
A New Coding Scheme for Line Segment
Clipping in E2 ?

Vaclav Skala[0000−0001−8886−4281]

Dept. of Computer Science and Engineering
University of West Bohemia

CZ 301 00 Pilsen, Czech Republic
skala@kiv.zcu.cz http://www.VaclavSkala.eu

1 Abstract

This contribution presents a new coding scheme based on Cohen-Sutherland
line segment clipping algorithm, which enables to distinguish all possible cases
easily. It leads to more efficient algorithm for a line segment clipping in E2. It
also presents importance of a detailed analysis in algorithm development, if the
algorithm robustness and efficiency is required.

Keywords: Line clipping · Line segment clipping · Cohen Sutherland algorithm
· End-point position coding · Homogeneous coordinates · Projective representa-
tion · intersection computation

2 Introduction

Many algorithms for a line clipping or a line segment clipping by a rectangular
window have been published already. Probably the Cohen-Sutherand’s (C-S)[7],
Cyrus-Beck (CB)[3] and Liang-Barsky (LB)[11] algorithms are the most known
for line segment and line segment clipping in E2 and used in computer graphics
courses. The CS algorithm uses end-point position coding to detect some cases,
which leads to more efficient computation. However, in some cases 4 intersections
of the line and the clipping window are computer; two of those are actually
unnecessary. The CB algorithm was actually designed for a line clipping by a
convex polygon. Several improvements of the C-B algorithm were published, e.g.
Nicholl-Lee-Nicholl[12], Bui[2], Skala[28].

The line and line segment clipping are fundamental and critical operations
in the computer graphics pipeline as all the processed primitives have to be
clipped out of the drawing area to decrease computational requirements and
also respect the physical restrictions of the hardware. The clipping operations
are mostly connected with the Window-Viewport and projection operations.
There are many algorithms developed recently with many modifications, see

? Supported by the University of West Bohemia - Institutional research support
No.1311.

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

2 V. Skala

Andreev[1], Day[4], Dörr[6], Duvalenko[5], Kaijian[9], Krammer [10], Liang[11],
Skala[27], Sobkow[29].

However, those algorithms have been developed for the Euclidean space rep-
resentation in spite of the fact, that geometric transformations, i.e. projection,
translation, rotation, scaling and Window-Viewport etc., use homogeneous coor-
dinates, e.g. projective representation. This results into necessity to convert the
results of the geometric transformations to the Euclidean space using division
operation as follows:

X = (X,Y) x = [x, y : w]T X =
x

w
Y =

y

w
w 6= 0 (1)

where X,Y are the point coordinates in the Euclidean space E2, while x, y : w
are in the homogeneous coordinates [24][23]; similarly in the E3 case.

If a point is given in the Euclidean space the homogeneous coordinates are
given as x = [X,Y : 1]T . The homogeneous coordinates also enable to represent a
point close or in infinity, i.e. when w → 0, and postpone the division operations.
It leads to better numerical robustness and computational speed-up, in general.

3 Line segment clipping

The line segment clipping operation in the E2 and E3 space is a fundamental
problem in Computer Graphics and it has been already deeply analyzed. The
line and line segment clipping algorithms against a rectangular window in E2 are
probably the most used algorithms and any improvements or speed up can have
a significant influence on efficiency of the whole graphics pipeline. Many algo-
rithms have been developed, e.g. the Cohen-Sutherland (CS)[7] for a line segment
clipping against the rectangular window, the Liang-Barsky(LB)[11] and Cyrus-
Beck(CB)[3] (extensible to the E3 case) algorithms for clipping a line against a
convex polygon and the Nichol-Lee-Nichol(LNL)[12] (modified by Skala[28]) are
the most used algorithms.

However, some more sophisticated algorithms or modification of the recent
ones have been developed recently, e.g. line clipping against a rectangular win-
dow, see Bui[2], Skala[15][17], line clipping by a convex polygon with O(lgN)
complexity, Skala[18] (based on Rappaport [14]) using ordering of the vertex in-
dices, or algorithm with Oexp(1) complexity using pre-processing Skala[20], line
clipping by a window with quadratics arcs Skala[16], etc.

In the E3 case, the algorithms have computational complexity O(N) as there
is no ordering of the vertices ordering in the E3 case, however, the algorithm
with Oexpected(

√
N) have been developed by Skala [19][20][21].

In the following, the Cohen-Sutherland (CS) and the S-Clip algorithms based
on implicit formulation using projective representation will be presented. The
CS algorithm is based on end-points classification, while the S-Clip is primarily
based on the classification of the window corner against the given line.

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

A New Coding Scheme for Line Segment Clipping in E2 3

3.1 Cohen-Sutherland algorithm

The Cohen-Sutherland (CS) algorithm for line segment clipping is a fundamen-
tal algorithm presented in computer graphics courses. It splits the 2D space into
9 areas defined by the rectangular clipping window, see Fig.1. The line segment
given by its end-points xA, xB is classified and if not directly accepted or re-
jected, intersections with lines in which the window edges lie are computed and
the intersection point found is then classified end the process is repeated, see
Huges et al, see [8] for details. It is an analogy of the root bisection method in
numerical mathematics.

3.2 End-points coding

A line segment is defined by its end-points xA and xB . The end-point position
classification was used in the CS algorithms developed by Cohen-Sutherland[7].
Some additional coding for speedup were introduced in Bui[2], originally for the
Euclidean space representation. The classification of the line segment end-points
and the corners of the window mutual positions enables faster processing. It
enables simple rejection of line segments not intersecting the window and direct
acceptance of segments totally inside of the window, see Fig.1.

Fig. 1. The codes of line segment end-points

The end-points classification introduced in CS is represented by the Algo-
rithm 1. If cA and cB are the codes of the end-points then the sequence catching
those cases can be expressed as:

– if (cA lor cB) = [0000] then the line segment is totally inside
– if (cA land cB) 6= [0000] then the line segment is totally outside

If the end-points of a line are given in the Euclidean space, i.e. w = 1, then
the codes of the end-points are determined as in the Algorithm 1. However, in the

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

4 V. Skala

general case, i.e. when w 6= 1 and w > 1, the conditions must be modified using
multiplication, e.g. to x wmin < xmin w, etc., and then no division operations
are needed.

Algorithm 1 End-point code computation

1: procedure CODE (c,x); . code c for the position x = [x, y : 1]T

2: c := [0000]T ; . initial setting
3: if x < xmin then c := [1000]T . according to x coordinate
4: if x > xmax then c := [0100]T ;

5: if y < ymin then c := c lor [0001]T . according to y coordinate
6: if y > ymax then c := c lor [0010]T ;
7: . lor is all bits or - instead of algebraic + operation

8: end procedure

It can be seen, that other cases, see Fig.1, cannot be directly distinguished by
the CS algorithm coding, see the cases 4 and 6, and intersection points have to be
computed, including the invalid ones, e.g. in the case 3 probably 4 intersections
will be computed and 2 of those will be invalid. It is necessary to note, that the
CS algorithm uses division operations in the floating point, which is the most
time consuming operation.

3.3 S-Clip

Let us consider a typical example of a line clipping by the rectangular clip-
ping window, see Fig.2, and a line p given in the implicit form using projective
notation:

p : ax + by + cw = 0 , i.e. aTx = 0 (2)

where a = [a, b : c]T are coefficients of the given line p, x = [x, y : w]T is a
point on this line using projective notation (w is the homogeneous coordinate).
Advantage of the projective notation is, that a line p passing two points xA, xB

or an intersection point x of two lines p1, p2 can be computed as:

p = xA ∧ xB , x = p1 ∧ p2 (3)

where a ∧ b is the outer product application on the vectors a, b (actually the
cross-product is used in this case, i.e. a× b), see Skala[25].

The S-Clip algorithm[22] and its optimization for the normalized clipping
window[26] use the window corners classification. This enables to determine
which window edges are intersected by a line directly without additional in-
tersection computation.

Let us consider an implicit function F (x) = aTx representing a line, Eq.2.
The clipping operation should determine intersection points xi = [xi, yi : wi]

T ,
i = 1, 2 of the given line p with the window edges, if any. The line splits the plane
into two parts, see Fig.2. The corners of the window are split into two groups

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

A New Coding Scheme for Line Segment Clipping in E2 5

Fig. 2. Clipping against the rectangular window in E2

according to the sign of the function F (x) value. This results into Smart-Line-
Clip (S-L-Clip) algorithm[22], see Algorithm 2.

The S-Clip line segment algorithm[22] is a slight modification of the S-L-Clip
algorithm, which respect position of the line segment end-points and uses the
end-point positions classification.

c c TAB1 TAB2 MASK c c TAB1 TAB2 MASK
0 0000 None None None 15 1111 None None None
1 0001 0 3 0100 14 1110 3 0 None
2 0010 0 1 0100 13 1101 1 01 0100
3 0011 1 3 0010 12 1100 3 1 0010
4 0100 1 2 0010 11 1011 2 1 0010
5 0101 N/A N/A N/A 10 1010 N/A N/A N/A
6 0110 0 2 0100 9 1001 2 0 0100
7 0111 2 3 1000 8 1000 3 2 1000

Table 1. All cases; N/A - Non-Applicable (impossible) cases

the MASK column is used for line segment clipping Skala[22]

It means that the ith corner is classified by a bit value ci as:

ci =

{
1 if F (xi) ≥ 0

0 otherwise
i = 0, ..., 3 (4)

The Table 1 presents the codes for all the situations (some of those are not
possible). The columns TAB1 and TAB2 contain indices of edges of the window
intersected by the given line (values in the MASK column are used in the S-Clip
algorithm[22] for the line segment end-points).

It can be seen, that the S-L-Clip algorithm (see Algorithm 2) is quite simple
and easily extensible for a line and line segment clipping by a convex polygon

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

6 V. Skala

Algorithm 2 S-L-Clip - Line clipping algorithm by the rectangular window

1: procedure S-L-Clip(xA,xB); . line is given by two points
2: p := xA ∧ xB ; . computation of the line coefficients
3: for i := 0 to 3 do . can be done in parallel
4: if pTxi ≥ 0 then ci := 1 else ci := 0; . codes computation

5: end for
6: if c 6= [0000]T and c 6= [1111]T then . line intersects the window
7: i := TAB1[c]; xA := p ∧ ei; . first intersection point
8: j := TAB2[c]; xB := p ∧ ej ; . second intersection point
9: output(xA,xB) . operator ∧ means the cross-product application

10: else
11: NOP . line does not intersect the window
12: end if
13: end procedure

with O(N) complexity as the Table 1 can be generated synthetically[22]. It is
significantly simpler than the Liang-Barsky algorithm [11].

In the following, a new line segment clipping algorithm based on the Cohen-
Sutherland and S-Clip algorithms.

4 Proposed algorithm

The proposed algorithm is based on full classification of all possible cases based
on the Cohen-Sutherland coding scheme. However, if the codes of the end-points
CA and CB are taken as integer numbers, see Tab.2, and summed as CAB =
CA + CB , then the code CAB gives us a composed code differentiating all the
different cases Tab.3 and the table is symmetrical. As the line segment xA xB is
actually oriented its orientation has to be respected in intersection computations.

4.1 Classification of possible cases

The code CAB gives us additional information on positions of the line segment
end-points. If all the possible positions of a line segment are analyzed, then the
following cases can be distinguished:

– INSIDE (IN) - the both end-points are inside
– OUTSIDE (n/a) - the line segment does not intersect the window
– Inside-Side (IS) - one end-point is inside, the second one is inside of a side

area, see Fig.3
– Inside-Corner (IC) - one end-point is inside, the second one is inside of a

corner area, see Fig.3
– Side - Side (SS) - the end-points are in the opposite side areas, see Fig.4
– Side - near Corner - Side (SnCS)- both end-points are in the side areas

sharing a common corner, see Fig.4

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

A New Coding Scheme for Line Segment Clipping in E2 7

IN C S C S C S C S

CAB CB 0 5 4 6 2 10 8 9 1

CA 0000 0101 0100 0110 0010 1010 1000 1001 0001

IN 0 0000 IN 5 4 6 2 10 8 9 1

C 5 0101 5 n/a n/a n/a 7 15 13 n/a n/a

S 4 0100 4 n/a n/a n/a 6 14 12 13 5

C 6 0110 6 n/a n/a n/a n/a n/a 14 15 7

S 2 0010 2 7 6 n/a n/a n/a 10 11 3

C 10 1010 10 15 14 n/a n/a n/a n/a n/a 11

S 8 1000 8 13 12 14 10 n/a n/a n/a 9

C 9 1001 9 n/a 13 15 11 n/a n/a n/a n/a

S 1 0001 1 n/a 5 7 3 11 9 n/a n/a

Table 2. Numerical summation codes CAB = CA + CB , IN - inside area,
C - corner area, S - side area, n/a - non-applicable cases or outside case

id -1 0 1 2 3 4 5 6 7

Case IN C S C S C S C S

CB 0 5 4 6 2 10 8 9 1

CA 0000 0101 0100 0110 0010 1010 1000 1001 0001

IN 0 0000 IN IC IS IC IS IC IS IC IS

C 5 0101 IC n/a n/a n/a SdC CoC SdC n/a n/a

S 4 0100 IS n/a n/a n/a SnCS SdC SS SdC SnCS

C 6 0110 IC n/a n/a n/a n/a n/a SdC CoC SdC

S 2 0010 IS SdC SnCS n/a n/a n/a SnCS SdC SS

C 10 1010 IC CoC SdC n/a n/a n/a n/a n/a SdC

S 8 1000 IS SdC SS SdC SnCS n/a n/a n/a SnCS

C 9 1001 IC n/a SdC CoC SdC n/a n/a n/a n/a

S 1 0001 IS n/a SnCS SdC SS SdC SnCS n/a n/a

Table 3. Possible cases: n/a - non-applicable or solved by the C-S coding
C - corner area, S - side area, IN - inside area
End-points: IC - inside-corner, IS - inside-side;
Cases: SS - side-side, SnCS - side-near corner - side,
SdC - side-distant corner-side, CoC - corner-opposite corner, id: case re-indexing

– Side - distant Corner (SdC) - one end-point is inside of the side area, the
second one is in the distant(opposite) corner area, see Fig.5

– Corner - opposite Corner (CoC) - the both end-points are in the opposite
corner areas, see Fig.6

The most simple cases, i.e. the line segment is totally inside, resp. totally
outside are easily detected by the bit-wise condition, i.e. by the original Cohen-

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

8 V. Skala

Fig. 3. Inside-Side (IS) and Inside-Corner(IC) cases

Fig. 4. Side-Side(SS) and Side-near Corner(SnC)

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

A New Coding Scheme for Line Segment Clipping in E2 9

Fig. 5. Side-distant Corner(SdC) case

Fig. 6. The Corner-opposite Corner(CoC) case

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

10 V. Skala

Sutherland end-pointposition classification.

(CA lor CB) = [0000] , resp. (CA land CB) 6= [0000]

After this, the simple cases as Inside-Side(IS) or Inside-Corner(IC) cases are
detected by the logical condition

(CA = [0000]) or (CB = [0000])

Now, the more complex cases are to be solved, i.e. Side-near Corner Side(SnCS),
Side-distant Corner(SdC), Corner-opposite Corner(CoC) cases.

The Tab.3 presents all the cases for the summation code CAB = CA + CB ,
while the Tab.2 presents the CAB values for each the case. It can be seen that
non-trivial cases are actually formed by sub-tables 3 × 3 and the table itself is
formally symmetrical. As a line segment is oriented actually, its orientation is to
be respected in the algorithm. Unfortunately, the codes for CA and CB in the
table Tab.3 are not ordered according to the numerical values of the codes. As
the simple cases, when at least one point is inside of the clipping window, are
easily detectable, only more complex cases are to be distinguished and they are
re-indexed.

The table Tab.4 represents re-indexing of the code CA, resp. CB , so that the
index of an area is ordered anti-clockwise starting at 0 from the right bottom
side area; the id of the clipping window area is set to −1 for code efficiency only.

It can be seen, that the re-indexed value id gives also additional information,
whether the end-point is inside of the side area or corner one, i.e. id is even or
odd (except of the INSIDE case).

id and [0001] =

{
[0000] corner area

[0001] side area

The one-dimensional array is used to end-points code re-indexing for cases of
the codes CA and CB (non-applicable cases 11 - 15 removed).

idA = TAB CODE INDEX[CA] idB = TAB CODE INDEX[CB]

It means, that the index idA is giving a row in the Tab.3 for the code CA and
the idB is giving the column for the code CB . As a consequence, if idA < idB
then the only upper triangle of the Tab.3 is used, i.e. significant number of cases
are reduced. The value of the code CAB enables to distinguish different possible
cases easily. However, as the line segment orientation is to be respected, the
proposed algorithm, described in the next, has to respect it.

4.2 Q-CLIP Algorithm

The proposed clipping Q-CLIP algorithm is described by the Algorithm 3. The
Q-CLIP algorithm solves the trivial cases first, i.e. the whole segment acceptance

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

A New Coding Scheme for Line Segment Clipping in E2 11

CA CA Type id CA CA Type id

0 0000 IN −1 8 1000 S 5

1 0001 S 7 9 1001 C 6

2 0010 S 3 10 1010 C 4

3 0011 n/a n/a 11 1011 n/a n/a

4 0100 S 1 12 1100 n/a n/a

5 0101 C 0 13 1101 n/a n/a

6 0110 C 2 14 1110 n/a n/a

7 0111 n/a n/a 15 1111 n/a n/a

Table 4. TAB CODE INDEX: Re-indexing table of edges
and corners using [Left,Right,Top,Bottom] coding

or rejection, then more complex cases are solved. It can be seen, that the Q-Clip
algorithm is free of cycles, i.e. while and/or for cycle constructions, etc.

The implementation of the proposed algorithm is simple and straightforward,
however, it should be noted, that:

– careful implementation is needed to solve each case, e.g. IC, IS . . . , as it
influences efficiency of the algorithm significantly.

– use of array of function in-line construction might be more computation-
ally efficient than theswitch construction

– the bit-wise condition (CA lor CB) = [0000] differs from the condition
(CA = [0000]) or (CB = [0000]) as it is the logical operation

It should be noted that the Switch instruction is to be implemented as an array
of inline functions in order to avoid multiple if instructions in which the Switch
instruction is actually translated.

The presented Q-CLIP algorithm can be easily modified for the case, when
a line segment and vertices of the clipping window are given in homogeneous
coordinates in general, i.e. when w 6= 1.

The proposed Q-CLIP algorithm was implemented in C and Pascal languages
on 64bit MS Windows 10 operating system. Experiments made proved its supe-
riority over the original Cohen-Sutherland algorithm, especially in the SdC and
CoC cases. For each case, i.e. IC, IS, SnC, SdC, CoC the same number of line
segments were generated randomly. The average speed up was over 15% nearly
independent of the programming language used.

However, if vector operations with the homogeneous coordinate representa-
tion is used, similarly as in Nielsen[13], Skala[26], additional significant speed up
can be expected if SSE instructions are used.

5 Conclusion

This contribution describes shortly a new coding scheme for the line segment
clipping algorithm based on Cohen-Sutherland’s algorithm using arithmetic op-

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

12 V. Skala

Algorithm 3 Q-CLIP

1: Global variables:
2: real: xmin, ymin, xmax, ymax, . xmin,xmax the window’s corner
3: array TAB CODE INDEX[0:10] = [-1, 7, 3, -9, 1, 0, 2, -9, 5, 6, 4];
4: . the value −1 means end-point is inside; −9 means the n/a case
5: array TAB CODE CASE[0:15] =
6: [-1, -1, -1, 0, -1, 1, 1, 2, -1, 1, 1, 2, -1, 2, 2, 3]; . CAB re-indexing
7: procedure Q CLIP(xA, xB);
8: . All other procedures for clipping should be declared here
9: CA := CODE(xA); CB := CODE(xB); . set the C-S codes

10: . all logical operations land, lor, lxor are bit-wise operations
11:
12: . the whole line segment is inside
13: if (CA lor CB) = [0000] then { DRAW(xA,xB); EXIT; }

. the whole line segment is outside
14: if (CA land CB) 6= [0000] then EXIT;

15: CAB := CA + CB ; . one end-point is inside cases
16: # precompute directional vector s = xB − xA for better efficiency
17: if (CA = [0000]) or (CB = [0000]) then {
18: idAB := TAB CODE INDEX[CAB]; . now, only the cases: IS or IC
19: if (idAB land [0001])= [0000] then
20: { SOLVE IS; EXIT } . the IS case; CAB ∈ {4, 2, 8, 1}
21: else
22: { SOLVE IC; EXIT } . the IC case; CAB ∈ {5, 6, 10, 9}
23: endif }
24: endif
25: # complex cases with two possible intersections
26: idcase := TAB CODE CASE[CAB]; . re-indexing of non-trivial cases
27: switch idcase do . all complex cases classification
28: case 0: { SOLVE SS; EXIT; } . SS cases; CAB ∈ {3, 12}
29: case 1: { SOLVE SnCS; EXIT; } . SnCS cases; CAB ∈ {6, 5, 10, 9}
30: case 2: { SOLVE SdC; EXIT; } . SdC cases; CAB ∈ {7, 13, 14, 11}
31: case 3: { SOLVE CoC; EXIT; } . CoC cases; CAB = 15

32: end switch
33: end procedure

erations to distinguish the fundamental cases eliminating unnecessary computa-
tions with clipping window edges. All the cases are easy to implement. However,
computational efficiency is to be kept in mind in coding.

The experiments made proved the speedup over 10− 15% against the origi-
nal Cohen-Sutherland algorithm. Additional speed up can be expected if vector
notation and vector operations are used for intersection computation.

The proposed algorithm presents a new coding scheme for distinguishing all
the cases in line segment clipping in E2. Similar approach can be taken for the
line segment clipping in the E3 case.

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

A New Coding Scheme for Line Segment Clipping in E2 13

6 Acknowledgment

The author would like to thank to colleagues at the University of West Bohemia
in Plzen for fruitful discussions and to anonymous reviewers for their comments
and hints, which helped to improve the manuscript significantly.

References

1. R. Andreev and E. Sofianska. New algorithm for two-dimensional line clipping.
Computers and Graphics, 15(4):519–526, 1991.

2. D. Bui and V. Skala. Fast algorithms for clipping lines and line segments in E2.
Visual Computer, 14(1):31–37, 1998.

3. M. Cyrus and J. Beck. Generalized two- and three-dimensional clipping. Computers
and Graphics, 3(1):23–28, 1978.

4. J. Day. A new two dimensional line clipping algorithm for small windows. Computer
Graphics Forum, 11(4):241–245, 1992.

5. V. Duvanenko, W. Robbins, and R. Gyurcsik. Line-segment clipping revisited. Dr.
Dobb’s Journal, 21(1):107–110, 1996.

6. M. Dörr. A new approach to parametric line clipping. Computers and Graphics,
14(3-4):449–464, 1990.

7. D. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer graphics: principles
and practice. Addison-Wesley, 1990.

8. J. F. Hughes, A. van Dam, M. McGuire, D. F. Sklar, J. D. Foley, S. Feiner, and
K. Akeley. Computer Graphics: Principles and Practice. Addison-Wesley, 3 edition,
2013.

9. S. Kaijian, J. Edwards, and D. Cooper. An efficient line clipping algorithm. Com-
puters and Graphics, 14(2):297–301, 1990.

10. G. Krammer. A line clipping algorithm and its analysis. Computer Graphics
Forum, 11(3):253–266, 1992.

11. Y.-D. Liang and B. Barsky. A new concept and method for line clipping. ACM
Transactions on Graphics (TOG), 3(1):1–22, 1984.

12. T. M. Nicholl, D. Lee, and R. A. Nicholl. Efficient new algorithm for 2D line
clipping: Its development and analysis. Computer Graphics (ACM), 21(4):253–
262, 1987.

13. H. Nielsen. Line clipping using semi-homogeneous coordinates. Computer Graphics
Forum, 14(1):3–16, 1995.

14. A. Rappoport. An efficient algorithm for line and polygon clipping. The Visual
Computer, 7(1):19–28, 1991.

15. V. Skala. Algorithm for 2D line clipping. New Advances in Computer Graphics,
NATO ASI, pages 121–128, 1989.

16. V. Skala. Algorithms for clipping quadratic arcs. In T.-S. Chua and T. L. Kunii,
editors, CG International ’90, pages 255–268, Tokyo, 1990. Springer Japan.

17. V. Skala. An efficient algorithm for line clipping by convex polygon. Computers
and Graphics, 17(4):417–421, 1993.

18. V. Skala. O(lg N) line clipping algorithm in E2. Computers and Graphics,
18(4):517–524, 1994.

19. V. Skala. An efficient algorithm for line clipping by convex and non-convex poly-
hedra in E3. Computer Graphics Forum, 15(1):61–68, 1996.

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

14 V. Skala

20. V. Skala. Line clipping in E2 with O(1) processing complexity. Computers and
Graphics (Pergamon), 20(4):523–530, 1996.

21. V. Skala. A fast algorithm for line clipping by convex polyhedron in E3. Computers
and Graphics (Pergamon), 21(2):209–214, 1997.

22. V. Skala. A new approach to line and line segment clipping in homogeneous
coordinates. Visual Computer, 21(11):905–914, 2005.

23. V. Skala. Length, area and volme computation in homogeneous coordinates. Int.
Journal of Image and Graphics, 6(4):625–639, 2006.

24. V. Skala. Barycentric coordinates computation in homogeneous coordinates. Com-
puters and Graphics (Pergamon), 32(1):120–127, 2008.

25. V. Skala. Intersection computation in projective space using homogeneous coordi-
nates. Int. Journal of Image and Graphics, 8(4):615–628, 2008.

26. V. Skala. Optimized line and line segment clipping in E2 and geometric algebra.
Annales Mathematicae et Informaticae, 52:199–215, 2020.

27. V. Skala. A novel line convex polygon clipping algorithm in e2 with parallel pro-
cessing modification. Lecture Notes in Computer Science, LNCS-accepted for pub-
lication ICCSA 2021:xx–xx, 2021.

28. V. Skala and D. Bui. Extension of the Nicholls-Lee-Nichols algorithm to three
dimensions. Visual Computer, 17(4):236–242, 2001.

29. M. Sobkow, P. Pospisil, and Y.-H. Yang. A fast two-dimensional line clipping
algorithm via line encoding. Computers and Graphics, 11(4):459–467, 1987.

ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.16-29, Springer, 2021

DOI: 10.1007/978-3-030-86976-2_2

