
A New Approach to Hash Function Construction for Textual Data: A Comparison

Vaclav Skala, Radek Petruska

Department of Computer Science and Engineering

University of West Bohemia

Plzen, Czech Republic

http://www.VaclavSkala.eu

Abstract—Many techniques for text processing are based on

efficient data storing and retrieval techniques. Careful

selection of data structures used and retrieval techniques play

a significant role in efficiency of the whole system of data

processing. Hashing technique is one very often used technique

with O(1) run-time complexity for data storing and retrieval. A

comparison of new technique for hash function construction is

presented in the paper without need of division operation. The

comparison of the proposed technique is especially convenient

for large textual data sets processing. State of the art in

hashing of textual data is given (the perfect hashing techniques

are not included). The proposed hash function construction

and hashing technique have been compared with other

comparative techniques for different languages and textual

data (chemical data sets etc.).

Keywords-Hashing function, information retrieval, text

processing, text mining, summarization, large data processing,

data structure

I. INTRODUCTION

Many problems require fast determination whether the
given item, textual, graphical or geometrical, is already
stored in the dataset. Resolving this problem can be very
difficult, especially as the size of the data set increases. A
typical example of application is duplicity elimination, e.g.
in textual data sets. One technique convenient for solution of
this problem is an application of hashing data structure. The
advantage of the hash data structure is that data storage and
retrieval is of run-time complexity if the hash function
is well designed or if a perfect hash function is used.

Table 1: Differences between textual and geometrical data

Interval of
values

Dimensionality

Small High

Small
Image data

Dim 2,3
Values

Textual data
Dim (string length)

Values
(ASCII etc.)

High
Geometrical

Dim 2,3
Values

Harmonic
analysis

It can be seen that there is a significant difference

between textual and geometrical data. However the hashing
principle is common, but only the hash function is
constructed differently. The main differences are:

 Textual data – interval of values is given by alphabet
used, nevertheless the dimensionality is high as strings
might be very long, e.g.:
 protein titin is decribed by 189,819 characters
 name of the railway station in Wales

Llanfairpwllgwyngyllgogerychwyrndrobwllllantysili
ogogogoch

 Geometrical data – the dimensionality is usually or
as points are represented by coordinates , resp.
 , but interval of values is “unlimited”
 and high number of items are processed,
typically points etc.

There are two approaches to the hash function design:
1. The perfect hash function design is applicable to the

final data sets that are not expected to change, and its
computation is of O(M) expected complexity for the
given data set [12]. The perfect hash function gives a
unique index for each item from the data set. The
minimal perfect hash function is the perfect hash
function for which the hash table has no holes, i.e. the
size of the hash table is equal to the number of items.
This hash function can be made for a static list only and
it is usually referred to as the dictionary problem [5].

2. The hash function design described in this paper is
based on experience with recently designed hash
functions. Such an approach must be used in the case
where the hash table is build incrementally. However
some problems will occur:

 To design a hash function properly, the fundamental
requirement is that the number of collisions must be
as small as possible. Collision occurs when
different items are transformed to the same index to
the hash table.

 There can be a problem with memory requirements
as the size of the hash table rises, particularly as the
functionality of the hash function depends on the
hash table length.

Hash functions have been also used effectively in
several geometrical applications [6], for the duplicate
elimination among geometric entities. The experiments
with geometric applications made recently [24] led to a
question whether a similar approach can be taken for
string-based problems as well, especially for large data
sets and for batch and incremental processing as well.
This resulted to a new approach for textual data
processing.

A New Approach to Hash Function Construction for Textual Data: Comparison,
IEEE WICT 2014 Conference, pp.39-44, ISBN 978-1-4799-8115-1, Malaysia, 2014

Table 1: Complexity of approaches to duplicity elimination

 Batch
processing
complexity

(for all items)

Insert one item
with duplicate

elimination

Sort and duplicate
elimination

O(M lgM) O(N)

Using a tree including
balancing

O(M lgM) O(lgN)
without

balancing

Hash function use
(expected)

O(M*Ia) O(Ia)

Hash function use
(worst case

1
)

O(N
2
) O(N)

where: M is the number of items, Ia, Im is the average, resp.
the maximal cluster length.

II. HASH FUNCTION AND DATA STRUCTURE

Principle of the hashing is very simple. It is actually
based on indirect addressing principle. Processed element
is transformed to an address which points to a
table , where the location of the element is stored, see
Fig.1.

Standard function use operation and generally it
has the following form:

 (1)

where is a prime number, is the length of the given
string, . is the i-th character of the given string.

The proposed S-Hash (Smart Hash) function is based on
floating point operations instead of integer and instead of
 operation, masking and shifting is used. The S-Hash
function is constructed as follows:

 (2)

 (3)

where is the hash table length, i.e.

, is
the load factor. i.e. , is a hardware dependent
constant, for 64 bits platform, is
“irrational”, i.e. , where is an integer, e.g. 1/3 etc.
(unlimited fractional part).
The S-Hash has function construction has several
advantages, namely:

 hash function does not need division operation by a
prime, instead logical operation is used, if has
table has to be shorten,

 no re-computation if the data structure is

needed, the table of the length can be
simply “recomputed” by folding upper and lower

parts of the lengths .

Structures TAB and VAL can be stored in parts, i.e.
distributed processing is supported in the case of very large
data sets.

addr=f(x)

TAB

addr

X

Free

X

VAL

Figure 1: Principle of dynamic memory management based
of hashing data structure

III. COMPARISON CRITERIA

To be able to compare different hash functions it is

necessary to introduce some general criteria. Assume that

there are already N items stored in the data structure and I is

the cluster length. Three basic situations can occur when a

new item i.e. a string is inserted to the structure:

1. The item is not stored in the data structure and the

appropriate cluster is empty. The item is inserted to this

cluster. The cost of this operation for all such items can

be expressed as:

 (4)

2. The item is not stored in the data structure so the whole

cluster is to be searched and the item is to be inserted to

an appropriate cluster. The cost of this operation for all

such items can be expressed as (because the cluster of

the length I must be searched for all items in this cluster

I-times, value I is powered by two)

 (5)

3. The item is stored already in the data structure so the

corresponding cluster is to be searched and the item is

not inserted to the appropriate cluster. Because only

half of the cluster is to be searched on average, the cost

of this operation for all such items can be expressed as

 (6)

It is necessary to point out that the cost of the hash function

evaluation has not been considered, as it is the same for all

cases. The cost of item insertion to a cluster was omitted.

The final criterion can be expressed as

 (7)

A New Approach to Hash Function Construction for Textual Data: Comparison,
IEEE WICT 2014 Conference, pp.39-44, ISBN 978-1-4799-8115-1, Malaysia, 2014

Empty clusters are not considered by this criterion because

the hash table length HS depends on the number of items

stored. It can be seen that the criterion Q depends on the

number of items. We used a relative criterion to evaluate

properties of hash functions for different data sets with

different sizes defined as

 (8)

IV. S-HASH FUNCTION PROPERTIES

The proposed S-Hash function was recently tested for

textual and geometrical data as well in order to prove

expected properties. For illustration, how the cluster length

depends on a parameter for the Czech and English

languages see Fig.2 and Fig.3. Peaks occur when the

value is not “irrational”.

Figure 2: Relative criterion for Czech dictionary

Figure 3: Relative criterion for English dictionary

It can be seen that there are some small differences due to

different “language structure”. As S-Hashing behavior was

good a comparative study was made.

V. COMPARATIVE EXPERIMENTAL RESULTS

The proposed S-Hash function was recently compared with

the main hashing functions used nowadays, i.e. AP (Arash

Partow), BKDR (Brian Kernighanm, Dennis Ritchie), DJB

(Dan J.Bernstein), ELF, FNV, Java, Rotational SDBM.

For the comparison the following databases were used:

ECHA (European Chemicals Agency), ChEBI (Chemical

Entities of Biological Interest), NIST (WebBook Chemie),

PDB (Protein database bank) and EkoTox (Ecotoxilogic

database) and two dictionaries, Czech and English, were

used [9]. Selected hash functions were tested using different

textual data bases, i.e. text with natural languages, i.e.

French, German, English, Russian, Hebrew, specialized

texts, like chemicals etc. Fig.4 presents typical values for

bucket length evaluation and Fig.5 presents ratio of bucket

lengths for selected methods against proposed S-Hash

function.

For evaluation also a linear and quadratic length cluster

average was used

(9)

The following experimental results have been obtained for

different databases.

Due to recent experiments the parameter , for

complex chemical compounds was used.

Criterion Comp. is defined as

 in order to make

results independent of number of items peocessed.

ECHA Database

Agency ECHA (European Chemicals Agency) is one of

regulatory EU institution responsible for safety use of

chemicals. List contains 6 500 records.

Table 2: ECHA database

Funkce M-B
Comp.

Shash 6 2,531 0,000 1,39 1,53

AP 5 2,564 0,034 1,40 1,55

Java 6 2,577 0,046 1,41 1,55

Rotační 5 2,590 0,060 1,41 1,56

ELF 6 2,599 0,069 1,42 1,57

DJB 6 2,600 0,069 1,41 1,56

SDBM 6 2,603 0,072 1,41 1,57

FNV 6 2,611 0,080 1,42 1,57

BKDR 6 2,625 0,094 1,42 1,57

DEK 9 2,907 0,376 1,48 1,69

Aditivní 8 2,968 0,437 1,52 1,74

XOR 65 70,325 67,795 34,17 40,02

1

10

100

1000

10000

0 0,2 0,4 0,6 0,8 1

Czech dictionary (end)

1

10

100

1000

10000

0 0,2 0,4 0,6 0,8 1

English dictionary (start)

A New Approach to Hash Function Construction for Textual Data: Comparison,
IEEE WICT 2014 Conference, pp.39-44, ISBN 978-1-4799-8115-1, Malaysia, 2014

ChEBI database

ChEBI (Chemical Entities of Biological Interest) database

contains approx 38 000 records of organic compounds.

Table 3: ChEBI database

Function M-B
Comp.

Shash 5 2,357 0,000 1,32 1,44

FNV 6 2,381 0,025 1,32 1,45

AP 6 2,391 0,035 1,33 1,45

BKDR 6 2,393 0,036 1,33 1,45

DJB 6 2,393 0,036 1,33 1,45

SDBM 6 2,394 0,037 1,33 1,46

Java 7 2,396 0,039 1,33 1,46

ELF 6 2,408 0,052 1,33 1,46

Rotační 7 2,448 0,091 1,34 1,48

DEK 25 3,334 0,978 1,52 1,84

Aditivní 38 18,616 16,260 5,47 8,24

XOR 367 460,030 457,673 303,98 305,33

NIST Database

NIST (National Institute of Standards and Technology)

database contains approx. 72 000 records.

Table 4: NIST database

Function M-B
Comp.

Shash 7 2,307 0,000 1,29 1,41

SDBM 6 2,324 0,017 1,30 1,42

AP 7 2,326 0,019 1,30 1,42

DJB 6 2,327 0,020 1,30 1,42

BKDR 6 2,328 0,021 1,30 1,42

Rotační 7 2,329 0,022 1,30 1,42

Java 6 2,332 0,025 1,30 1,42

FNV 7 2,340 0,033 1,31 1,43

ELF 77 2,537 0,230 1,31 1,49

DEK 70 3,286 0,979 1,38 1,74

Aditivní 38 23,153 20,846 9,48 12,10

XOR 2078 922,762 920,455 567,06 590,63

PDB database

PDB (Protein Data Bank) is the protein database containing

15 000 records.

Table 5: PDB database

Function M-B
Comp.

Shash 7 2,786 0,000 1,495 1,666

BKDR 6 2,818 0,032 1,509 1,684

FNV 7 2,834 0,048 1,507 1,687

Java 7 2,836 0,050 1,514 1,692

ELF 7 2,839 0,053 1,508 1,689

AP 6 2,839 0,053 1,508 1,690

Rotating 7 2,843 0,057 1,510 1,692

DJB 7 2,846 0,061 1,515 1,695

SDBM 7 2,851 0,065 1,515 1,697

DEK 7 2,978 0,192 1,548 1,753

Additing 8 3,636 0,850 1,815 2,098

XOR 145 173,147 170,361 114,383 114,906

EkoTox database

EkoTox database contains compounds with toxicological

hazards with selected substances with 200 000 records.

Table 3: EkoTox database

Function M-B
Comp.

Shash 8 2,6699 0,0000 1,439 1,600

FNV 7 2,6728 0,0029 1,442 1,603

BKDR 8 2,6730 0,0031 1,442 1,603

AP 8 2,6752 0,0052 1,443 1,604

Java 6 2,6762 0,0063 1,443 1,604

DJB 7 2,6765 0,0065 1,443 1,604

Rotating 7 2,6774 0,0074 1,444 1,605

ELF 7 2,6790 0,0091 1,444 1,606

SDBM 7 2,6848 0,0148 1,446 1,609

DEK 25 3,0516 0,3817 1,524 1,761

Additing 85 49,5357 46,8657 12,419 20,251

XOR 1588 2046,227 2043,557 337,225 678,252

A New Approach to Hash Function Construction for Textual Data: Comparison,
IEEE WICT 2014 Conference, pp.39-44, ISBN 978-1-4799-8115-1, Malaysia, 2014

VI. CONCLUSION

This paper presents a comparison of S-Hash hashing
methods for textual data. The S-Hasing method offers a
common approach to textual and geometrical data. The
behavior of the S-Hash function has been tested on Czech
and English dictionaries as these two languages belong to
different language groups and on different databases
including chemical and toxicological databases.

For the proposed data structure the optimal hash table
length was derived and also the recommendations for q
values were verified. It was proved that proposed S-Hashing
offers good computational properties and no division
operations with primes is needed.

The influence of hash table length was experimentally
verified for large data sests. It is clear that on computers with
less memory swapping can be used, i.e. where some parts of
the structure are stored on disk during the building of the
hash table. However, the shorter hash table can be easily
constructed without need of all data processing, if shortaen

by a factor or etc. Of course, the bucket length will

become longer.

ACKNOWLEDGMENT

The authors would like to thank to all who contributed to
this work, especially to colleagues at the University of West
Bohemia in Plzen who have stimulated this work.

Thanks belong also to anonymous reviewers for their
critical comments that helped to improve this manuscript
significantly. EkoTox database data courtesy of Dr.Pavel
Pavliček and Vilém Čermák.

This project was supported by the MSMT CR Projects
No.LH12181, LG13047 and SGS-2013-029.

REFERENCES

[1] Dzysyak, S.: Javascript hash functions to convert string into integer

hash. Erly Coder .com. [Download: 8.4.2013]
http://erlycoder.com/49/javascript-hash-functions-to-convert-string-
into-integer-hash, 2011.

[2] ECH: European Chemicals Agency. [Download: 18.2.2013]
http://echa.europa.eu/.

[3] Feng, Zukang a jiní. Ligand Expo. Protien Data Bank. [Download:
18.2.2013] http://ligand-expo.rcsb.org/, 2004.

[4] Fowler,G., Vo,P.: FNV Hash. [Download: 8.4.2013]
http://www.isthe.com/chongo/tech/comp/fnv, 1994

[5] Gettys,T.: Generating perfect hash function, Dr.Dobb's Journal,
Vol.26(2), 151-155, 2001.

[6] Glassner,A: Building Vertex Normals from an Unstructured Polygon
List, Graphics Gems, IV, 60 - 73. Academic Press, Inc., Cambridge,
1994

[7] Guard, Damien. Calculating Elf-32 in C# and .NET.
[Download:8.4.2013],
2007http://damieng.com/blog/2007/11/24/calculating-elf-32-in-c-and-
net.

[8] ChEBI. Chemical entities of biological interest. [Download:
18.2.2013] http://www.ebi.ac.uk/chebi, 2009

[9] ISPELL: SPELL Dictionaries,
http://ficus-www.cs.ucla.edu/geoff/ispell-dictionaries.html

[10] Knuth,D.I.: The Art Of Computer Programming: Sorting and
Searching. 2nd edition. Addison-Wesley Profesional, 1998.

[11] de Matos, P., Alcántara, R., Dekker, A., Ennis, M., Hastings, J.,
Haug, K., a další. (2009). ChEBI. Chemical entities of biological
interest: http://www.ebi.ac.uk/chebi/, Download 18.2.2013, 2009

[12] Dzysyak, S. (2011). Javascript hash functions to convert string into
integer hash. Download 8.4.2013, Erly Coder.com:
http://erlycoder.com/49/javascript-hash-functions-to-convert-string-
into-integer-hash

[13] Engelschall, R. PASTEBIN: http://pastebin.com/dDQ2kDkK,
Download 18.4.2013, 2012

[14] European Chemicals Agency, Download 18.2.2013, ECHA:
http://echa.europa.eu/

[15] Feng, Z., Chen, L., Maddula, H., Akcan, O., Oughtred, R., Berman,
H. M. et al. Ligand Expo., Protien Data Bank: http://ligand-
expo.rcsb.org/, Download 18.2. 2013, 2004

[16] Fowler, G., & Vo, P. (1994)., FNV Hash:
http://www.isthe.com/chongo/tech/comp/fnv/, Download 8.4.2013,
1994

[17] Knuth, D. E. The Art Of Computer Programming. Massachusetts:
Addison-Wesley Profesional, 1998.

[18] Matouš, J., & Šípek, M. NIST WebBook Chemie:
http://webbook.nist.gov/chemistry/ Download 18.2. 2013, 2009

[19] Mička, P. (2008). Hashovací tabulka - Algoritmy.net. Získáno 1. 4
2013, Algoritmy.net: (in Czech)
http://www.algoritmy.net/article/32077/Hashovaci-tabulka

[20] Mulvey, B. Pluto Scarab - Hash Functions. Hash Functions:
http://home.comcast.net/~bretm/hash/, Download 1.4.2013, 2007

[21] Partow, A. General Purpose Hash Function Algorithms, ,
http://www.partow.net/programming/hashfunctions/, Download
8.4.2013

[22] Pískač, P., & Čermák, V. Ekotoxikologická databáze:
http://www.piskac.cz/ETD/Default.htm, Download 20. 2 2013, 1996

[23] Skala, V., Hrádek, J. Effecient Hash Function for Duplicate
Elimination in Dictionaries. Bratislava: Slovak University of
Technology, 2009.

[24] Skala,V., Kuchar,M.:The Hash Function and Principle of Duality,
IEEE CGI proceedings, pp. 167-174, 2001, Hong Kong, 2001

APPENDIX

Fig.4 presents experimental results of the comparison of the

S-Hashing technique for different databases. The proposed

S-Hashing is slightly better than the other methods used in

this comparative study. Fig.5 presents differential graphs,

where S-Hash technique was taken as the reference method.

A New Approach to Hash Function Construction for Textual Data: Comparison,
IEEE WICT 2014 Conference, pp.39-44, ISBN 978-1-4799-8115-1, Malaysia, 2014

Figure 4: Criterion Q’– comparison against S-Hashing

Figure 5: Relative criterion sQ’ – comparison against S-Hashing

0

0,05

0,1

0,15

0,2

0,25

EU ChEBI NIST PDB EkoTox

Criterion Q'

AP

BKDR

DJB

ELF

FNV

Java

Rotating

SDBM

-0,06

-0,04

-0,02

0

0,02

0,04

0,06

EU ChEBI NIST PDB EkoTox

Relative criterion Q'

AP

BKDR

DJB

ELF

FNV

Java

Rotating

SDBM

A New Approach to Hash Function Construction for Textual Data: Comparison,
IEEE WICT 2014 Conference, pp.39-44, ISBN 978-1-4799-8115-1, Malaysia, 2014

