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Abstract — High-dimensional visualization is usually connected 
with large data processing. Because of dimensionality, it is nearly 
impossible to make a tessellation, like the Delaunay tessellation in 
Ed, followed by data interpolation. One possibility of data 
interpolation is the use of the Radial Basis Functions (RBF) 
interpolation. The RBF interpolation supports the interpolation of 
scattered data in d-dimensional space. The computational cost of 
the RBF interpolation is higher but does not increase significantly 
with the data dimensionality. It increases with the number of 
values to be processed non-linearly. In this paper, the RBF 
interpolation properties will be discussed as well as how to process 
data incrementally. Incremental computation decreases 
computational complexity and decreases RBF computational cost 
for the given data set significantly, especially for the visualization 
purposes, when the interpolated/approximated data are used many 
times. As the proposed approach is based on a solution of a system 
of linear equations, the RBF interpolation is convenient especially 
for data sets processing using matrix-vector or GPU architectures. 

Keywords - Visualization; computer graphics; interpolation; 
radial basis functions; RBF 

I.  INTRODUCTION 
Visualization of potential (scalar) fields in a multi-

dimensional space is a typical problem not only in physical 
sciences. The problem seems to be quite simple, but it is 
actually a quite complicated task. In the E2 case the usual 
approach is to tessellate the domain (e.g. x-y space) and then 
to use linear interpolation or cubic interpolation. In general, 
the computational complexity of the Delaunay tessellation 
(DT) for N points in the d-dimensional case is of ܱ൫݀ ܰଶ൯ 
complexity. It needs to be noted that the DT is not easy to 
implement in the the d-dimensional space. There is also a 
severe problem how to smoothly interpolate scalar values in 
the d-dimensional space. The vast majority of interpolation 
techniques rely on “separable” interpolations, i.e. 
interpolation is made in each axis independently expecting 
that the selection of axes order is arbitrary. Unfortunately 
such approaches lead to some artifacts and caused errors are 
unpredictable.  

Radial basis function (RBF) interpolation belongs to non-
separable interpolations used for interpolation in d-
dimensional space. The computational cost of RBF increases 
non-linearly with the number of data processed and linearly 
with the dimensionality of the data set. The RBF 

interpolation is based on a distance of two points, i.e. the 
distance of two points ݎ௜௝ ൌ ฮ࢞௜ െ ௝ฮ࢞  is computed. The 
great advantage of RBF interpolation is that it does not need 
any tessellation of the data domain and simply supports the 
data of any dimensionality. RBF applications are quite 
widespread and can be found in data visualization, solutions 
of partial differential equations (PDE), neural networks, 
reconstruction of corrupted images etc. 

The computational cost of the RBF interpolation is 
higher as the cost of tessellation is inheritably covered into 
the RBF interpolation in principle. Two significant aspects 
are connected with the RBF: 

• re-computation of the RBF interpolation and  
• reduction of the data set.  
It should be noted that the RBF interpolation leads to 

a solution of linear system of equations (LSE) ࢞࡭ ൌ  The .࢈
proposed approaches are valid for the d-dimensional case, 
but in the following text, ݀ ൌ 2 will be used for explanation. 

II. RADIAL BASIS FUNCTION INTERPOLATION 
RBF interpolation is quite simple from a mathematical 

point of view. It is based on a distance computing of two 
points in the d-dimensional space. RBF interpolation is 
defined by the function:  

݂ሺ࢞ሻ ൌ෍ߣ௝ ߮൫ฮ࢞ െ ௝ฮ൯࢞
ே

௝ୀଵ

ൌ෍ߣ௝ ߮௝൫ݎ௝൯
ே

௝ୀଵ

          

௝ݎ ൌ ฮ࢞ െ   ௝ฮ࢞
It means that for the given data set ሼ൏ ,௜ݔ ݄௜ ൐ሽ௜ୀଵே , 

where ݄௜ are associated values to be interpolated and ࢞௜ are 
domain coordinates, a linear system of equations is obtained: 

݂ሺ࢞௜ሻ ൌ෍ߣ௝ ߮൫ฮ࢞௜ െ ௝ฮ൯࢞
ே

௝ୀଵ

       ݅ ൌ 1,… ,ܰ 

where  ߣ௝   are weights to be computed. Due to stability 
issues, usually a polynomial ௞ܲሺ࢞ሻ of a degree k is added to 
the form, i.e.: 

݂ሺ࢞௜ሻ ൌ෍ߣ௝ ߮൫ฮ࢞௜ െ ௝ฮ൯࢞
ே

௝ୀଵ

  ൅ ௞ܲሺ࢞௜ሻ      ݅ ൌ 1,… ,ܰ 
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For a practical reason in many applications, the 
polynomial of the 1st degree is used, i.e. linear 
polynomial  ଵܲሺ࢞ሻ ൌ ்࢞ࢇ ൅ ܽ଴. Then the RBF interpolation 
function has the following form:  

݂ሺ࢞௜ሻ ൌ෍ߣ௝ ߮൫ฮ࢞௜ െ ௝ฮ൯࢞
ே

௝ୀଵ

൅ ࢏்࢞ࢇ ൅ ܽ଴  

݄௜ ൌ ݂ሺ࢞௜ሻ           ݅ ൌ 1,… ,ܰ  
and additional conditions are applied: 

෍ߣ௜ ൌ 0
ே

௝ୀଵ

            ෍ߣ௜࢞௜ ൌ ૙
ே

௝ୀଵ

    

For the d-dimensional case and N points given, a system 
of ሺܰ ൅ ݀ ൅ 1ሻ linear equations has to be solved. 

For d=2 vectors xi and a are given as ࢞௜ ൌ ሾݔ௜,  ௜ሿ் andݕ
ࢇ ൌ ൣܽ௫, ܽ௬൧

்
. Using the matrix notation we can write: 

ۏ
ێ
ێ
ێ
ێ
ۍ
߮ଵ,ଵ . . ߮ଵ,ே ଵݔ ଵݕ 1
: ڰ : : : :

߮ே,ଵ . . ߮ே,ே ேݔ ேݕ 1
ଵݔ . . ேݔ 0 0 0
ଵݕ . . ேݕ 0 0 0
1 . . 1 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵߣ
:
ேߣ
ܽ௫
ܽ௬
ܽ଴ے
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
݄ଵ
:
݄ே
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

 

ቂ  ࡮ ࡼ
்ࡼ ૙ቃ ቂ

ࣅ
ቃࢇ ൌ ቂࢌ૙ቃ  ࢞࡭ ൌ  ࢈

൅ ܽ଴ ࢏࢞ ்ࢇ ൌ ܽ௫ ݔ௜ ൅ ܽ௬ ݕ௜ ൅ ܽ଴ 
It can be seen that for the 2-dimensional case and 

N points given a system of ሺܰ ൅ 3ሻ linear equations has to 
be solved. It can be seen that the RBF interpolations are not 
“separable” by the definition, i.e. an interpolation over x-axis 
and then over y-axis and vice versa cannot be made.  

The radial basis functions interpolation was originally 
introduced using multiquadric method [5] in 1971 called 
Radial Basis Function method. Since then, many different 
RBF interpolation schemes have been developed with some 
specific properties, e.g. [4] uses ߮ሺݎሻ ൌ ݎ ଶ݈݃ݎ , which is 
called Thin-Plate Spline (TPS), a function ߮ሺݎሻ ൌ ݁ିሺఢ௥ሻమ 
that was proposed in [9]. Compactly Supported RBF 
(CSRBF) was introduced in [13] as  

߮ሺݎሻ ൌ ൜ሺ1 െ ,ሻݎሻ௤ ܲሺݎ 0 ൑ ݎ ൑ 1
 0 , ݎ ൐ 1   , 

where: ܲሺݎሻ is a polynomial function and q is a parameter.  
Theoretical problems with stability and solvability were 

resolved by [6] and [14]. Generally, there are two main 
groups of the RBFs: 

• “global” – a typical example is TPS function 
• “local” –  Compactly supported RBF (CSRBF)  

If the “global” functions are taken, the matrix A of the LSE 
is full, for large N is becoming ill-conditioned and problems 
with convergence can be expected. On the other hand if the 
CSRBFs are taken, the matrix A is becoming relatively 
sparse, i.e. computation of the LSE will be faster, but the 
scaling factor needs to be carefully selected due to a limited 
influence of the CSRBF and the final function tends to be 
“blobby” shaped. 

TABLE I.  TYPICAL EXAMPLE OF “GLOBAL” FUNCTIONS 

“Global“ functions ߶ሺݎሻ
Thin-Plate Spline (TPS) rr log2  

Gauss function ( )( )2exp rε−  

Inverse Quadric (IQ) ( )( )211 rε+  

Inverse multiquadric (IMQ) ( )211 rε+  

Multiquadric (MQ) ( )21 rε+  

TABLE II.  TYPICAL EXAMPLE OF “LOCAL” CSRBF FUNCTIONS 

ID Function 
1 +− )1( r  
2 )13()1( 3 +− + rr  
3 )158()1( 25 ++− + rrr  
4 2)1( +− r  
5 )14()1( 4 +− + rr  
6 )31835()1( 26 ++− + rrr  
7 )182532()1( 238 +++− + rrrr  
8 3)1( +− r  
9 )15()1( 3 +− + rr  

10 )1716()1( 27 ++− + rrr  

 
Figure 1. Geometrical properties of CSRBF 

Tab. 2 presents typical examples of CSRBFs defined for 
the interval < 0 , 1 >, but for the practical use a scaling is 
used, i.e. the value r is multiplied by a scaling factor α, 
where 0 < α < 1. Fig. 1 presents the geometrical properties of 
typical CSRBFs. 
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III. INCREMENTAL RBF COMPUTATION 
Some interesting problems can be solved using RBF 

interpolation quite effectively, e.g. surface reconstruction 
from scattered data [3][8][9][16], reconstruction of damaged 
images [11][15], inpainting removal [2][12] etc. All those 
applications based on RBFs interpolation have one 
significant disadvantage – the computational cost. This is 
especially severe in applications when the data are not static. 
Typical examples of non-static data are: 
• Position of points has changed. It means that the whole 

system of linear equations has to be formed and 
recomputed which leads generally to O(N3) 
computational complexity and unacceptable 
time-consuming computation. 

• Position of points remains fixed, but the value 
associated with a point has changed. In this case, 
iterative methods are usually faster than explicit 
computation of an inverse matrix. 

In some applications a “sliding window” on data is required, 
especially in time-related applications when old data should 
not be used in the interpolation and new data are to be 
included. This is a typical situation in signal processing 
applications. Considering the above facts above there is a 
question how to compute RBF incrementally with a lower 
computational complexity.  

The main question to be answered is: 
Is it possible to use already computed RFB interpolation if 

a new point is to be included to the data set? 
If the answer is positive it should lead to significant decrease 
of computational complexity. In the following, it will be 
presented how a new point can be inserted, how a selected 
point can be removed and also how to select the best 
candidate for a removal according to an error caused by this 
point removal. 

Let us consider some operations with block matrices 
(assuming that all operations are correct and matrices are 
non-singular in general etc.). 

ቂ࡭ ࡮
࡯ ቃࡰ

ିଵ

ൌ   ൤ ሺ࡭ െ ሻିଵ࡯ଵିࡰ࡮ െି࡭ଵ࡮ሺࡰ െ ሻିଵ࡮ଵି࡭࡯
െሺࡰ െ ଵି࡭࡯ሻିଵ࡮ଵି࡭࡯ ሺࡰ െ ሻିଵ࡮ଵି࡭࡯

൨ 

Let us consider a matrix M of (n+1) × (n+1) and a 
matrix A of n × n in the following block form: 

ࡹ ൌ ቂ ࡭ ࢈
்࢈ ܿቃ 

Then the inverse of the matrix ࡹ  applying the rule above 
can be written as: 

ଵିࡹ ൌ

ۏ
ێ
ێ
࡭൬ۍ െ

1
ܿ ࢈࢈

்൰
ିଵ

െ
1
݇ ࡭

ିଵ࢈

െ
1
݇
ଵି࡭்࢈

1
݇ ے

ۑ
ۑ
ې

ൌ   ൦
ଵି࡭ ൅

1
݇ ࡭

ିଵି࡭்࢈࢈ଵ െ
1
݇ ࡭

ିଵ࢈

െ
1
݇
ଵି࡭்࢈

1
݇

൪ 

where:  ݇ ൌ ܿ െ  ࢈ଵି࡭்࢈

We can easily simplify this equation if the matrix A is 
symmetrical as: 

ࣈ ൌ ݇ ࢈ଵି࡭ ൌ ܿ െ  ࢈ࢀࣈ

ଵିࡹ ൌ  
1
݇ ൤
ଵି࡭݇ ൅ ࢀࣈ۪ࣈ െࣈ

െࢀࣈ 1
൨ 

where: ࢀࣈ۪ࣈ means the tensor multiplication of vectors and 
the result is a matrix.  

All computations needed are of O(N2) computational 
complexity. It means that an inverse matrix can be computed 
incrementally with O(N2) complexity instead of O(N3) 
complexity required originally in this specific case. The 
structure of the matrix M is “similar” to the matrix of the 
RBF specification. The matrix A in the equation ࢞࡭ ൌ  is ࢈
symmetrical and non-singular if appropriate rules for RBFs 
are kept. 

Now, the question is how the incremental computation of 
an inverse matrix can be used for RBF interpolation?  

A. Point Insertion 
Let us assume a simple situation when the interpolation 

for N points has been computed and we need to include a 
new point into the given data set. A brute force approach of 
full RBF computation on the new data set can be used with 
O(N3) complexity computation. 

If the RBF interpolation for N+1 points is considered, the 
following system of equations is obtained:  

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߮ଵ,ଵ . . ߮ଵ,ே ߮ଵ,ேାଵ ଵݔ ଵݕ 1
: ڰ . . : : : 1

߮ே,ଵ : ߮ே,ே ߮ே,ேାଵ ேݔ ேݕ 1
߮ேାଵ,ଵ ߮ேାଵ,ே ߮ேାଵ,ேାଵ ேାଵݔ ேାଵݕ 1
ଵݔ . . ேݔ ேାଵݔ 0 0 0
ଵݕ . . ேݕ ேାଵݕ 0 0 0
1 . . 1 1 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵߣ
:
ேߣ
ேାଵߣ
ܽ௫
ܽ௬
ܽ଴ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

ൌ ሾ݄ଵ . . ݄ே ݄ேାଵ 0 0 0ሿ்  

where: ߮௜,௝ ൌ ߮௝,௜. Reordering the equations above we get: 

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 0 ଵݔ . . ேݔ ேାଵݔ
0 0 0 ଵݕ . . ேݕ ேାଵݕ
0 0 0 1 . . 1 1
ଵݔ ଵݕ 1 ߮ଵ,ଵ . . ߮ଵ,ே ߮ଵ,ேାଵ
: : : : ڰ : :
ேݔ ேݕ 1 ߮ே,ଵ . . ߮ே,ே ߮ே,ேାଵ
ேାଵݔ ேାଵݕ 1 ߮ேାଵ,ଵ . . ߮ேାଵ,ே ߮ேାଵ,ேାଵے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ܽ௫
ܽ௬
ܽ଴
ଵߣ
:
ேߣ
ےேାଵߣ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

  ൌ ሾ0 0 0 ݄ଵ . . ݄ே ݄ேାଵሿ் 
The last row and the last column is “inserted”. As RBF 
functions are symmetrical, the recently derived formula for 
iterative computation of the inverse function can be used 
directly. The RBF interpolation is given by the matrix M as:  

ࡹ ൌ ቂ ࡭ ࢈
்࢈ ܿቃ 

where the matrix A is the RBF (N+3) × (N+3)  matrix and 
the (N+3) vector b and scalar value c are defined as: 

࢈ ൌ ሾݔேାଵ ேାଵݕ 1 ߮ଵ,ேାଵ . . ߮ே,ேାଵሿ் 
ܿ ൌ ߮ேାଵ,ேାଵ 
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It means that it is possible to compute the (N+1) × (N+1) 
matrix ିࡹଵ if the N × N matrix ି࡭ଵ  is known with O(N2) 
complexity.  

That is exactly what we wanted! 

Now we have proved that the iterative computation of 
inverse function is of O(N2)complexity offers a significant 
performance improvement for points insertion. It should be 
noted that some operations can be implemented more 
effectively, especially ࢀࣈ۪ࣈ ൌ ଵି࡭்࢈࢈ଵି࡭  as the matrix  
 .ଵ is symmetrical etcି࡭

B. Point removal 
In some cases it is necessary to remove a point from the 

given data set. It is actually an inverse operation to the 
insertion operation described above. Let us consider a matrix 
M of the size (N+1) × (N+1) as  

ࡹ ൌ ቂ ࡭ ࢈
்࢈ ܿቃ 

Now, the inverse matrix M -1 is known and we want to 
compute matrix A-1, which is of the size N × N. 

Recently, derived opposite rule: 

ࡹ ൌ ቂ ࡭ ࢈
்࢈ ܿቃ 

ࣈ ൌ ݇ ࢈ଵି࡭ ൌ ܿ െ  ࢈ࢀࣈ

ଵିࡹ ൌ   ൦
ଵି࡭ ൅

1
݇ ࣈ۪ࣈ

ࢀ െ
1
݇ ࣈ

െ
1
݇
ࢀࣈ

1
݇

൪ ൌ ൤ࡽଵଵ ଵଶࡽ
ଶଵࡽ ଶଶࡽ

൨ 

It can be seen that: 

ଵଵࡽ ൌ ଵି࡭ ൅
1
݇ ࣈ۪ࣈ

 ࢀ

and, therefore,: 

ଵି࡭ ൌ ଵଵࡽ  െ
1
݇ ࣈ۪ࣈ

 ࢀ

Now there are known both operations, i.e. insertion and 
removal, with effective computation of O(N2) computational 
complexity instead of O(N3). It should be noted that vectors 
related to the point assigned for a removal must be in the last 
row and last column of the matrix M -1. 

C. Point selection 
As the number of points within a given data set could be 

high, the point removal might be driven by a requirement of 
removing a point causing a minimal interpolation error. This 
is a tricky requirement as there is probably no general 
answer. The requirement should include additional 
information which interval of x is to be considered. 

Generally, we have a function:  

݂ሺ࢞ሻ ൌ෍ߣ௝

ே

௝ୀଵ

߮௝ሺ࢞ሻ ൅ ௞ܲሺ࢞ሻ 

And we want to remove a point xj which causes a minimal 
interpolation error ߝ௝, i.e.  

௜݂ሺ࢞ሻ ൌ ෍ ௝ߣ

ே

௝ୀଵ,௜ஷ௝

߮௝ሺ࢞ሻ ൅ ௞ܲሺ࢞ሻ 

and the following should be minimized:  

௜ߝ ൌ නห݂ሺ࢞ሻ െ ௝݂ሺ࢞ሻห ݀࢞
Ω

 

where: ߗ is the interval on which the interpolation is to be 
made. It means that if the point xj is removed the error εi is 
determined as: 

௜ߝ ൌ ௜ߣ න|߮ሺԡ࢞ െ ࢞݀|௜ԡሻ࢞
Ω

 

As the interval ߗ on which the interpolation is known, 
we can compute or estimate the error ߝ௝ for each point xj in 
the given data set and select the best one. For many 
functions ߮ , the error ߝ௝  can be computed or estimated 
analytically as the evaluation of ߝ௝ is simple, e.g. 

නݎ௠ ln r  ݎ݀ ൌ ௠ାଵݎ ൤
݈݊ ݎ
݉ ൅ 1 െ

1
ሺ݉ ൅ 1ሻଶ൨    ݉ ് െ1 

In particular, it means that for TPS function ݎଶ ln  the  ݎ
error ߝ௞  is easy to evaluate. In the case of CSRBFs, the 
estimation is even simpler as they have a limited influence, 
so generally ߣ௝  determines the error ߝ௝. 

It should be noted that a selection of a point with the 
lowest influence to the interpolation precision in the given 
interval ߗ is of O(N) complexity only. 

The above has shown a new approach to RBF 
computation which is convenient for larger data sets. It is 
especially convenient for t-varying data and for applications, 
where a “sliding window” needs to be used. Additionally 
basic operations – point insertion and point removal – have 
been introduced. These operations have O(N2) computational 
complexity only, which makes a significant difference from 
the original approach used for RBFs computation having 
O(N3). 

IV. INCREMENTAL RBF COMPUTATION 
The RBF interpolation relies on solution of a LSE 

࢞࡭ ൌ  of the size N x N in principle, where N is a number ࢈
of the data processed. If the “global” functions are used, the 
matrix ࡭  is full, while if the “local” functions are used 
(CSRBF), the matrix ࡭ is sparse. 

However, in visualization applications it is necessary to 
compute the final function ݂ሺ࢞ሻ many many times and even 
for already computed ߣ௜  values, the computation of ݂ሺ࢞ሻ is 
too expensive. Therefore it is reasonable to significantly 
“reduce” the dimensionality of the LSE ࢞࡭ ൌ  ,Of course .࢈
we are now changing the interpolation property of the RBF 
to approximation, i.e. the values computed do not pass the 
given values exactly.  

Probably the best way is to formulate the problem using 
the Least Square Error approximation. Let us consider the 
formulation of the RBF interpolation again.  
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݂ሺ࢞௜ሻ ൌ෍ߣ௝ ߮൫ฮ࢞௜ െ ௝ฮ൯ࣈ
ெ

௝ୀଵ

൅ ࢏்࢞ࢇ ൅ ܽ଴  

݄௜ ൌ ݂ሺ࢞௜ሻ           ݅ ൌ 1,… , ܰ 

where: ࣈ௝are not given points, but points in a pre-defined 
“virtual mesh” as only coordinates are needed (there is no 
tessellation needed). This “virtual mesh” can be irregular, 
orthogonal, regular, adaptive etc. For simplicity, let us 
consider 2-dimensional squared (orthogonal) mesh in the 
following example. Then the ࣈ௝ coordinates are the corners 
of this mesh. It means that the given scattered data will be 
actually “re-sampled”, e.g. to the squared mesh. 

New reference points  ξ

Given points  x

 
 

Figure 2. RBF approximation and points’ reduction 
 

In many applications the given data sets are heavily over 
sampled, or for the fast previews, e.g. for the WEB 
applications, we can afford to “down sample” the given data 
set. Therefore the question is how to reduce the resulting size 
of LSE.  

Let us consider that for the visualization purposes we 
want to represent the final potential field in d-dimensional 
space by ܯ values instead of ܰ and ܯ ا ܰ. The reason is 
very simple as if we need to compute the function ݂ሺ࢞ሻ in 
many points, the formula above needs to be evaluated many 
times. We can expect that the number of evaluation ܳ can be 
easily requested at  10ଶ ܰ  of points (new points) used for 
visualization.  

If we consider that  ܳ ൒ 10ଶ ܰ   and  ܰ ൒ 10ଶ ܯ  then 
the speed up factor in evaluation can be easily 
about ૚૙૝ !  

This formulation leads to a solution of a linear system of 
equations ࢞࡭ ൌ ܰ where number of rows ࢈ ب  number of ,ܯ
unknown ሾߣଵ , … , ெ ሿ்ߣ . As the application of RBF is 
targeted to high dimensional visualization, it should be noted 
that the polynomial is not requested for all kernels of the 
RBF interpolation. But it is needed for ߮ሺݎሻ ൌ  kernel ݎ ଶ݈݃ݎ
function (TPS). This reduces the size of the linear system of 
equations ࢞࡭  ൌ ࢈  significantly and can be solved by the 
Least Square Method (LSM) as  ࢞࡭்࡭ ൌ  or Singular ࢈்࡭
Value Decomposition (SVD) can be used. 
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The high dimensional data can be approximated for 
visualization by RBF efficiently with a high flexibility as it is 
possible to add additional points of an area of interest to the 
mesh. It means that a user can add some points to already 
given mesh and represent easily some details if requested. It 
should be noted that the use of LSM increases instability of 
the LSE in general. 

 

 
Figure 3. Surface reconstruction (438 000 points) [3] 

Experimental evaluation 
The RBF interpolation is a very powerful tool for 

interpolation of data in d-dimensional space in general. In 
order to demonstrate the functionality the RBF, we have 
recently used RBF for reconstruction of damaged images by 
a noise or by inpainting. Also a surface reconstruction has 
been solved by the RBF interpolation well. Fig. 3–5 illustrate 
the power of the RBF interpolation [2][3][8][15]. 

 

a) Original image [2] b) Reconstructed image [11]

Figure 4. Inpaited image reconstruction 
 

 
Figure 5a. Original image with 60% of damaged pixels [11] 

VisGra - ICONS 2012, Saint Gilles, Reunion Island, IARIA, ISBN: 978-1-61208-184-7, pp. 218-222, 2012



 
Figure 5b. Reconstructed image [11] 

 
The RBF interpolation gives quite good results even if 

the images are heavily damaged. The advantages of RBF 
interpolation over the other interpolations have been proved 
even though that the RBF interpolation causes some 
additional computational cost as the RBF is primarily 
targeted for scattered data interpolation. 

V. CONCLUSION 
The radial basis functions (RBF) interpolation is a 

representative interpolation method for unordered scattered 
data sets. It is well suited approach for solving problems 
without meshing the data domain. RBF interpolations are 
used in many computational fields, e.g  in solution of partial 
differential equations etc. RBF approach supports 
interpolation in the d-dimensional space naturally. 

This paper describes an incremental computation of RBF 
and shows the decrease of the computational complexity 
from approx. ܱሺܰଷሻ  to ܱሺܰଶሻ  for a point insertion and 
a point removal.  

It also presents a method for “resampling” the data 
processed as the approximation is acceptable in many 
applications, namely in visualization. The approach enables 
to increase details for visualization by adding new points to 
the “virtual mesh”, if more details are needed. It is necessary 
to mention, that there is no mesh actually needed and only 
points of the “virtual mesh” need to be defined. 

Future research should be devoted to the evaluation of 
computing precision and stability as the RBF interpolation 
generally leads to not well conditioned LSE. Also, there is a 
need to analyze, how the ratio ߥ ൌ  can be controlled ܯ/ܰ
effectively and what can be expected in real and large data 
applications, e.g. from GIS fields, inverse engineering 
process in CAD/CAM etc. 
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