , 𝜆𝑃 ]𝑇. The linear system of equations 𝑨𝒙 = 𝒃. It can be solved by the 

Least Square Method (LSM) as  𝑨𝑇𝑨𝒙 = 𝑨𝑇𝒃 or by factorization using Gram-Schmidt orthogonalization or Householder 

transformation etc.  

 

[
 
 
 
 
𝜑1,1 ⋯ 𝜑1,𝑃

⋮ ⋱ ⋮
𝜑𝑖,1 . . 𝜑𝑖,𝑃

⋮ ⋱ ⋮
𝜑𝑀,1 ⋯ 𝜑𝑀,𝑃]

 
 
 
 

[
𝜆1

⋮
𝜆𝑃

] =

[
 
 
 
 
ℎ1

⋮
⋮
⋮

ℎ𝑀]
 
 
 
 

        𝑨𝒙 = 𝒃 

When the system of LSE is solved, computation of a function value 𝑓(𝑥) will be sped-up by a factor 

𝜈 = 𝑀
𝑃⁄ . 
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RBF with Lagrange Multipliers 

 

Let us assume again: 

𝑓(𝒙𝑖) = ∑𝜆𝑗 𝜑(‖𝒙𝑖 − 𝒙𝑗‖)

𝑀

𝑗=1

 𝑖 = 1,… , 𝑁  𝐴𝝀 = 𝒇 

where 𝑀 ≤ 𝑁. We want to determine 𝝀 = [𝜆1, … , 𝜆𝑀]𝑇 minimizing a quadratic form 
1

2
𝝀𝑇𝑸𝝀 with a linear constrains 

−𝒇 = 𝟎 , where 𝑸 is a positive symmetric matrix. This can be solved using Lagrange multipliers 𝝃 = [𝜉1, … , 𝜉𝑁]𝑇, i.e. 

minimizing the expression: 

1

2
𝝀𝑇𝑸𝝀 − 𝝃𝑻(𝑨𝝀 − 𝒇) i.e 𝝀 =? and 𝝃 =? 

 

As the matrix 𝑸 is positive and symmetric, we obtain 

 

𝜕

𝜕𝝀
(
1

2
𝝀𝑇𝑸𝝀 − 𝝃𝑻(𝑨𝝀 − 𝒇)) = 𝑸𝝀 − 𝑨𝑇𝝃 = 𝟎 

𝜕

𝜕𝝃
(
1

2
𝝀𝑇𝑸𝝀 − 𝝃𝑻(𝑨𝝀 − 𝒇)) = 𝑨𝑇𝝀 − 𝒇 = 𝟎 
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In more compact matrix form we can write 

 

[𝑸 −𝑨𝑇

𝑨 𝟎
] [

𝝀
𝝃
] = [

𝟎
𝒇
] 

As the matrix 𝑸 is positive definite, block in matrix operations can be applied and we get: 

 

𝝀 = 𝑸−1𝑨𝑇(𝑨𝑸−1𝑨𝑇)−1𝒇 𝝃 = (𝑨𝑸−1𝑨𝑇)−1𝒇 

 

If 𝑨 = 𝑨𝑇 and invertible, computation can be further simplified. This approach is more robust, however also more 

computationally expensive. 

 

It should be noted, that if the Least Square Method (LSM) is used directly, i.e.  𝑨𝑇𝑨𝒙 = 𝑨𝑇𝒃 is to be solved directly, the 

𝑨𝑇𝑨 matrix is ill conditioned and for large 𝑀 the system of linear equations is difficult to solve. In addition, selection of 

the 𝑸 matrix elements is not fully determined and depends on a user, actually. The advantage of this approach is that 

values of the matrix 𝑨 have only a linear influence. It should be noted that the matrix size is 2𝑀𝑥2𝑀, where 𝑀 is a 

number of points. It means that the memory requirements are no acceptable even for medium data sets. Also a cost of 

the value computation, i.e. computation of a value 𝑓(𝒙) for the given 𝒙 is doubled. For real applications of the RBF 

approximation, we need to decrease memory requirements significantly. 
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Least Square Method with a Polynomial Reproduction 

 

Let us consider again the overdetermined system: 

𝑓(𝒙𝑖) = ∑𝜆𝑗 𝜑(‖𝒙𝑖 − 𝝃𝑗‖)

𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊 = ∑𝜆𝑗 𝜑𝑖,𝑗

𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊  

It can be rewritten in the matrix form as  

𝑨𝝀 + 𝑷𝒂 = 𝒇 

Now, we can define an error 𝑟 of a solution as 

𝑟2 = ‖𝑨𝝀 + 𝑷𝒂 − 𝒇‖2 = (𝑨𝝀 + 𝑷𝒂 − 𝒇)𝑇(𝑨𝝀 + 𝑷𝒂 − 𝒇) 

where: 

𝑷𝒂 = [
𝑥1 𝑦1 1
⋮ ⋮ ⋮

𝑥𝑚 𝑦𝑚 1
] [

𝑎𝑥

𝑎𝑦

𝑎0

] 

To minimize the error 𝑟 the following conditions must be valid: 

𝜕𝑟2

𝜕𝝀
= 𝑨𝑇𝑨𝝀 + 𝑨𝑇𝑷𝒂 − 𝑨𝑇𝒇 = 𝟎 

𝜕𝑟2

𝜕𝒂
= 𝑷𝑇𝑨𝝀 + 𝑷𝑇𝑷𝒂 − 𝑷𝑇𝒇 = 𝟎 

or in a matrix form as 𝑴𝒙 = 𝒚, i.e. 

[𝑨
𝑇𝑨 𝑨𝑇𝑷

𝑷𝑇𝑨 𝑷𝑇𝑷
] [

𝝀
𝒂
] = [

𝑨𝑇𝒇

𝑷𝑇𝒇
] 
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The above presented formula leads to correct results. However, it can be seen, that the values 𝑚𝑖𝑗  of the matrix 𝑴 are 

influenced by: 

 

 

 elements of the matrix 𝑨𝑇𝑨, i.e. by used radial basis function and mutual positions of the given points 

 elements of the matrix 𝑷𝑇𝑷, i.e. by coordinates of the given points.  

 

This is a significant problem if large data sets are to be processed and the interval of 𝒙 values, i.e. 𝑥, 𝑦 is high as the 

value is squared due to 𝑷𝑇𝑷 submatrix etc.  

 

Let us analyze this property more in detail, now, in order to be able to estimate problems in real application use. 
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Decomposition of RBF Interpolation 
The RBF interpolation can be described in the matrix form as  

[ 
𝑨 𝑷
𝑷𝑇 𝟎

] [
𝝀
𝒂
] = [

𝒇
𝟎
] 𝒂𝑇 𝒙𝒊 = 𝑎𝑥  𝑥𝑖 + 𝑎𝑦 𝑦𝑖 + 𝑎0 

where 𝒙 = [𝑥, 𝑦, 1]𝑇, the matrix 𝑨 is symmetrical and semidefinite positive (or strictly positive) definite. Let us consider 

the Schur’s complement (validity of all operation is expected) 

𝑴 = [
𝑨 𝑩
𝑪 𝑫

] = [
𝑰 𝟎

𝑪𝑨−1 𝑰
] [

𝑨 𝟎
𝟎 𝑴/𝑨

] [𝑰 𝑨−1𝑩
𝟎 𝑰

] 𝑴 𝑨⁄ ≝ 𝑫 − 𝑪𝑨−1𝑩 

where 𝑴/𝑨 is the Schur complement.  

Then the inversion matrix 𝑴−1  

𝑴−1 = [𝑰 −𝑨−1𝑩
𝟎 𝑰

] [
𝑨−1 𝟎
𝟎 (𝑴/𝑨)−𝟏] [

𝑰 𝟎
−𝑪𝑨−1 𝑰

] 

Now, the Schur complement can be applied to the RBF interpolation. As the matrix 𝑴 is nonsingular, inversion of the 

matrix 𝑴 can be used. Using the Schur complement (as the matrix 𝑫 = 𝟎) 

 

𝑴−1 = [𝑰 −𝑨−1𝑷
𝟎 𝑰

] [
𝑨−1 𝟎
𝟎 (𝑴/𝑨)−𝟏] [

𝑰 𝟎
−𝑷𝑇𝑨−1 𝑰

] 𝑴 𝑨⁄ ≝ 𝑷𝑇𝑨−1𝑷 

 

Then det(𝑴) ≠ 0, det(𝑴/𝑨) ≠ 0 and det(𝑴/𝑨) ≠ 0 as the matrices are nonsingular.   
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However, if RBF interpolation is used for larger data sets, there is a severe problem with robustness and numerical 

stability, i.e. numerical computability issues. Using the Schur’s complement we can see, that  

 

det(𝑴) = det(𝑨) det(𝑴 𝑨⁄ ) 

therefore 

det(𝑴−1) =
1

det(𝑨)
 

1

det(𝑴 𝑨⁄ )
=

1

det(𝑨)
 

1

det(𝑷𝑇𝑨−1𝑷)
 

Properties of the matrix 𝑨 are determined by the RFB function used. The value of det(𝑨) depends also on the mutual 

distribution of points. However, the influence of det(𝑷𝑇𝑨−1𝑷) is also significant as the value depends on the points 

mutual distribution due to the matrix 𝑨 but also to points distribution in space, due to the matrix 𝑷. It means that 

translation of points in space does have significant influence. Let us imagine for a simplicity that the matrix 𝑨 = 𝑰 (it can 

happen if CSRBF is used and only one point is within the radius 𝑟 = 1). Then the distance of a point from the origin has 

actually quadratic influence as the point position is in the matrices 𝑷𝑇 and 𝑷.  

 

There is a direct significant consequence for the RBF interpolation. 

𝑓(𝒙) = ∑𝜆𝑗 𝜑(‖𝑥 − 𝒙𝑗‖)

𝑀

𝑗=1

+ 𝑃𝑘(𝒙) 

when the 𝑃𝑘(𝒙), 𝑘 = 1, 2 is a quadratic polynomial in the form 

𝑃1(𝒙) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 , resp. 𝑃2(𝒙) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥
2 + 𝑎4𝑥𝑦 + 𝑎5𝑦

2 
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In the case of 𝑨 = 𝑰, we get a matrix 𝑷𝑇𝑷 of the size (3 × 3) and det(𝑷𝑇𝑷) in the case of a linear polynomial 𝑃1(𝒙) as: 

 

det(𝑷𝑇𝑷) =

|

|
∑ 𝑥𝑖

2
𝑀

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑀

𝑖=1
∑ 𝑥𝑖

𝑀

𝑖=1

∑ 𝑥𝑖𝑦𝑖

𝑀

𝑖=1
∑ 𝑦𝑖

2
𝑀

𝑖=1
∑ 𝑦𝑖

𝑀

𝑖=1

∑ 𝑥𝑖

𝑀

𝑖=1
∑ 𝑦𝑖

𝑀

𝑖=1
∑ 1

𝑀

𝑖=1

|

|

= 1 (∑𝑥𝑖
2 ∑𝑦𝑖

2) − ∑ 𝑦𝑖 (… ) + ∑𝑦𝑖 (… ) 

 

It means that points distribution in space and their distances from the origin play a significant role as the det(𝑷𝑇𝑷) 

contains elements ∑ 𝑥𝑖
2𝑀

𝑖=1  and ∑ 𝑦𝑖
2𝑀

𝑖=1  in multiplicative etc. in the linear polynomial case. If a quadratic 

polynomial 𝑃2(𝒙) is used, the matrix 𝑷𝑇𝑷 is of the size (6 × 6): 

 

𝑷𝑇𝑷 =

[
 
 
 
 
 

𝑥1
2 ⋯ 𝑥𝑀

2

𝑦1
2 ⋯ 𝑦1

2

𝑥1𝑦1 ⋯ 𝑥𝑀𝑦𝑀

𝑥1 ⋯ 𝑥𝑀

𝑦1 ⋯ 𝑦𝑀

1 ⋯ 1 ]
 
 
 
 
 

[
𝑥1

2 𝑦1
2 𝑥1𝑦1 𝑥1 𝑦1 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑀

2 𝑦𝑀
2 𝑥𝑀𝑦𝑀 𝑥𝑀 𝑦𝑀 1

] 
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Then  

det(𝑷𝑇𝑷) = det

[
 
 
 
 
 
 
 
 
 
 
 
 
 ∑ 𝑥𝑖

4
𝑀

𝑖=1
∑ 𝑥𝑖

2𝑦𝑖
2

𝑀

𝑖=1
∑ 𝑥𝑖

3𝑦𝑖

𝑀

𝑖=1
∑ 𝑥𝑖

3
𝑀

𝑖=1
∑ 𝑥𝑖

2𝑦𝑖

𝑀

𝑖=1
∑ 𝑥𝑖

2
𝑀

𝑖=1

∑ 𝑥𝑖
2𝑦𝑖

2
𝑀

𝑖=1
∑ 𝑦𝑖

4
𝑀

𝑖=1
∑ 𝑥𝑖𝑦𝑖

3
𝑀

𝑖=1
∑ 𝑥𝑖𝑦𝑖

2
𝑀

𝑖=1
∑ 𝑦𝑖

3
𝑀

𝑖=1
∑ 𝑦𝑖

2
𝑀

𝑖=1

∑ 𝑥𝑖
3𝑦𝑖

𝑀

𝑖=1
∑ 𝑥𝑖𝑦𝑖

3
𝑀

𝑖=1
∑ 𝑥𝑖

2𝑦𝑖
2

𝑀

𝑖=1
∑ 𝑥𝑖

2𝑦𝑖

𝑀

𝑖=1
∑ 𝑥𝑖𝑦𝑖

2
𝑀

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑀

𝑖=1

∑ 𝑥𝑖
3

𝑀

𝑖=1
∑ 𝑥𝑖𝑦𝑖

2
𝑀

𝑖=1
∑ 𝑥𝑖

2𝑦𝑖

𝑀

𝑖=1
∑ 𝑥𝑖

2
𝑀

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑀

𝑖=1
∑ 𝑥𝑖

𝑀

𝑖=1

∑ 𝑥𝑖
2𝑦𝑖

𝑀

𝑖=1
∑ 𝑦𝑖

3
𝑀

𝑖=1
∑ 𝑥𝑖𝑦𝑖

2
𝑀

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑀

𝑖=1
∑ 𝑦𝑖

2
𝑀

𝑖=1
∑ 𝑦𝑖

𝑀

𝑖=1

∑ 𝑥𝑖
2

𝑀

𝑖=1
∑ 𝑦𝑖

2
𝑀

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑀

𝑖=1
∑ 𝑥𝑖

𝑀

𝑖=1
∑ 𝑦𝑖

𝑀

𝑖=1
∑ 1

𝑀

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

In the quadratic polynomial case, the det(𝑷𝑇𝑷) contains elements ∑ 𝑥𝑖
4𝑀

𝑖=1 , ∑ 𝑦𝑖
2𝑀

𝑖=1 ,…, ∑ 1𝑀
𝑖=1  in multiplicative, which 

brings even worst situation as the matrix 𝑷𝑇𝑷 contains small and very high values. As a direct consequence, eigenvalues 

will have large span and therefore the linear system of equations will become ill-conditioned. 
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Decomposition of RBF approximation 
Decomposition for RBF approximation is analogous to interpolation decomposition. Let us explore decomposition of the 

RBF approximation using the Schur complement. Let us consider the system of linear equation for the RBF 

approximation in the form 𝑴𝒙 = 𝒚: 

[𝑨
𝑇𝑨 𝑨𝑇𝑷

𝑷𝑇𝑨 𝑷𝑇𝑷
] [

𝝀
𝒂
] = [

𝑨𝑇𝒇

𝑷𝑇𝒇
] 

Let us consider again the Schur’s complement (validity of operations is expected and the matrix 𝑫 ≠ 𝟎) 

𝑴 = [
𝑨 𝑩
𝑪 𝑫

] = [
𝑰 𝟎

𝑪𝑨−1 𝑰
] [

𝑨 𝟎
𝟎 𝑴/𝑨

] [𝑰 𝑨−1𝑩
𝟎 𝑰

] 𝑴 𝑨⁄ ≝ 𝑫 − 𝑪𝑨−1𝑩 

In this case, for the RBF approximation we obtain: 

𝑴 = [𝑨
𝑇𝑨 𝑨𝑇𝑷

𝑷𝑇𝑨 𝑷𝑇𝑷
] = [

𝑰 𝟎
(𝑷𝑇𝑨)(𝑨𝑇𝑨)−1 𝑰

] [
𝑨𝑇𝑨 𝟎
𝟎 𝑴/(𝑨𝑇𝑨)

] [𝑰 (𝑨𝑇𝑨)−1(𝑨𝑇𝑷)
𝟎 𝑰

] 

Then the matrix 𝑴−1 using the Schur complement: 

𝑴−1 = [𝑰 −(𝑨𝑇𝑨)−1(𝑨𝑇𝑷)
𝟎 𝑰

] [
(𝑨𝑇𝑨)−1 𝟎

𝟎 (𝑴/(𝑨𝑇𝑨))
−𝟏] [

𝑰 𝟎
−(𝑷𝑇𝑨−1)(𝑨𝑇𝑨)−1 𝑰

] 

where 

𝑴 (𝑨𝑇𝑨)⁄ = 𝑷𝑇𝑷 − (𝑷𝑇𝑨)(𝑨𝑇𝑨)−1(𝑨𝑇𝑷) 
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In the RBF approximation case, the matrix 𝑫 is non-zero matrix 𝑷𝑇𝑷. It can be seen, that if the matrix 𝑨𝑇𝑨 → 𝑰, then the 

Schur’s complement 𝑴 (𝑨𝑇𝑨)⁄ → (𝑷𝑇𝑷 − (𝑷𝑇𝑨)(𝑨𝑇𝑷)) = 𝑷𝑇𝑷 − (𝑨𝑇𝑷)𝑇(𝑨𝑇𝑷). It means, that the whole matrix 𝑴 

tends to be singular. It can be seen that the det(𝑷𝑇𝑷) contains elements ∑ 𝑥𝑖
4𝑀

𝑖=1 , ∑ 𝑦𝑖
2𝑀

𝑖=1 ,…, ∑ 1𝑀
𝑖=1  in multiplicative.  

 

This has a significant influence to the robustness of computation if small and high values of 𝑥𝑖  and 𝑦𝑖  occur in the data 

sets, or if they are from large interval span.  

 

If the values (𝑥𝑖, 𝑦𝑖) ∈ 〈−105, 105〉 × 〈−105, 105〉, the value of det(𝑷𝑇𝑷) > ∑ 𝑥𝑖
2 ∑ 𝑦𝑖

2𝑀
𝑖=1

𝑀
𝑖=1 > 1020 and the value of 

 1 det(𝑷𝑇𝑷)⁄ < 10−20, in the case of the linear polynomial. It results to a situation when the matrix 𝑴−1 will be “close” 

to singular.  

 

In the case of quadratic polynomial 𝑃2(𝒙), the situation gets even worst as det(𝑷𝑇𝑷) contains elements ∑𝑥𝑖
4 and ∑𝑦𝑖

4 

in multiplicative, i.e. det(𝑷𝑇𝑷) > ∑ 𝑥𝑖
4 ∑ 𝑦𝑖

4𝑀
𝑖=1

𝑀
𝑖=1 > 1040. This should be considered as a significant disadvantage of 

the RBF approximation used for large data spans. 
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Conclusion 
The RBF interpolation using compactly supported RBF (CSRBF) have several significant advantages over methods based 

on smooth interpolation made on triangulated space area. In this contribution some properties of the CSRBF 

interpolation and approximation methods have been presented from the “engineering” point of view and selected 

features related to robustness and stability of computation have been presented.  
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