
Radial Basis Functions for High-Dimensional Visualization

Vaclav Skala
Department of Computer Science and Engineering

University of West Bohemia
CZ 306 14 Plzen, Czech Republic

skala@kiv.zcu.cz

Abstract — High-dimensional visualization is usually connected
with large data processing. Because of dimensionality, it is nearly
impossible to make a tessellation, like the Delaunay tessellation in
Ed, followed by data interpolation. One possibility of data
interpolation is the use of the Radial Basis Functions (RBF)
interpolation. The RBF interpolation supports the interpolation of
scattered data in d-dimensional space. The computational cost of
the RBF interpolation is higher but does not increase significantly
with the data dimensionality. It increases with the number of
values to be processed non-linearly. In this paper, the RBF
interpolation properties will be discussed as well as how to process
data incrementally. Incremental computation decreases
computational complexity and decreases RBF computational cost
for the given data set significantly, especially for the visualization
purposes, when the interpolated/approximated data are used many
times. As the proposed approach is based on a solution of a system
of linear equations, the RBF interpolation is convenient especially
for data sets processing using matrix-vector or GPU architectures.

Keywords - Visualization; computer graphics; interpolation;
radial basis functions; RBF

I. INTRODUCTION
Visualization of potential (scalar) fields in a multi-

dimensional space is a typical problem not only in physical
sciences. The problem seems to be quite simple, but it is
actually a quite complicated task. In the E2 case the usual
approach is to tessellate the domain (e.g. x-y space) and then
to use linear interpolation or cubic interpolation. In general,
the computational complexity of the Delaunay tessellation
(DT) for N points in the d-dimensional case is of ܱ൫݀ ܰଶ൯
complexity. It needs to be noted that the DT is not easy to
implement in the the d-dimensional space. There is also a
severe problem how to smoothly interpolate scalar values in
the d-dimensional space. The vast majority of interpolation
techniques rely on “separable” interpolations, i.e.
interpolation is made in each axis independently expecting
that the selection of axes order is arbitrary. Unfortunately
such approaches lead to some artifacts and caused errors are
unpredictable.

Radial basis function (RBF) interpolation belongs to non-
separable interpolations used for interpolation in d-
dimensional space. The computational cost of RBF increases
non-linearly with the number of data processed and linearly
with the dimensionality of the data set. The RBF

interpolation is based on a distance of two points, i.e. the
distance of two points ݎ௜௝ ൌ ฮ࢞௜ െ ௝ฮ࢞ is computed. The
great advantage of RBF interpolation is that it does not need
any tessellation of the data domain and simply supports the
data of any dimensionality. RBF applications are quite
widespread and can be found in data visualization, solutions
of partial differential equations (PDE), neural networks,
reconstruction of corrupted images etc.

The computational cost of the RBF interpolation is
higher as the cost of tessellation is inheritably covered into
the RBF interpolation in principle. Two significant aspects
are connected with the RBF:

• re-computation of the RBF interpolation and
• reduction of the data set.
It should be noted that the RBF interpolation leads to

a solution of linear system of equations (LSE) ࢞࡭ ൌ The .࢈
proposed approaches are valid for the d-dimensional case,
but in the following text, ݀ ൌ 2 will be used for explanation.

II. RADIAL BASIS FUNCTION INTERPOLATION
RBF interpolation is quite simple from a mathematical

point of view. It is based on a distance computing of two
points in the d-dimensional space. RBF interpolation is
defined by the function:

݂ሺ࢞ሻ ൌ෍ߣ௝ ߮൫ฮ࢞ െ ௝ฮ൯࢞
ே

௝ୀଵ

ൌ෍ߣ௝ ߮௝൫ݎ௝൯
ே

௝ୀଵ

௝ݎ ൌ ฮ࢞ െ ௝ฮ࢞
It means that for the given data set ሼ൏ ,௜ݔ ݄௜ ൐ሽ௜ୀଵே ,

where ݄௜ are associated values to be interpolated and ࢞௜ are
domain coordinates, a linear system of equations is obtained:

݂ሺ࢞௜ሻ ൌ෍ߣ௝ ߮൫ฮ࢞௜ െ ௝ฮ൯࢞
ே

௝ୀଵ

 ݅ ൌ 1,… ,ܰ

where ߣ௝ are weights to be computed. Due to stability
issues, usually a polynomial ௞ܲሺ࢞ሻ of a degree k is added to
the form, i.e.:

݂ሺ࢞௜ሻ ൌ෍ߣ௝ ߮൫ฮ࢞௜ െ ௝ฮ൯࢞
ே

௝ୀଵ

 ൅ ௞ܲሺ࢞௜ሻ ݅ ൌ 1,… ,ܰ

VisGra - ICONS 2012, Saint Gilles, Reunion Island, IARIA, ISBN: 978-1-61208-184-7, pp. 218-222, 2012

For a practical reason in many applications, the
polynomial of the 1st degree is used, i.e. linear
polynomial ଵܲሺ࢞ሻ ൌ ்࢞ࢇ ൅ ܽ଴. Then the RBF interpolation
function has the following form:

݂ሺ࢞௜ሻ ൌ෍ߣ௝ ߮൫ฮ࢞௜ െ ௝ฮ൯࢞
ே

௝ୀଵ

൅ ࢏்࢞ࢇ ൅ ܽ଴

݄௜ ൌ ݂ሺ࢞௜ሻ ݅ ൌ 1,… ,ܰ
and additional conditions are applied:

෍ߣ௜ ൌ 0
ே

௝ୀଵ

 ෍ߣ௜࢞௜ ൌ ૙
ே

௝ୀଵ

For the d-dimensional case and N points given, a system
of ሺܰ ൅ ݀ ൅ 1ሻ linear equations has to be solved.

For d=2 vectors xi and a are given as ࢞௜ ൌ ሾݔ௜, ௜ሿ் andݕ
ࢇ ൌ ൣܽ௫, ܽ௬൧

்
. Using the matrix notation we can write:

ۏ
ێ
ێ
ێ
ێ
ۍ
߮ଵ,ଵ . . ߮ଵ,ே ଵݔ ଵݕ 1
: ڰ : : : :

߮ே,ଵ . . ߮ே,ே ேݔ ேݕ 1
ଵݔ . . ேݔ 0 0 0
ଵݕ . . ேݕ 0 0 0
1 . . 1 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵߣ
:
ேߣ
ܽ௫
ܽ௬
ܽ଴ے
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
݄ଵ
:
݄ே
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

ቂ ࡮ ࡼ
்ࡼ ૙ቃ ቂ

ࣅ
ቃࢇ ൌ ቂࢌ૙ቃ ࢞࡭ ൌ ࢈

൅ ܽ଴ ࢏࢞ ்ࢇ ൌ ܽ௫ ݔ௜ ൅ ܽ௬ ݕ௜ ൅ ܽ଴
It can be seen that for the 2-dimensional case and

N points given a system of ሺܰ ൅ 3ሻ linear equations has to
be solved. It can be seen that the RBF interpolations are not
“separable” by the definition, i.e. an interpolation over x-axis
and then over y-axis and vice versa cannot be made.

The radial basis functions interpolation was originally
introduced using multiquadric method [5] in 1971 called
Radial Basis Function method. Since then, many different
RBF interpolation schemes have been developed with some
specific properties, e.g. [4] uses ߮ሺݎሻ ൌ ݎ ଶ݈݃ݎ , which is
called Thin-Plate Spline (TPS), a function ߮ሺݎሻ ൌ ݁ିሺఢ௥ሻమ
that was proposed in [9]. Compactly Supported RBF
(CSRBF) was introduced in [13] as

߮ሺݎሻ ൌ ൜ሺ1 െ ,ሻݎሻ௤ ܲሺݎ 0 ൑ ݎ ൑ 1
 0 , ݎ ൐ 1 ,

where: ܲሺݎሻ is a polynomial function and q is a parameter.
Theoretical problems with stability and solvability were

resolved by [6] and [14]. Generally, there are two main
groups of the RBFs:

• “global” – a typical example is TPS function
• “local” – Compactly supported RBF (CSRBF)

If the “global” functions are taken, the matrix A of the LSE
is full, for large N is becoming ill-conditioned and problems
with convergence can be expected. On the other hand if the
CSRBFs are taken, the matrix A is becoming relatively
sparse, i.e. computation of the LSE will be faster, but the
scaling factor needs to be carefully selected due to a limited
influence of the CSRBF and the final function tends to be
“blobby” shaped.

TABLE I. TYPICAL EXAMPLE OF “GLOBAL” FUNCTIONS

“Global“ functions ߶ሺݎሻ
Thin-Plate Spline (TPS) rr log2

Gauss function ()()2exp rε−

Inverse Quadric (IQ) ()()211 rε+

Inverse multiquadric (IMQ) ()211 rε+

Multiquadric (MQ) ()21 rε+

TABLE II. TYPICAL EXAMPLE OF “LOCAL” CSRBF FUNCTIONS

ID Function
1 +−)1(r
2)13()1(3 +− + rr
3)158()1(25 ++− + rrr
4 2)1(+− r
5)14()1(4 +− + rr
6)31835()1(26 ++− + rrr
7)182532()1(238 +++− + rrrr
8 3)1(+− r
9)15()1(3 +− + rr

10)1716()1(27 ++− + rrr

Figure 1. Geometrical properties of CSRBF

Tab. 2 presents typical examples of CSRBFs defined for
the interval < 0 , 1 >, but for the practical use a scaling is
used, i.e. the value r is multiplied by a scaling factor α,
where 0 < α < 1. Fig. 1 presents the geometrical properties of
typical CSRBFs.

VisGra - ICONS 2012, Saint Gilles, Reunion Island, IARIA, ISBN: 978-1-61208-184-7, pp. 218-222, 2012

III. INCREMENTAL RBF COMPUTATION
Some interesting problems can be solved using RBF

interpolation quite effectively, e.g. surface reconstruction
from scattered data [3][8][9][16], reconstruction of damaged
images [11][15], inpainting removal [2][12] etc. All those
applications based on RBFs interpolation have one
significant disadvantage – the computational cost. This is
especially severe in applications when the data are not static.
Typical examples of non-static data are:
• Position of points has changed. It means that the whole

system of linear equations has to be formed and
recomputed which leads generally to O(N3)
computational complexity and unacceptable
time-consuming computation.

• Position of points remains fixed, but the value
associated with a point has changed. In this case,
iterative methods are usually faster than explicit
computation of an inverse matrix.

In some applications a “sliding window” on data is required,
especially in time-related applications when old data should
not be used in the interpolation and new data are to be
included. This is a typical situation in signal processing
applications. Considering the above facts above there is a
question how to compute RBF incrementally with a lower
computational complexity.

The main question to be answered is:
Is it possible to use already computed RFB interpolation if

a new point is to be included to the data set?
If the answer is positive it should lead to significant decrease
of computational complexity. In the following, it will be
presented how a new point can be inserted, how a selected
point can be removed and also how to select the best
candidate for a removal according to an error caused by this
point removal.

Let us consider some operations with block matrices
(assuming that all operations are correct and matrices are
non-singular in general etc.).

ቂ࡭ ࡮
࡯ ቃࡰ

ିଵ

ൌ ൤ ሺ࡭ െ ሻିଵ࡯ଵିࡰ࡮ െି࡭ଵ࡮ሺࡰ െ ሻିଵ࡮ଵି࡭࡯
െሺࡰ െ ଵି࡭࡯ሻିଵ࡮ଵି࡭࡯ ሺࡰ െ ሻିଵ࡮ଵି࡭࡯

൨

Let us consider a matrix M of (n+1) × (n+1) and a
matrix A of n × n in the following block form:

ࡹ ൌ ቂ ࡭ ࢈
்࢈ ܿቃ

Then the inverse of the matrix ࡹ applying the rule above
can be written as:

ଵିࡹ ൌ

ۏ
ێ
ێ
࡭൬ۍ െ

1
ܿ ࢈࢈

்൰
ିଵ

െ
1
݇ ࡭

ିଵ࢈

െ
1
݇
ଵି࡭்࢈

1
݇ ے

ۑ
ۑ
ې

ൌ ൦
ଵି࡭ ൅

1
݇ ࡭

ିଵି࡭்࢈࢈ଵ െ
1
݇ ࡭

ିଵ࢈

െ
1
݇
ଵି࡭்࢈

1
݇

൪

where: ݇ ൌ ܿ െ ࢈ଵି࡭்࢈

We can easily simplify this equation if the matrix A is
symmetrical as:

ࣈ ൌ ݇ ࢈ଵି࡭ ൌ ܿ െ ࢈ࢀࣈ

ଵିࡹ ൌ
1
݇ ൤
ଵି࡭݇ ൅ ࢀࣈ۪ࣈ െࣈ

െࢀࣈ 1
൨

where: ࢀࣈ۪ࣈ means the tensor multiplication of vectors and
the result is a matrix.

All computations needed are of O(N2) computational
complexity. It means that an inverse matrix can be computed
incrementally with O(N2) complexity instead of O(N3)
complexity required originally in this specific case. The
structure of the matrix M is “similar” to the matrix of the
RBF specification. The matrix A in the equation ࢞࡭ ൌ is ࢈
symmetrical and non-singular if appropriate rules for RBFs
are kept.

Now, the question is how the incremental computation of
an inverse matrix can be used for RBF interpolation?

A. Point Insertion
Let us assume a simple situation when the interpolation

for N points has been computed and we need to include a
new point into the given data set. A brute force approach of
full RBF computation on the new data set can be used with
O(N3) complexity computation.

If the RBF interpolation for N+1 points is considered, the
following system of equations is obtained:

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߮ଵ,ଵ . . ߮ଵ,ே ߮ଵ,ேାଵ ଵݔ ଵݕ 1
: ڰ . . : : : 1

߮ே,ଵ : ߮ே,ே ߮ே,ேାଵ ேݔ ேݕ 1
߮ேାଵ,ଵ ߮ேାଵ,ே ߮ேାଵ,ேାଵ ேାଵݔ ேାଵݕ 1
ଵݔ . . ேݔ ேାଵݔ 0 0 0
ଵݕ . . ேݕ ேାଵݕ 0 0 0
1 . . 1 1 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵߣ
:
ேߣ
ேାଵߣ
ܽ௫
ܽ௬
ܽ଴ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ ሾ݄ଵ . . ݄ே ݄ேାଵ 0 0 0ሿ்

where: ߮௜,௝ ൌ ߮௝,௜. Reordering the equations above we get:

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 0 ଵݔ . . ேݔ ேାଵݔ
0 0 0 ଵݕ . . ேݕ ேାଵݕ
0 0 0 1 . . 1 1
ଵݔ ଵݕ 1 ߮ଵ,ଵ . . ߮ଵ,ே ߮ଵ,ேାଵ
: : : : ڰ : :
ேݔ ேݕ 1 ߮ே,ଵ . . ߮ே,ே ߮ே,ேାଵ
ேାଵݔ ேାଵݕ 1 ߮ேାଵ,ଵ . . ߮ேାଵ,ே ߮ேାଵ,ேାଵے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ܽ௫
ܽ௬
ܽ଴
ଵߣ
:
ேߣ
ےேାଵߣ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 ൌ ሾ0 0 0 ݄ଵ . . ݄ே ݄ேାଵሿ்
The last row and the last column is “inserted”. As RBF
functions are symmetrical, the recently derived formula for
iterative computation of the inverse function can be used
directly. The RBF interpolation is given by the matrix M as:

ࡹ ൌ ቂ ࡭ ࢈
்࢈ ܿቃ

where the matrix A is the RBF (N+3) × (N+3) matrix and
the (N+3) vector b and scalar value c are defined as:

࢈ ൌ ሾݔேାଵ ேାଵݕ 1 ߮ଵ,ேାଵ . . ߮ே,ேାଵሿ்
ܿ ൌ ߮ேାଵ,ேାଵ

VisGra - ICONS 2012, Saint Gilles, Reunion Island, IARIA, ISBN: 978-1-61208-184-7, pp. 218-222, 2012

It means that it is possible to compute the (N+1) × (N+1)
matrix ିࡹଵ if the N × N matrix ି࡭ଵ is known with O(N2)
complexity.

That is exactly what we wanted!

Now we have proved that the iterative computation of
inverse function is of O(N2)complexity offers a significant
performance improvement for points insertion. It should be
noted that some operations can be implemented more
effectively, especially ࢀࣈ۪ࣈ ൌ ଵି࡭்࢈࢈ଵି࡭ as the matrix
 .ଵ is symmetrical etcି࡭

B. Point removal
In some cases it is necessary to remove a point from the

given data set. It is actually an inverse operation to the
insertion operation described above. Let us consider a matrix
M of the size (N+1) × (N+1) as

ࡹ ൌ ቂ ࡭ ࢈
்࢈ ܿቃ

Now, the inverse matrix M -1 is known and we want to
compute matrix A-1, which is of the size N × N.

Recently, derived opposite rule:

ࡹ ൌ ቂ ࡭ ࢈
்࢈ ܿቃ

ࣈ ൌ ݇ ࢈ଵି࡭ ൌ ܿ െ ࢈ࢀࣈ

ଵିࡹ ൌ ൦
ଵି࡭ ൅

1
݇ ࣈ۪ࣈ

ࢀ െ
1
݇ ࣈ

െ
1
݇
ࢀࣈ

1
݇

൪ ൌ ൤ࡽଵଵ ଵଶࡽ
ଶଵࡽ ଶଶࡽ

൨

It can be seen that:

ଵଵࡽ ൌ ଵି࡭ ൅
1
݇ ࣈ۪ࣈ

 ࢀ

and, therefore,:

ଵି࡭ ൌ ଵଵࡽ െ
1
݇ ࣈ۪ࣈ

 ࢀ

Now there are known both operations, i.e. insertion and
removal, with effective computation of O(N2) computational
complexity instead of O(N3). It should be noted that vectors
related to the point assigned for a removal must be in the last
row and last column of the matrix M -1.

C. Point selection
As the number of points within a given data set could be

high, the point removal might be driven by a requirement of
removing a point causing a minimal interpolation error. This
is a tricky requirement as there is probably no general
answer. The requirement should include additional
information which interval of x is to be considered.

Generally, we have a function:

݂ሺ࢞ሻ ൌ෍ߣ௝

ே

௝ୀଵ

߮௝ሺ࢞ሻ ൅ ௞ܲሺ࢞ሻ

And we want to remove a point xj which causes a minimal
interpolation error ߝ௝, i.e.

௜݂ሺ࢞ሻ ൌ ෍ ௝ߣ

ே

௝ୀଵ,௜ஷ௝

߮௝ሺ࢞ሻ ൅ ௞ܲሺ࢞ሻ

and the following should be minimized:

௜ߝ ൌ නห݂ሺ࢞ሻ െ ௝݂ሺ࢞ሻห ݀࢞
Ω

where: ߗ is the interval on which the interpolation is to be
made. It means that if the point xj is removed the error εi is
determined as:

௜ߝ ൌ ௜ߣ න|߮ሺԡ࢞ െ ࢞݀|௜ԡሻ࢞
Ω

As the interval ߗ on which the interpolation is known,
we can compute or estimate the error ߝ௝ for each point xj in
the given data set and select the best one. For many
functions ߮ , the error ߝ௝ can be computed or estimated
analytically as the evaluation of ߝ௝ is simple, e.g.

නݎ௠ ln r ݎ݀ ൌ ௠ାଵݎ ൤
݈݊ ݎ
݉ ൅ 1 െ

1
ሺ݉ ൅ 1ሻଶ൨ ݉ ് െ1

In particular, it means that for TPS function ݎଶ ln the ݎ
error ߝ௞ is easy to evaluate. In the case of CSRBFs, the
estimation is even simpler as they have a limited influence,
so generally ߣ௝ determines the error ߝ௝.

It should be noted that a selection of a point with the
lowest influence to the interpolation precision in the given
interval ߗ is of O(N) complexity only.

The above has shown a new approach to RBF
computation which is convenient for larger data sets. It is
especially convenient for t-varying data and for applications,
where a “sliding window” needs to be used. Additionally
basic operations – point insertion and point removal – have
been introduced. These operations have O(N2) computational
complexity only, which makes a significant difference from
the original approach used for RBFs computation having
O(N3).

IV. INCREMENTAL RBF COMPUTATION
The RBF interpolation relies on solution of a LSE

࢞࡭ ൌ of the size N x N in principle, where N is a number ࢈
of the data processed. If the “global” functions are used, the
matrix ࡭ is full, while if the “local” functions are used
(CSRBF), the matrix ࡭ is sparse.

However, in visualization applications it is necessary to
compute the final function ݂ሺ࢞ሻ many many times and even
for already computed ߣ௜ values, the computation of ݂ሺ࢞ሻ is
too expensive. Therefore it is reasonable to significantly
“reduce” the dimensionality of the LSE ࢞࡭ ൌ ,Of course .࢈
we are now changing the interpolation property of the RBF
to approximation, i.e. the values computed do not pass the
given values exactly.

Probably the best way is to formulate the problem using
the Least Square Error approximation. Let us consider the
formulation of the RBF interpolation again.

VisGra - ICONS 2012, Saint Gilles, Reunion Island, IARIA, ISBN: 978-1-61208-184-7, pp. 218-222, 2012

݂ሺ࢞௜ሻ ൌ෍ߣ௝ ߮൫ฮ࢞௜ െ ௝ฮ൯ࣈ
ெ

௝ୀଵ

൅ ࢏்࢞ࢇ ൅ ܽ଴

݄௜ ൌ ݂ሺ࢞௜ሻ ݅ ൌ 1,… , ܰ

where: ࣈ௝are not given points, but points in a pre-defined
“virtual mesh” as only coordinates are needed (there is no
tessellation needed). This “virtual mesh” can be irregular,
orthogonal, regular, adaptive etc. For simplicity, let us
consider 2-dimensional squared (orthogonal) mesh in the
following example. Then the ࣈ௝ coordinates are the corners
of this mesh. It means that the given scattered data will be
actually “re-sampled”, e.g. to the squared mesh.

New reference points ξ

Given points x

Figure 2. RBF approximation and points’ reduction

In many applications the given data sets are heavily over
sampled, or for the fast previews, e.g. for the WEB
applications, we can afford to “down sample” the given data
set. Therefore the question is how to reduce the resulting size
of LSE.

Let us consider that for the visualization purposes we
want to represent the final potential field in d-dimensional
space by ܯ values instead of ܰ and ܯ ا ܰ. The reason is
very simple as if we need to compute the function ݂ሺ࢞ሻ in
many points, the formula above needs to be evaluated many
times. We can expect that the number of evaluation ܳ can be
easily requested at 10ଶ ܰ of points (new points) used for
visualization.

If we consider that ܳ ൒ 10ଶ ܰ and ܰ ൒ 10ଶ ܯ then
the speed up factor in evaluation can be easily
about ૚૙૝ !

This formulation leads to a solution of a linear system of
equations ࢞࡭ ൌ ܰ where number of rows ࢈ ب number of ,ܯ
unknown ሾߣଵ , … , ெ ሿ்ߣ . As the application of RBF is
targeted to high dimensional visualization, it should be noted
that the polynomial is not requested for all kernels of the
RBF interpolation. But it is needed for ߮ሺݎሻ ൌ kernel ݎ ଶ݈݃ݎ
function (TPS). This reduces the size of the linear system of
equations ࢞࡭ ൌ ࢈ significantly and can be solved by the
Least Square Method (LSM) as ࢞࡭்࡭ ൌ or Singular ࢈்࡭
Value Decomposition (SVD) can be used.

ۏ
ێ
ێ
ێ
ۍ
߮ଵ,ଵ ڮ ߮ଵ,ெ
ڭ ڰ ڭ
߮௜,ଵ . . ߮௜,ெ
ڭ ڰ ڭ

߮ே,ଵ ڮ ߮ே,ெے
ۑ
ۑ
ۑ
ې
൥
ଵߣ
ڭ
ெߣ
൩ ൌ

ۏ
ێ
ێ
ێ
ۍ
݄ଵ
ڭ
ڭ
ڭ
݄ேے
ۑ
ۑ
ۑ
ې
࢞࡭ ൌ ࢈

The high dimensional data can be approximated for
visualization by RBF efficiently with a high flexibility as it is
possible to add additional points of an area of interest to the
mesh. It means that a user can add some points to already
given mesh and represent easily some details if requested. It
should be noted that the use of LSM increases instability of
the LSE in general.

Figure 3. Surface reconstruction (438 000 points) [3]

Experimental evaluation
The RBF interpolation is a very powerful tool for

interpolation of data in d-dimensional space in general. In
order to demonstrate the functionality the RBF, we have
recently used RBF for reconstruction of damaged images by
a noise or by inpainting. Also a surface reconstruction has
been solved by the RBF interpolation well. Fig. 3–5 illustrate
the power of the RBF interpolation [2][3][8][15].

a) Original image [2] b) Reconstructed image [11]

Figure 4. Inpaited image reconstruction

Figure 5a. Original image with 60% of damaged pixels [11]

VisGra - ICONS 2012, Saint Gilles, Reunion Island, IARIA, ISBN: 978-1-61208-184-7, pp. 218-222, 2012

Figure 5b. Reconstructed image [11]

The RBF interpolation gives quite good results even if

the images are heavily damaged. The advantages of RBF
interpolation over the other interpolations have been proved
even though that the RBF interpolation causes some
additional computational cost as the RBF is primarily
targeted for scattered data interpolation.

V. CONCLUSION
The radial basis functions (RBF) interpolation is a

representative interpolation method for unordered scattered
data sets. It is well suited approach for solving problems
without meshing the data domain. RBF interpolations are
used in many computational fields, e.g in solution of partial
differential equations etc. RBF approach supports
interpolation in the d-dimensional space naturally.

This paper describes an incremental computation of RBF
and shows the decrease of the computational complexity
from approx. ܱሺܰଷሻ to ܱሺܰଶሻ for a point insertion and
a point removal.

It also presents a method for “resampling” the data
processed as the approximation is acceptable in many
applications, namely in visualization. The approach enables
to increase details for visualization by adding new points to
the “virtual mesh”, if more details are needed. It is necessary
to mention, that there is no mesh actually needed and only
points of the “virtual mesh” need to be defined.

Future research should be devoted to the evaluation of
computing precision and stability as the RBF interpolation
generally leads to not well conditioned LSE. Also, there is a
need to analyze, how the ratio ߥ ൌ can be controlled ܯ/ܰ
effectively and what can be expected in real and large data
applications, e.g. from GIS fields, inverse engineering
process in CAD/CAM etc.

ACKNOWLEDGMENT
The author thanks to colleagues at the University of West

Bohemia (UWB) in Plzen and at the VSB-Technical
University in Ostrava for their critical comments and
constructive suggestions, to anonymous reviewers for their
critical view and comments that helped to improve the
manuscript. Special thanks belong to RongJiang Pan,
Shandong University, China for recommendations during his
stay at the University of West Bohemia (UWB), to former
PhD and MSc. students at the UWB Vit Ondracka, Lukas
Loukota, Jan Hobza, Karel Uhlir and Jiri Zapletal.

This research was supported by the Ministry of
Education of the Czech Republic, projects ME10060 and
LA10035.

REFERENCES
[1] B.J.Ch. Baxter, “The Interpolation Theory of Radial Basis

Functions,” PhD thesis, Trinity College, Cambridge
University, U.K., 1992.

[2] M. Bertalmio, G. Sapiro, C. Ballester and V. Caselles, “Image
Inpainting,” Proceedings of SIGGRAPH’00, Computer
Graphics, pp. 417-424, 2000.

[3] J.C. Carr, R.K. Beatson, J.B. Cherrie, T.J. Mitchell,
W.R. Fright, B.C. McCallum and T.R. Evans, “Reconstruction
and Representation of 3D Objects with Radial Basis
Functions,” Computer Graphics (SIGGRAPH 2001
proceedings), pp. 67-76, 2001.

[4] J. Duchon, “Splines Minimizing Rotation-invariant Semi-
norms in Sobolev space,” in Constructive Theory of Functions
of Several Variables, Springer Lecture Notes in Math, Vol. 21,
pp. 85-100, 1977.

[5] L.R. Hardy, “Multiquadric Equations of Topography and other
Irregular Surfaces”, J. Geophysical. Res., Vol. 76,
pp. 1905-1915, 1971.

[6] C.A. Micchelli, “Interpolation of Scattered Data: Distance
Matrix and Conditionally Positive Definite Functions,” Constr.
Approx., No. 2, pp. 11-22, 1986.

[7] R. Pan and V. Skala, “Implicit Surface Modeling Suitable for
Inside/Outside Tests with Radial Basis Functions,” 10th
International Conference on Computer Aided Design and
Computer Graphics (CAD/Graphics), 2007.

[8] R. Pan and V. Skala, “A Two-Level Approach to Implicit
Modeling with Compactly Supported Radial Basis Functions,”
Engineering and Computers, Springer Verlag, Vol. 27. No. 3.,
pp. 299-307, ISSN 0177-0667, 2011.

[9] R. Pan and V. Skala, “Continuous Global Optimization in
Surface Reconstruction from an Oriented Point Cloud,”
Computer Aided Design, Vol. 43, No. 8, pp. 896-901,
Elsevier, 2011.

[10] I.P. Schagen, “Interpolation in Two Dimension – A New
Technique,” IMA Journal of Applied Mathematics, Vol. 23,
No. 1, pp. 53-59, 1977.

[11] K.Uhlir and V. Skala, “Radial Basis Function use for the
Restoration of Damaged Images,” in Computer Vision and
Graphics, Dordrecht: Springer, pp. 839-844, 2006.

[12] Ch.C.L. Wang and T.-H. Kwok, “Interactive Image Inpainting
using DCT Based Exemplar Matching,” ISVC 2009, LNCS
5876, pp. 709-718, 2009.

[13] H. Wendland, “Computational Aspects of Radial Basis
Function Approximation,” in Topics in Multivariate
Approximation and Interpolation (Ed.K. Jetter et al.), Elsevier
B.V., pp. 231-256, 2005.

[14] G.B. Wright, “Radial Basis Function Interpolation: Numerical
and Analytical Developments,” University of Colorado, PhD
Thesis, 2003.

[15] J. Zapletal, P. Vanecek and V. Skala, “RBF-based Image
Restoration Utilising Auxiliary Points,” CGI 2009
proceedings, ACM, pp. 39-44, 2009.

[16] Y. Ohtake, A. Belyaev and H.-P. Seidel, “3D Scattered Data
Interpolation and Approximation with Multilevel Compactly
Supported RBFs,” Graphical Models, Vol. 67, No. 3,
pp. 150-165, 2005.

WEB references
FastRBF: http://www.farfieldtechnology.com/.
<retrieved: 2011-12-05>

VisGra - ICONS 2012, Saint Gilles, Reunion Island, IARIA, ISBN: 978-1-61208-184-7, pp. 218-222, 2012

